JPS6219836B2 - - Google Patents

Info

Publication number
JPS6219836B2
JPS6219836B2 JP1851781A JP1851781A JPS6219836B2 JP S6219836 B2 JPS6219836 B2 JP S6219836B2 JP 1851781 A JP1851781 A JP 1851781A JP 1851781 A JP1851781 A JP 1851781A JP S6219836 B2 JPS6219836 B2 JP S6219836B2
Authority
JP
Japan
Prior art keywords
enzyme
hydrophobic
emulsion
immobilizing
porous structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1851781A
Other languages
Japanese (ja)
Other versions
JPS57132884A (en
Inventor
Masaru Yoshida
Isao Kaetsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP1851781A priority Critical patent/JPS57132884A/en
Publication of JPS57132884A publication Critical patent/JPS57132884A/en
Publication of JPS6219836B2 publication Critical patent/JPS6219836B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は酵素の固定化方法に関する。より詳細
に述べると、本発明は疎水性重合体マトリツクス
に多孔構造を付与しその中に酵素を包括せしめる
ことを特徴とする酵素の固定化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for immobilizing enzymes. More specifically, the present invention relates to a method for immobilizing an enzyme, which is characterized by imparting a porous structure to a hydrophobic polymer matrix and entrapping the enzyme therein.

マイクロカプセル状の酵素の固定化に関し親水
性モノマーを使用する従来技術としては親水性重
合性単量体および酵素から成る均一混合系に低温
で光または電離性放射線を照射して重合させ酵素
を包括した親水性多孔マトリツクスを製造する方
法や親水性重合性単量体および酵素水溶液から成
る系を用いて塩類を添加してサスペンジヨン法で
粒子表面に酵素を固定する方法がある。然しなが
らこれら従来技術の前者の場合はマトリツクスが
親水性のため酵素濃度が高くなるとマトリツクス
からの酵素の脱離が増加するという欠点が、又後
者の場合固定出来る酵素に限界があり且つ親水性
マトリツクスから酵素が脱離する傾向があるとい
う欠点があつた。又、疎水性重合性単量体を使用
する従来技術としては疎水性重合性単量体および
酵素水溶液から成る系に0℃以下の低温において
光もしくは電離性放射線で重合させ、単量体濃度
の低い所で粒子状酵素固定化物を製造する方法が
ある。然しながらこの場合、モノマー濃度が高く
なると粒子が形成されなくなるので、モノマー濃
度に限界があつた。即ち50%〜0%近傍であつ
た。さらに酵素のマトリツクス粒子に対する固定
率も高くすることができなかつた。
Conventional technology using hydrophilic monomers for immobilizing enzymes in the form of microcapsules involves irradiating a homogeneous mixed system of hydrophilic polymerizable monomers and enzymes with light or ionizing radiation at low temperatures to polymerize and enclose the enzymes. There is a method of producing a hydrophilic porous matrix, and a method of immobilizing enzymes on the particle surface by a suspension method by adding salts using a system consisting of a hydrophilic polymerizable monomer and an aqueous enzyme solution. However, in the former case of these conventional techniques, since the matrix is hydrophilic, the enzyme desorption from the matrix increases as the enzyme concentration increases, and in the latter case, there is a limit to the amount of enzyme that can be immobilized, and The disadvantage was that the enzyme had a tendency to desorb. In addition, as a conventional technique using a hydrophobic polymerizable monomer, a system consisting of a hydrophobic polymerizable monomer and an enzyme aqueous solution is polymerized with light or ionizing radiation at a low temperature below 0°C, and the monomer concentration is reduced. There is a method for producing particulate enzyme immobilized products at low temperatures. However, in this case, there was a limit to the monomer concentration because particles were no longer formed when the monomer concentration became high. That is, it was around 50% to 0%. Furthermore, it was not possible to increase the immobilization rate of the enzyme to the matrix particles.

