JPS5934640A - Heat treatment device by electron beam - Google Patents

Heat treatment device by electron beam

Info

Publication number
JPS5934640A
JPS5934640A JP14399482A JP14399482A JPS5934640A JP S5934640 A JPS5934640 A JP S5934640A JP 14399482 A JP14399482 A JP 14399482A JP 14399482 A JP14399482 A JP 14399482A JP S5934640 A JPS5934640 A JP S5934640A
Authority
JP
Japan
Prior art keywords
electron
electron gun
cathode
projecting sections
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14399482A
Other languages
Japanese (ja)
Other versions
JPH0232747B2 (en
Inventor
Kenji Shibata
健二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14399482A priority Critical patent/JPS5934640A/en
Publication of JPS5934640A publication Critical patent/JPS5934640A/en
Publication of JPH0232747B2 publication Critical patent/JPH0232747B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2636Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make a temperature at a center lower than that of the periphery, and to enable to form a silicon layer of a super-coarse crystal grain on an insulating film by forming a plurality of projecting sections to a cathode for an electron gun and deflecting and scanning the electron gun in the vertical direction to the direction of arrangement of a plurality of said projecting sections in the electron-beam heat treatment device used for recrystallizing a semiconductor film. CONSTITUTION:The electron gun 11 is constituted by the cathode 12, a grid 13 and an anode 14. The cathode 12 has a plurality of the projecting sections 15. Electrons emitted from the electron gun 11 are focussed or expanded by an electron lens with a diaphragm 16, and a material to be thermally treated 19 is scanned by a deflection coil 18. The direction of scan of the material is vertical to the direction of arrangement of a plurality of the projecting sections 15. Electron beams are irradiated from an upper section, and the silicon layer 105 is thermally treated. Acceleration voltage is 10KV and beam currents are 10mA at that time. Since a crystal grain boundary has a tendency to disperse and reduce at a central section in the temperature distribution of a melting region of the silicon layer 105, the number of crystal grains decreases gradually, and the super-coarse crystal grain of 20-40mum width and several mm.- several dozen mm.length is obtained in a short time.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、半導体膜の再結晶化等に用いられる′電子ビ
ーム熱処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an electron beam heat treatment apparatus used for recrystallization of semiconductor films and the like.

[従来技術とその問題点] 近年、レーザー光、電子ビームなどのエネルギの機能向
上、多機能デバイスの実現、および新機能新構造のデバ
イスの実現などの可能性が開けて来ている。従来の装置
によればビーム照射による熱処理等の方法はエネルギー
ビームを同一エネルギー、同一速度で連続的に走査して
行なわれている。このようにして熱処理が行なわれると
、エネルギービームの強度分布を反映してビームの中心
が最も温度が高く、周辺に行くに従って温度が低下する
ことになる。たとえばエネルギービームを用いて絶縁物
上の半導体膜(以下シリコン膜とする)を溶融、再結晶
させる場合には、第2図(a)で示すようにビーム走査
方向4に対し固相1及び液相2ができ、結晶粒界が集中
する方向にある。
[Prior art and its problems] In recent years, possibilities have opened up for improving the functionality of energies such as laser light and electron beams, realizing multifunctional devices, and realizing devices with new functions and new structures. According to conventional apparatuses, methods such as heat treatment by beam irradiation are carried out by continuously scanning an energy beam at the same energy and speed. When heat treatment is performed in this manner, the center of the beam has the highest temperature, reflecting the intensity distribution of the energy beam, and the temperature decreases toward the periphery. For example, when melting and recrystallizing a semiconductor film (hereinafter referred to as silicon film) on an insulator using an energy beam, the solid phase 1 and liquid Phase 2 is formed and grain boundaries are concentrated.

同化に際して固液界面はビームの中心部分が最も遅れる
ようになる。この理由はまさにビームの中心が最も温度
が高く固化が遅れることによる〇固化に際しての結晶粒
界の入シ方は固液界面に直交するようになるだめ、第2
図(a)の様な固液界面では粒界がまわりからどんどん
集中するようになり、シリコン膜は粗大結晶粒化したり
、単結晶化しだシするのは困難である。
During assimilation, the solid-liquid interface lags behind the most at the center of the beam. The reason for this is that the temperature at the center of the beam is the highest and solidification is delayed. During solidification, the direction of grain boundaries is perpendicular to the solid-liquid interface;
At the solid-liquid interface as shown in Figure (a), the grain boundaries become more and more concentrated from the surroundings, making it difficult for the silicon film to become coarse crystal grains or to become single crystal.