上述した従来技術の欠点を改良すべく本発明者
等は鋭意研究の結果疎水性重合体マトリツクス中
に多孔構造を付与しその中に酵素を包括すること
によつて酵素の固定化率が著るしく向上すること
を発見した。
In order to improve the above-mentioned drawbacks of the prior art, the present inventors have conducted intensive research and found that by providing a porous structure to a hydrophobic polymer matrix and entrapping the enzyme therein, the enzyme immobilization rate is remarkable. I found that it improved significantly.

従つて本発明はこの発見に基づいて成されたも
のである。
Therefore, the present invention has been made based on this discovery.

本発明は1種もしくは2種以上の酵素を含む適
当なPHの緩衝液に1種もしくは2種以上の0℃以
下の温度において重合する疎水性重合性単量体を
添加し、機械的撹拌によつてよく撹拌混合して
W/O型エマルジヨンを形成したのち0℃以下の
温度において、このW/O型エマルジヨンに光も
しくは電離性放射線を照射して疎水性重合性単量
体を重合して疎水性重合体マトリツクス内部に多
孔構造を形成せしめ且つ酵素を主として多孔構造
内に包括固定させることから成る酵素の固定化方
法を基本方法とするものである。
In the present invention, one or more hydrophobic polymerizable monomers that polymerize at temperatures below 0°C are added to a buffer solution with an appropriate pH containing one or more enzymes, and then mechanically stirred. After stirring and mixing well to form a W/O emulsion, the W/O emulsion is irradiated with light or ionizing radiation at a temperature of 0°C or lower to polymerize the hydrophobic polymerizable monomer. The basic method for immobilizing enzymes is to form a porous structure inside a hydrophobic polymer matrix and to entrap the enzyme mainly within the porous structure.

上述した様に本発明の最も重要な特徴の一つは
本発明をW/Oエマルジヨンで実施することであ
る。即ち、酵素水溶液(W)の量が重合性単量体
(O)の量より絶対に多くなつてはならないこと
を必須の条件とする。W/Oエマルジヨンは室温
ではその形態を維持することは通常困難である。
従つて、W相は凍結させO相は0℃以下の低温で
ガラス状態を形成する重合性単量体を使用する理
由はそこにある。
As mentioned above, one of the most important features of the invention is that it is implemented in a W/O emulsion. That is, it is an essential condition that the amount of the enzyme aqueous solution (W) should never be greater than the amount of the polymerizable monomer (O). It is usually difficult for a W/O emulsion to maintain its shape at room temperature.
Therefore, this is the reason why the W phase is frozen and the O phase is a polymerizable monomer that forms a glass state at a low temperature of 0° C. or lower.

本発明の実施に当つては疎水性重合性単量体の
重合は0℃〜−100℃の温度範囲で光または電離
性放射線を照射することによつて実施される。こ
の操作によつてW/OエマルジヨンのW相は凍練
し、O相を構成する重合性単量体は重合して多孔
構造となり酵素を包括する。0℃以下の低温でO
相中の重合性単量体を重合させる方法は光または
電離性放射線のみである。この事は0℃以下の低
温では酵素に光または電離性放射線を照射しても
殆んど失活しないという点からも極めて効果的で
ある。
In carrying out the present invention, the hydrophobic polymerizable monomer is polymerized by irradiation with light or ionizing radiation at a temperature range of 0°C to -100°C. By this operation, the W phase of the W/O emulsion is frozen and kneaded, and the polymerizable monomers constituting the O phase are polymerized to form a porous structure that encloses the enzyme. O at low temperatures below 0℃
The only method for polymerizing the polymerizable monomers in the phase is light or ionizing radiation. This is extremely effective in that at low temperatures below 0°C, enzymes are hardly inactivated even when irradiated with light or ionizing radiation.

所で、本発明の様にW/Oエマルジヨンを使用
する場合、酵素は主として重合体マトリツクス内
の空孔内に包括され且つマトリツクス自体が疎水
性のため酵素反応がマトリツクス内部で起りにく
いと考えられていた。何故ならば基質がマトリツ
クス内に拡散していきにくいからである。然し本
発明者等は研究の結果基質が低分子量の場合は前
述の本発明の基本方法で製造された複合体の重合
体マトリツクスの内部に十分拡散することを確認
した。又、基質が高分子量の場合は以下に述べる
本発明の基本方法の改良方法で製造された複合体
を適用すれば十分マトリツクス内部に拡散するこ
とを確認した。即ち、本発明の改良方法は1種も
しくは2種以上の酵素を含む適当なPHの緩衝液に
1種もしくは2種以上の0℃以下の温度において
重合する疎水性重合性単量体および該緩衝液およ
び該重合性単量体両者を溶解する溶媒を添加し、
機械的撹拌によつてよく撹拌混合してW/O型エ
マルジヨンを形成したのち0℃以下の温度におい
てこのW/O型エマルジヨンに光もしくは電離性
放射線を照射して疎水性重合性単量体を重合して
疎水性重合体マトリツクス内部に多孔構造を形成
せしめ且つ酵素を主として多孔構造内に包括固定
させることから成る。
By the way, when a W/O emulsion is used as in the present invention, the enzyme is mainly enclosed in the pores within the polymer matrix, and the matrix itself is hydrophobic, so it is thought that enzymatic reactions are unlikely to occur inside the matrix. was. This is because the substrate is difficult to diffuse into the matrix. However, as a result of research, the present inventors have confirmed that when the substrate has a low molecular weight, it can sufficiently diffuse into the interior of the polymer matrix of the composite produced by the basic method of the present invention described above. Furthermore, it has been confirmed that when the substrate has a high molecular weight, it can be sufficiently diffused into the matrix by applying a complex produced by an improved method of the basic method of the present invention described below. That is, the improved method of the present invention involves adding one or more hydrophobic polymerizable monomers that polymerize at a temperature of 0° C. or lower and the buffer to an appropriate pH buffer containing one or more enzymes. adding a solvent that dissolves both the liquid and the polymerizable monomer,
After stirring and mixing thoroughly using mechanical stirring to form a W/O emulsion, the W/O emulsion is irradiated with light or ionizing radiation at a temperature of 0°C or lower to release the hydrophobic polymerizable monomer. It consists of polymerizing to form a porous structure inside a hydrophobic polymer matrix and entrapping and immobilizing the enzyme mainly within the porous structure.

更に、又、本発明の改良方法は1種もしくは2
種以上の酵素を含む適当なPHの緩衝液に1種もし
くは2種以上の0℃以下の温度において重合する
疎水性重合性単量体および親水性重合性単量体を
添加し、機械的撹拌によつてよく撹拌混合して
W/O型エマルジヨンを形成したのち0℃以下の
温度において、このW/O型エマルジヨンに光も
しくは電離性放射線を照射して疎水性重合性単量
体を重合して、疎水性重合体マトリツクス内部に
多孔構造を形成せしめ且つ酵素を主として多孔構
造内に包括固定させることから成る。
Furthermore, the improved method of the present invention may be one or two types.
One or more hydrophobic polymerizable monomers and hydrophilic polymerizable monomers that polymerize at temperatures below 0°C are added to a buffer solution with an appropriate pH containing more than one type of enzyme, and the mixture is mechanically stirred. After stirring and mixing thoroughly to form a W/O emulsion, the W/O emulsion is irradiated with light or ionizing radiation at a temperature below 0°C to polymerize the hydrophobic polymerizable monomer. This method consists of forming a porous structure inside a hydrophobic polymer matrix and entrapping and immobilizing the enzyme mainly within the porous structure.

本発明の基本方法の改良方法で使用する緩衝液
および疎水性重合性単量体の両者を溶解する溶媒
は酵素を含む緩衝液5重量部に対し1〜30重量%
の範囲で添加される。又、本発明の基本方法の改
良方法で添加される親水性重合性単量体は疎水性
重合性単量体7〜50重量部に対して1〜20重量%
である。本発明の基本方法で使用する系に上述し
た溶媒あるいは親水性重合性単量体を添加するこ
とによつて重合体マトリツクス内に形成される多
孔構造および酵素の固定化状態を変化させるもの
である。
The solvent for dissolving both the buffer and the hydrophobic polymerizable monomer used in the improved method of the basic method of the present invention is 1 to 30% by weight based on 5 parts by weight of the buffer containing the enzyme.
It is added within the range of In addition, the hydrophilic polymerizable monomer added in the improved method of the basic method of the present invention is 1 to 20% by weight based on 7 to 50 parts by weight of the hydrophobic polymerizable monomer.
It is. By adding the above-mentioned solvent or hydrophilic polymerizable monomer to the system used in the basic method of the present invention, the porous structure formed within the polymer matrix and the immobilization state of the enzyme are changed. .