し発明の目的」 本発明は上記エネルギービーム熱処理における問題点を
解決し、従来とは全く異なった熱処理特性が得られる成
子ビーム熱処理装置を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems in energy beam heat treatment and to provide a synthetic beam heat treatment apparatus that can obtain heat treatment characteristics completely different from conventional ones.

〔発明の概要] 本発明は電子銃の陰極に複数の突起部を設け、電子銃の
偏向走査を前記複数の突起部の配列方向と垂直に行うこ
とによって、例えば突起部数が2の場合ビームの強度分
布を第5図に示す通り中心の温度を周辺に比べて下げて
やることができる。
[Summary of the Invention] The present invention provides a plurality of protrusions on the cathode of an electron gun, and performs deflection scanning of the electron gun perpendicular to the arrangement direction of the plurality of protrusions. As shown in the intensity distribution in FIG. 5, the temperature at the center can be lowered compared to the surrounding area.

このような電子線を矢印の方向に走査して熱処理を行な
うと、第2図(b)の様な固液界面を実現させてやるこ
とができた。
By performing heat treatment by scanning such an electron beam in the direction of the arrow, it was possible to realize a solid-liquid interface as shown in FIG. 2(b).

尚、グリッド、陽極の穴はそれぞれ独立していてもよい
が、電子ビームの集束がうまくゆくように電子銃が設計
されれば、つながって1つの穴となっていてもかまわな
い。
Note that the holes in the grid and the anode may be independent, but if the electron gun is designed so that the electron beam can be focused well, they may be connected to form one hole.

[発明の効果] 本発明によれば、ビームの強度を中心よシ周辺で強くな
るように熱処理することができ、例えば幅20〜40μ
m、長さ数ミリ−数十ミリに達する超粗大結晶粒のシリ
コン層を絶縁膜上に形成することができるようになった
[Effects of the Invention] According to the present invention, it is possible to perform heat treatment so that the intensity of the beam increases from the center to the periphery.
It has become possible to form a silicon layer with ultra-coarse crystal grains with a length of several millimeters to several tens of millimeters on an insulating film.

[発明の実施例コ イラメント型と(b)に示す電子衝撃型とがあるが、さ
れた電子は絞シ16を備え九′シ子レンズによυ集束又
は拡大され、さらに偏向コイル18によシ被熱処理物1
9が走査される。この走査方向は複数の突起部15の配
列方向に垂直である。
[Embodiments of the Invention] There are a coilament type and an electron impact type shown in (b), in which the emitted electrons are focused or expanded by a 9' lens equipped with an aperture 16, and are further shunted by a deflection coil 18. Heat treated object 1
9 is scanned. This scanning direction is perpendicular to the arrangement direction of the plurality of protrusions 15.

以下に本発明による装置を二層MO8LSI製造に用い
た例について、第6図を用いて説明する。まず第6図(
a)に示すようにたとえばP型(100)面方位の単結
晶シリコン基板101の上に約1μmの5102JJ1
02を形成する。その上に必要とあらばSiN膜103
を形成する。このSiN膜は後の工程で多結晶あるいは
非晶質シリコン層を単結晶化されやすくするために形成
するものである。またシリコン基板101は既に所望の
素子が周知の工’4W fC経て形成されているとする
。次に第6図(b)に示すように、SiN膜103の表
面にたとえば約6000人の多結晶シリコン層104を
被着する。その上に約2000λのSio2膜105を
形成する。この時のsio。膜は汝のエートらの電子線
を第4図(a)の矢印の方向に走査すノI。
An example in which the apparatus according to the present invention is used to manufacture a two-layer MO8LSI will be described below with reference to FIG. First, Figure 6 (
As shown in a), for example, 5102JJ1 of about 1 μm is deposited on a single crystal silicon substrate 101 with a P-type (100) orientation.
Form 02. On top of that, if necessary, a SiN film 103
form. This SiN film is formed to make it easier to convert a polycrystalline or amorphous silicon layer into a single crystal in a later step. It is also assumed that desired elements have already been formed on the silicon substrate 101 through a well-known process. Next, as shown in FIG. 6(b), a polycrystalline silicon layer 104 of, for example, about 6000 layers is deposited on the surface of the SiN film 103. A Sio2 film 105 of approximately 2000λ is formed thereon. sio at this time. The membrane scans your electron beam in the direction of the arrow in FIG. 4(a).

、克i′b加速電圧はl0KV、ビーム電流はIOmA
であった。
, the acceleration voltage is 10KV, and the beam current is IOmA.
Met.