上述した本発明において使用される各成分の量
的割合は0.1〜20重量%の1種もしくは2種類以
上の酵素を含む適当なPHの緩衝液5重量部当り1
種もしくは2種類以上の0℃以下の温度において
重合可能な疎水性重合性単量体7〜50重量部の範
囲で適宜変化され得る。
The quantitative ratio of each component used in the present invention described above is 1 part by weight of a buffer solution of an appropriate pH containing 0.1 to 20% by weight of one or more enzymes.
The amount of one or more types of hydrophobic polymerizable monomers that can be polymerized at a temperature of 0° C. or lower may be varied as appropriate within the range of 7 to 50 parts by weight.

本発明を実施するにあたつて採用される線源は
低圧または高圧水銀灯からの可視および紫外光、
太陽光、フオトンフアクトリイからの光、X線、
ガンマ線、ベータ線、α線、電子線を含み適当な
線量率は1×102〜1×109レントゲン毎時、線量
は1×103〜1×107レントゲンの範囲で適宜使用
される。
The radiation sources employed in carrying out the invention include visible and ultraviolet light from low-pressure or high-pressure mercury lamps;
Sunlight, light from photon factors, X-rays,
Gamma rays, beta rays, alpha rays, and electron beams are included, and the appropriate dose rate is 1×10 2 to 1×10 9 roentgen per hour, and the dose is appropriately used in the range of 1×10 3 to 1×10 7 roentgen.

本発明では所望により例えば、フイルム状、シ
ト状、粒子状、粉末状、棒状等種々の形状に成形
する事が出来る。本発明で使用される溶媒は酵素
を含む緩衝液および重合性単量体の両者を溶解す
る溶媒であれば特に限定されないが、ポリエチレ
ングリコール類、アルコール類、有機酸類等が好
ましい。
In the present invention, the material can be formed into various shapes, such as a film, a sheet, a particle, a powder, and a rod, as desired. The solvent used in the present invention is not particularly limited as long as it dissolves both the enzyme-containing buffer and the polymerizable monomer, but polyethylene glycols, alcohols, organic acids, etc. are preferable.

本発明で使用される酵素は水溶性酵素が好まし
く、例えばα−アミラーゼ、β−アミラーゼ、グ
ルコアミラーゼ、セルラーゼ、ヘミセルラーゼ、
β−グルコシダーゼ、インペルターゼ、ウレアー
ゼ、ウリヤーゼ、キモトリプシン、パパイン、リ
パーゼ、アルコール脱水素酵素、グルコースオキ
シダーゼ、アルギナーゼ、アスパラギナーゼ等が
例示される。
The enzyme used in the present invention is preferably a water-soluble enzyme, such as α-amylase, β-amylase, glucoamylase, cellulase, hemicellulase,
Examples include β-glucosidase, inpeltase, urease, uriase, chymotrypsin, papain, lipase, alcohol dehydrogenase, glucose oxidase, arginase, and asparaginase.

本発明で使用される疎水性重合性単量体として
は、0℃以下の温度においてガラス状態を呈し、
光もしくは放射線で重合可能なものであれば何れ
も含むが、具体例を示すと、グリシジルメタクリ
レート、エチレングリコールジメタクリレート、
ジエチレングリコールジメタクリレート、トリエ
チレングリコールジメタクリレート、ポリエチレ
ングリコール#200ジメタクリレート、トリメチ
ロールプロパントリメタクリレート、ネオペンチ
ルグリコールジメタクリレート、ヒドロキシヘキ
シルメタクリレートおよびこれらのアクリレート
等が例示される。
The hydrophobic polymerizable monomer used in the present invention exhibits a glass state at a temperature of 0°C or lower,
This includes anything that can be polymerized by light or radiation; specific examples include glycidyl methacrylate, ethylene glycol dimethacrylate,
Examples include diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol #200 dimethacrylate, trimethylolpropane trimethacrylate, neopentyl glycol dimethacrylate, hydroxyhexyl methacrylate, and acrylates thereof.

本発明で使用される親水性重合性単量体は、ヒ
ドロキシエチルメタアクリレート、ヒドロキシエ
チルアクリレート、ヒドロキシプロピルメタアク
リレート、ヒドロキシプロピルアクリレート、ヒ
ドロキシブチルメタアクリレート、ヒドロキシブ
チルアクリレート、グリコールジメタアクリレー
ト、トリエチレングリコールジメタアクリレー
ト、ポリエチレングリコール#200ジメタアクリ
レート、ポリエチレングリコール#400ジメタア
クリレート、ポリエチレングリコール#600ジメ
タアクリレート、ジエチレングリコールジアクレ
ート、ジエチレングリコールジメタアクリレー
ト、トリエチレングリコールジアクリレート、ポ
リエチレングリコール#200ジアクリレート、ポ
リエチレングリコール#400ジアクリレート、ポ
リエチレングリコール#600ジアクリレート、ト
リメチロールプロパントリメタアクリレート、ト
リメチロールエタントリメタアクリレート、トリ
メチロールプロパントリアクリレート、トリメチ
ロールエタントリアクリレート、グリシジルメタ
アクリレート等が例示される。
Hydrophilic polymerizable monomers used in the present invention include hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, hydroxybutyl methacrylate, hydroxybutyl acrylate, glycol dimethacrylate, triethylene glycol Dimethacrylate, polyethylene glycol #200 dimethacrylate, polyethylene glycol #400 dimethacrylate, polyethylene glycol #600 dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, polyethylene glycol #200 diacrylate, Examples include polyethylene glycol #400 diacrylate, polyethylene glycol #600 diacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and glycidyl methacrylate.

以下、実施例により本発明を具体的に解説す
る。尚、実施例で活性収率はNative酵素の活性に
対する各回分反応における活性の比で示した。
Hereinafter, the present invention will be specifically explained with reference to Examples. In the Examples, the activity yield was expressed as the ratio of the activity in each batch reaction to the activity of the Native enzyme.

実施例 1 グルコアミラーゼ0.1gを酢酸緩衝液(PH4.5)
0.5ml中に添加混合し、グリシジルメタクリレー
ト0.4mlとジエチレングリコールジメタクリレー
ト0.6mlを加え、W/Oエマルジヨンを作成し、
直ちに(ドライアイス・メタノール系)−78℃ま
で急冷した。この温度下で60Co線源からのγ線を
1Mrad照射し、14mmψの平底円盤状固定化物を合
成した。
Example 1 0.1g of glucoamylase was added to acetate buffer (PH4.5)
Add and mix 0.5 ml of glycidyl methacrylate and 0.6 ml of diethylene glycol dimethacrylate to create a W/O emulsion.
It was immediately quenched (dry ice/methanol system) to -78°C. At this temperature, gamma rays from a 60 Co source are
Irradiated with 1 Mrad, a flat-bottomed disk-shaped immobilized product with a diameter of 14 mm was synthesized.

PH4.5の酢酸緩衝液500mlを用い45℃で撹拌しな
がら溶出テストを行つたところこの固定化物から
溶出したグルコアミラーゼの量は2ケ月後に初期
仕込量の8%で粉砕によつて求めたこの時点にお
ける固定化物中の残存グルコアミラーゼ量は初期
仕込量の75%であつた。マルトースを基質にして
45℃、1時間の回収反応を200回繰り返したとこ
ろ、一定の活性収率が得られ、その値は70−80%
であつた。可溶性デンプンを基質にして、マルト
ース同様回分反応を試みたところ、その値は25−
35%であつた。
An elution test was carried out using 500 ml of acetate buffer of pH 4.5 at 45°C with stirring. The amount of glucoamylase remaining in the immobilized product at that point was 75% of the initial amount charged. using maltose as a substrate
When the recovery reaction was repeated 200 times at 45℃ for 1 hour, a constant activity yield was obtained, and the value was 70-80%.
It was hot. When we attempted a batch reaction similar to maltose using soluble starch as a substrate, the value was 25−
It was 35%.