実施例に用いた装置によれば熱処理時に溶融するシリコ
ン層の幅は約関μmであった。この溶融領域の温度分布
は第2図(b)のごとくになっており、中心部では結晶
粒界が分散して、減少してゆく傾向にあるため、だんだ
ん結晶粒の故が減少し、やがて幅20〜40μm、長さ
数ミリから数十ミリの超粗大結晶粒が得られた。さらに
陰極棒を左右に長くして突起部を3〜5個形成してやシ
、熱処理を行なうと溶融幅100μm、幅数中ミクロン
の結晶粒が数個ストライプ状に並んで成長するようにな
った。
According to the apparatus used in the example, the width of the silicon layer melted during the heat treatment was about 1.5 μm. The temperature distribution in this melting region is as shown in Figure 2 (b), and as the grain boundaries tend to disperse and decrease in the center, the number of grain boundaries gradually decreases, and eventually Ultra-coarse crystal grains with a width of 20 to 40 μm and a length of several millimeters to several tens of millimeters were obtained. Furthermore, when the cathode rod was lengthened from side to side to form 3 to 5 protrusions and heat treatment was performed, crystal grains with a melting width of 100 μm and several microns in width began to grow in stripes.

熱処理中は真空度]08Torr以上の超高真空状態、
基板温度500’O、シリコン基板を静電的に固定しで
ある。ビームはX方向く約100cm/seeの速度で
走査し、X方向には溶融幅Wに合わせてW/2 、 W
/4等としてステップ送シした。
Vacuum degree during heat treatment] Ultra-high vacuum state of 08 Torr or more,
The substrate temperature was 500'O and the silicon substrate was fixed electrostatically. The beam scans in the X direction at a speed of about 100 cm/see, and in the X direction, it scans at W/2 and W in accordance with the melting width W
/4 etc. was sent step by step.

次に$、6図(ψで示すように、5io2膜105を除
去形成し、素子領域にゲート酸化膜107を介して例え
ば多結晶シリコンからなるゲート成極108を形成し、
ソース・ドレイン領域109,110を形成し裔OSト
ランジスタとする。次に第6図(e)で示すように全面
を絶縁膜111でおおった後、hlJによる電極112
〜114を形成して三次元に集積した半導体装置を完成
する。
Next, as shown in FIG. 6 (ψ), the 5io2 film 105 is removed and formed, and a gate polarization 108 made of polycrystalline silicon, for example, is formed in the element region via the gate oxide film 107.
Source/drain regions 109 and 110 are formed to form a descendant OS transistor. Next, as shown in FIG. 6(e), after covering the entire surface with an insulating film 111, an electrode 112 formed by hlJ is
114 is formed to complete a three-dimensionally integrated semiconductor device.