実施例 2 実施例1において、グルコアミラーゼ0.1gを
酢酸緩衝液(PH4.5)中に溶かしさらにポリエチ
レングリコール#1000 0.10mlを加え、全量を0.5
mlとし、他の条件は実施例1と同一で固定化物を
合成した。PH4.5の酢酸緩衝液500mlを用い45℃で
撹拌しながら溶出テストを行つた所この固定化物
から溶出したグルコアミラーゼの量は2ケ月後に
初期仕込量の12%で、(粉砕によつて求めた)こ
の時点における固定化物中の残存グルコアミラー
ゼ量は初期仕込量の74%であつた。可溶性デンプ
ンを基質にして45℃、1時間の回分反応を200回
連続したところ、一定の活性収率がえられ、その
値は65−75%であつた。
Example 2 In Example 1, 0.1 g of glucoamylase was dissolved in acetate buffer (PH4.5) and 0.10 ml of polyethylene glycol #1000 was added to make the total volume 0.5.
ml, and the other conditions were the same as in Example 1 to synthesize the immobilized product. An elution test was carried out using 500 ml of acetate buffer of pH 4.5 at 45°C with stirring, and the amount of glucoamylase eluted from this immobilized product was 12% of the initial amount (determined by crushing) after 2 months. (b) The amount of glucoamylase remaining in the immobilized product at this point was 74% of the initial amount charged. When 200 consecutive batch reactions were carried out at 45°C for 1 hour using soluble starch as a substrate, a constant activity yield was obtained, which was 65-75%.

実施例 3 セルラーゼ0.2gを酢酸緩衝液(PH4.5)中0.40
mlと混合し、さらに2−ヒドロキシエチルアクリ
レート0.05mlとエタノール0.05mlを加えた。これ
にトリメチロールプロパントリメタクリレート
1.3mlを加え、W/Oエマルジヨンを作成し、そ
の直後−78℃まで急冷した。この温度下で、60Co
線源からのγ線を1Mead照射し14mmψの平底円盤
状固定化物を合成した。
Example 3 0.2g of cellulase in acetate buffer (PH4.5) at 0.40%
ml, and further added 0.05 ml of 2-hydroxyethyl acrylate and 0.05 ml of ethanol. This includes trimethylolpropane trimethacrylate.
1.3 ml was added to prepare a W/O emulsion, which was then rapidly cooled to -78°C. At this temperature, 60 Co
A flat-bottomed disk-shaped immobilized product with a diameter of 14 mm was synthesized by irradiating 1 mead of gamma rays from a radiation source.

酢酸緩衝液PH4.5、500mlを用い40℃で撹拌しな
がら溶出テストを行つたところこの固定化物から
セルラーゼは3ケ月後仕込み量10%が溶出し、ま
たその時の系中に残存するセルラーゼ量は仕込み
の78%であることが分つた。
An elution test was carried out using 500 ml of acetate buffer pH 4.5 at 40°C with stirring, and 10% of the charged amount of cellulase was eluted from this immobilized product after 3 months, and the amount of cellulase remaining in the system at that time was It turned out to be 78% of the preparation.

200メツシユに粉砕した木粉を基質に用い、40
℃、1時間の回分反応を試みたところ(200回連
続反応)この固定化物の活性収率は70−80%であ
つた。
Using wood powder crushed to 200 mesh as a substrate, 40
When a batch reaction was carried out at 1 hour at 0.degree. C. (200 continuous reactions), the activity yield of this immobilized product was 70-80%.

実施例 4 グルコアミラーゼ0.1gを酢酸緩衝液(PH4.5)
0.5ml中に添加混合し、ジエチレングリコールジ
メタクレート1.0mlを加え、W/Oエマルジヨン
を作製し、直ちに−78℃まで急冷し、約1mm厚の
膜状とした。この状態下で、400Wの高圧水銀灯
を用いて20分間照射し、膜状固定化物を合成し
た。実施例1と同様に、グルコアミラーゼの溶出
試験を行つたところ、2カ月目で初期仕込量の16
%であつた。この時の膜中の残存グルコアミラー
ゼ量は仕込みの70%であつた。マルトースを基質
にして45℃、1時間の回分反応を200回繰り返し
たところ、一定の活性収率が得られ、その値は65
−74%であつた。
Example 4 0.1g of glucoamylase was added to acetate buffer (PH4.5)
0.5 ml and 1.0 ml of diethylene glycol dimethacrylate was added to prepare a W/O emulsion, which was immediately quenched to -78°C to form a film with a thickness of about 1 mm. Under this condition, irradiation was performed for 20 minutes using a 400W high-pressure mercury lamp to synthesize a film-like immobilized product. In the same manner as in Example 1, a glucoamylase elution test was conducted, and in the second month, the initial amount of 16
It was %. At this time, the amount of glucoamylase remaining in the membrane was 70% of the charged amount. When the batch reaction was repeated 200 times at 45℃ for 1 hour using maltose as a substrate, a constant activity yield was obtained, and the value was 65
-74%.

Claims (1)

【特許請求の範囲】 1 1種もしくは2種以上の酵素を含む適当なPH
の緩衝液に1種もしくは2種以上の0℃以下の温
度において重合し、かつガラス状態のものである
疎水性重合性単量体を添加し、機械的撹拌によつ
てよく撹拌混合してW/O型エマルジヨンを形成
したのち0℃以下の温度においてこのW/O型エ
マルジヨンに光もしくは電離性放射線を照射して
前記疎水性重合性単量体を重合して疎水性重合体
マトリツクス内部に多孔構造を形成せしめ且つ酵
素を主として多孔構造内に包括固定させることか
ら成る酵素の固定化方法。 2 1種もしくは2種以上の酵素を含む適当なPH
の緩衝液に1種もしくは2種以上の0℃以下の温
度において重合し、かつガラス状態のものである
疎水性重合性単量体および該緩衝液および該重合
性単量体両者を溶解する溶媒を添加し、機械的撹
拌によつてよく撹拌混合してW/O型エマルジヨ
ンを形成したのち0℃以下の温度においてこの
W/O型エマルジヨンに光もしくは電離性放射線
を照射して前記疎水性重合性単量体を重合して疎
水性重合体マトリツクス内部に多孔構造を形成せ
しめ且つ酵素を主として多孔構造内に包括固定さ
せることから成る酵素の固定化方法。 3 1種もしくは2種以上の酵素を含む適当なPH
の緩衝液に1種もしくは2種以上の0℃以下の温
度において重合し、かつガラス状態のものである
疎水性重合性単量体および親水性重合性単量体を
添加し、機械的撹拌によつてよく撹拌混合して
W/O型エマルジヨンを形成したのち0℃以下の
温度においてこのW/O型エマルジヨンに光もし
くは電離性放射線を照射して前記疎水性重合性単
量体を重合して疎水性重合体マトリツクス内部に
多孔構造を形成せしめ且つ酵素を主として多孔構
造内に包括固定させることから成る酵素の固定化
方法。
[Claims] 1. Appropriate pH containing one or more enzymes
One or more hydrophobic polymerizable monomers that polymerize at temperatures below 0°C and are in a glass state are added to the buffer solution, and the mixture is thoroughly stirred and mixed by mechanical stirring. After forming a /O-type emulsion, this W/O-type emulsion is irradiated with light or ionizing radiation at a temperature below 0°C to polymerize the hydrophobic polymerizable monomer, thereby creating pores inside the hydrophobic polymer matrix. A method for immobilizing an enzyme, which comprises forming a structure and entrapping and immobilizing the enzyme primarily within the porous structure. 2 Appropriate pH containing one or more enzymes
One or more types of hydrophobic polymerizable monomers that polymerize at a temperature of 0°C or lower and are in a glass state in a buffer solution, and a solvent that dissolves both the buffer solution and the polymerizable monomer. are added and mixed well by mechanical stirring to form a W/O emulsion, and then the W/O emulsion is irradiated with light or ionizing radiation at a temperature of 0°C or less to carry out the hydrophobic polymerization. 1. A method for immobilizing an enzyme, which comprises polymerizing a hydrophobic monomer to form a porous structure inside a hydrophobic polymer matrix, and entrapping and immobilizing the enzyme mainly within the porous structure. 3 Appropriate pH containing one or more enzymes
One or more types of hydrophobic polymerizable monomers and hydrophilic polymerizable monomers that polymerize at a temperature of 0°C or less and are in a glass state are added to the buffer solution, and the mixture is subjected to mechanical stirring. After stirring and mixing thoroughly to form a W/O emulsion, the W/O emulsion is irradiated with light or ionizing radiation at a temperature of 0° C. or lower to polymerize the hydrophobic polymerizable monomer. A method for immobilizing an enzyme, which comprises forming a porous structure inside a hydrophobic polymer matrix and entrapping and immobilizing the enzyme mainly within the porous structure.
JP1851781A 1981-02-10 1981-02-10 Immobilizing method of enzyme Granted JPS57132884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1851781A JPS57132884A (en) 1981-02-10 1981-02-10 Immobilizing method of enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1851781A JPS57132884A (en) 1981-02-10 1981-02-10 Immobilizing method of enzyme