[発明の他の実施例] 本発明による装置を用いれば1本実施例で述べたMOS
トランジスタの他に、C−MO!’3トランジスタ、バ
イポーラトランジスタ、ダイオードなどあらゆる素子を
、熱処理したシリコン層に形成して効果を挙げることは
言うまでもなく、本発明の効果を用いて、これらの素子
を三入元的に配列することにより、従来よシ高集積、^
性能、多機能な三次元集積回路装置を実現することが可
能となった0 本発明による装置を用いれば、シリコン以外の半導体た
とえばゲルマニウムや、 QaAs、Qapなどの檎芋
孔を設けても良いし、又、これら孔を連通させてもよい
[Other Embodiments of the Invention] Using the device according to the present invention, the MOS described in this embodiment can be
In addition to transistors, C-MO! It goes without saying that all kinds of elements such as transistors, bipolar transistors, diodes, etc. can be effectively formed in a heat-treated silicon layer, and by arranging these elements three-dimensionally using the effects of the present invention. , conventionally high integration, ^
It has become possible to realize a high-performance, multi-functional three-dimensional integrated circuit device. By using the device according to the present invention, it is possible to provide a hole in a semiconductor other than silicon, such as germanium, QaAs, Qap, etc. , or these holes may be communicated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は陰極の代表的タイプを示す
説明図、第2図(a) 、 (b)は従来及び本発明に
よる固相・液相界面付近の結晶粒界の発生状態を示す図
、第3図は本発明の一実施例を示す配置図、第4図(a
)〜(d)は陰・甑の形状例を示す斜視図、第5図は本
発明によるビーム強度分布特性図、第6図(a)〜(e
)は木兄□、明装置を集積回路に応用した例を示す工程
断面図である。 ニド・・′d電子、12・・・陰極、17・・・電子レ
ンズ、18・・・偏向コイル、19・・被熱処理物。 15・・・突起部。 出願人 工業技術院長  石 坂 誠 −第  1  
図 ((1)          (b) 第  2  図 第 3 @ 第  6  図 第  6  図
Figures 1 (a) and (b) are explanatory diagrams showing typical types of cathodes, and Figures 2 (a) and (b) are diagrams showing the occurrence of grain boundaries near the solid-liquid interface according to the conventional method and the present invention. FIG. 3 is a layout diagram showing an embodiment of the present invention, and FIG. 4 (a) shows the state.
) to (d) are perspective views showing examples of the shape of the shade and moat, FIG. 5 is a beam intensity distribution characteristic diagram according to the present invention, and FIG. 6 (a) to (e
) is a cross-sectional view of the process showing an example of applying the Kinoi □, Akira device to an integrated circuit. Nido...'d electron, 12... cathode, 17... electron lens, 18... deflection coil, 19... object to be heat treated. 15... Protrusion. Applicant Makoto Ishizaka, Director General of the Agency of Industrial Science and Technology - No. 1
Figure ((1) (b) Figure 2 Figure 3 @ Figure 6 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 陰極、陽極及びグリッドから構成される電子銃と、電子
銃より放射された電子ビームを集束又は拡大するレンズ
系と、このレンズ系を通過した電子ビームを走査し被熱
処理物を熱処理する偏向手段とを具備し、前記′d電子
銃陰極が複数の突起部を有するとともに、前記偏向手段
が前記複数の突起部の配列方向と垂直に走査することを
特徴とする電子ビーム熱処理装置。
An electron gun composed of a cathode, an anode, and a grid, a lens system that focuses or expands the electron beam emitted from the electron gun, and a deflection means that scans the electron beam that has passed through this lens system and heat-treats the object to be heat-treated. An electron beam heat treatment apparatus, characterized in that the 'd electron gun cathode has a plurality of protrusions, and the deflection means scans perpendicularly to the arrangement direction of the plurality of protrusions.
JP14399482A 1982-08-21 1982-08-21 Heat treatment device by electron beam Granted JPS5934640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14399482A JPS5934640A (en) 1982-08-21 1982-08-21 Heat treatment device by electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14399482A JPS5934640A (en) 1982-08-21 1982-08-21 Heat treatment device by electron beam

Publications (2)

Publication Number Publication Date
JPS5934640A true JPS5934640A (en) 1984-02-25
JPH0232747B2 JPH0232747B2 (en) 1990-07-23

Family

ID=15351834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14399482A Granted JPS5934640A (en) 1982-08-21 1982-08-21 Heat treatment device by electron beam

Country Status (1)

Country Link
JP (1) JPS5934640A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245864A (en) * 1975-10-08 1977-04-11 Mitsubishi Electric Corp Electronic beam generating hot cathode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245864A (en) * 1975-10-08 1977-04-11 Mitsubishi Electric Corp Electronic beam generating hot cathode

Also Published As

Publication number Publication date
JPH0232747B2 (en) 1990-07-23

Similar Documents

Publication Publication Date Title
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
US4596604A (en) Method of manufacturing a multilayer semiconductor device
JPH0656887B2 (en) Semiconductor device and manufacturing method thereof
JPH0220024A (en) Manufacture of thyristor
US4564403A (en) Single-crystal semiconductor devices and method for making them
JPH0410216B2 (en)
JP2004140326A (en) Planarization method of thin-film surface
KR900002686B1 (en) Recrystalizing method for conductor film
JPS5934640A (en) Heat treatment device by electron beam
US4585512A (en) Method for making seed crystals for single-crystal semiconductor devices
US4549913A (en) Wafer construction for making single-crystal semiconductor device
JPS58139423A (en) Lateral epitaxial growing method
JPH04380B2 (en)
JPS58135631A (en) Lateral epitaxial growth
JPH0136972B2 (en)
JPH0236051B2 (en)
GB2112205A (en) A thermal processing system for semiconductors and other materials using two or more electron beams
JPH0136970B2 (en)
JPS63265464A (en) Manufacture of semiconductor device
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JPS59121826A (en) Fabrication of semiconductor single crystal film
JPH05121540A (en) Manufacture of semiconductor device
JPS58180019A (en) Semiconductor base body and its manufacture
JPS6336512A (en) Manufacture of thin single-crystal semiconductor film
JPS6380521A (en) Manufacture of semiconductor thin film crystal layer