Publications (2)

Publication Number Publication Date
JPS57132884A JPS57132884A (en) 1982-08-17
JPS6219836B2 true JPS6219836B2 (en) 1987-05-01

Family

ID=11973814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1851781A Granted JPS57132884A (en) 1981-02-10 1981-02-10 Immobilizing method of enzyme

Country Status (1)

Country Link
JP (1) JPS57132884A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934886A (en) * 1982-08-24 1984-02-25 Japan Atom Energy Res Inst Immobilization of enzyme to surface of porous particle
JPS59154988A (en) * 1983-02-23 1984-09-04 Nitto Electric Ind Co Ltd Water-dispersible polymer particles and immobilized enzyme using said particles as carrier

Also Published As

Publication number Publication date
JPS57132884A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
US4226938A (en) Method for immobilizing enzymes
Torchilin et al. Immobilization of enzymes on slowly soluble carriers
US4272617A (en) Immobilization of enzymes or bacteria cells
US4194066A (en) Immobilization of enzymes or bacteria cells
US4039413A (en) Method of bonding a polypeptide to a macromolecular polymeric carrier by irradiation with light
JPH07222922A (en) Encapsulating method for chitosan- activated substance
US4774178A (en) Immobilization of biological material within a polymer matrix
US4978619A (en) Enzyme immobilization by entrapment in a polymer gel matrix
US4193845A (en) Immobilization of enzymes or bacterial cells
Patil et al. Sucrose diacrylate: a unique chemically and biologically degradable crosslinker for polymeric hydrogels
US4177107A (en) Process for producing composition containing insolubilized enzyme and/or insolubilized bacterial cells
GB2201966A (en) Composite material
JPS6219836B2 (en)
US4411999A (en) Immobilization of enzymes on granular gelatin
JPH0339673B2 (en)
Yoshida et al. Immobilization of glucoamylase on polymer surface by radiation‐induced polymerization of glass‐forming monomers at low temperatures
Lee et al. Immobilization of aminoacylase by encapsulation in poly‐l‐lysine‐stabilized calcium alginate beads
Youshii et al. Stabilization of chloroplast by radiation‐induced immobilization with various glass‐forming monomers
JPS6219838B2 (en)
Melo et al. Ocimum basilicum seeds as a pellicular support for immobilizing enzymes
Kumakura et al. Immobilization of microbial cells by radiation-induced polymerization of glass-forming monomers and immobilization of Streptomyces phaeochromogenes cells by polymerization of various hydrophobic monomers
JPS5858074B2 (en) Method for producing capsules with immobilized enzymes or bacterial cells
Xin et al. Immobilization of yeast cells on hydrogel carriers obtained by radiation-induced polymerization
Kumakura et al. Preparation of immobilized yeast cells with porous substrates
JPH10152511A (en) Regulation of specific gravity of granular molding product for immobilizing enzyme or microbial cell