JPS5934438A - Air-fuel ratio feedback control method - Google Patents

Air-fuel ratio feedback control method

Info

Publication number
JPS5934438A
JPS5934438A JP14373182A JP14373182A JPS5934438A JP S5934438 A JPS5934438 A JP S5934438A JP 14373182 A JP14373182 A JP 14373182A JP 14373182 A JP14373182 A JP 14373182A JP S5934438 A JPS5934438 A JP S5934438A
Authority
JP
Japan
Prior art keywords
sensor
air
engine
starting operation
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14373182A
Other languages
Japanese (ja)
Inventor
Noriyuki Kishi
岸 則行
Toyohei Nakajima
中島 豊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14373182A priority Critical patent/JPS5934438A/en
Publication of JPS5934438A publication Critical patent/JPS5934438A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve drivability and emission through prevention of misunderstanding of an activating condition, by discriminating whether the starting operation of an engine is completed or not and starting discrimination of the activated condition of an O2 sensor right after the starting operation of the engine is completed. CONSTITUTION:Through detection of switching ON of a starter switch 12 and the like, it is discriminated whether the starting operation of an engine 1 is completed or not. In case of a starting operation being not completed, an O2 control system is brought to an open loop manner. If it is decided that the starting operation is completed, it is discriminated whether activation of an O2 sensor 8 is completed or not. A given current is supplied to the O2 sensor 8 from a point of time when an ignition switch 11 turns ON. Firstly, it is discriminated (step 36a) whether an output voltage Vo2 of the O2 sensor 8 is lower than a given voltage Vx or not. In case of Vo2<Vx, it is discriminated whether a given time tx has elapsed, or not. If the given time tx has elapsed after attaining the given voltage Vx, it is decided that activation of the O2 sensor 8 is completed. If it is discriminated that the O2 sensor 8 is activated, establishment of an open condition is discriminated, and if the condition is not established, an O2 feedback correction coefficient Ko2 is calculated.

Description

【発明の詳細な説明】 本発明はエンジンの空燃比フィードバック制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio feedback control method for an engine.

エンジンの排気系に配置された酸素濃度センサの出力に
基づいてエンジンに供給される混合気の空燃比をフィー
ドバック制御する空燃比フィードバック制御装置が知ら
れている。
2. Description of the Related Art An air-fuel ratio feedback control device is known that performs feedback control of an air-fuel ratio of an air-fuel mixture supplied to an engine based on the output of an oxygen concentration sensor disposed in an exhaust system of the engine.

かかる空燃比フィードバック制御Il装置では、イグニ
ッションスイッチのオンによるエンジン運転時に酸素濃
度センサの活性化状態を判別し、活性化状態であればフ
ィードバック制御を開始するようになされている。従来
、この酸素濃度センサの活性化状態の判別はイグニッシ
ョンスイッチオン後、即ちコントローラに通電された後
直ちに行われていた。酸素濃度センサはイグニッション
スイッチオン後電流が供給されることにより内部抵抗に
応じた電圧を加えられた出力電圧VO2を発生するが、
上記コントローラにおけるノイズ除去用ローパスフィル
タの如き酸素濃度センサ入力回路の応答特性の関係上、
第1図に示づ如くコント【]−ラで判別できるリーン雰
囲気下での酸素濃度センサの出力電圧VO2が完全に立
上がるまでにある程度の時間を要する。そのため、活性
化判別用基準電圧をVXとすると、イグニッションスイ
ッチオン後直ちに活性化判別することで本来立上がり後
のVX>VO2時に活性化と判別すべぎところを、立上
がり開始時におけるVX>VO2を活性化と誤認し、酸
素濃度センサが不活性状態であるのにフィードバック制
御を開始する為、所定の空燃比が得られずドライバビリ
ティ及びエミッションを悪化させるという欠点があった
In such an air-fuel ratio feedback control Il device, the activation state of the oxygen concentration sensor is determined when the engine is operated by turning on the ignition switch, and if the oxygen concentration sensor is in the activation state, feedback control is started. Conventionally, the activation state of this oxygen concentration sensor has been determined immediately after the ignition switch is turned on, that is, immediately after the controller is energized. When the oxygen concentration sensor is supplied with current after the ignition switch is turned on, it generates an output voltage VO2 that is applied with a voltage according to the internal resistance.
Due to the response characteristics of the oxygen concentration sensor input circuit such as the low-pass filter for noise removal in the above controller,
As shown in FIG. 1, it takes a certain amount of time for the output voltage VO2 of the oxygen concentration sensor under a lean atmosphere, which can be determined by the controller, to rise completely. Therefore, if the reference voltage for activation determination is VX, by determining activation immediately after turning on the ignition switch, activation should be determined when VX > VO2 after startup, but when VX > VO2 at the start of startup is activated. Since the oxygen concentration sensor is mistakenly recognized as being inactive and starts feedback control even though the oxygen concentration sensor is inactive, the predetermined air-fuel ratio cannot be obtained, resulting in deterioration of drivability and emissions.

本発明は上記した欠点を除去すべくなされたもので、特
にエンジン始動時にお【プるドライバビリデ7f及びエ
ミッションの向上を可能とした空燃比フィードバック制
御方法を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and in particular, it is an object of the present invention to provide an air-fuel ratio feedback control method that makes it possible to improve driver performance 7f and emissions during engine startup.

本発明にJ:る空燃比フィードバック制御方法は、エン
ジン始動動作時においてエンジンの始動動作が終了した
か否かを検出し、エンジンの始動動作終了から酸素濃度
センサの活性化状態の判別を開始づるにうにしている。
J: The air-fuel ratio feedback control method of the present invention detects whether or not the engine starting operation has ended during the engine starting operation, and starts determining the activation state of the oxygen concentration sensor from the end of the engine starting operation. I'm looking forward to it.

以下、図面を用いて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明に係る電子制御式燃料供給装置を示す概
略構成図である。図において、1はエンジン、2はこの
エンジン1の冷却水温を検出づ−るための水温センサ、
3はエンジン回転数を検出するだめのクランク角センサ
、I!1はインジェクタ。
FIG. 2 is a schematic configuration diagram showing an electronically controlled fuel supply system according to the present invention. In the figure, 1 is an engine, 2 is a water temperature sensor for detecting the cooling water temperature of this engine 1,
3 is a crank angle sensor that detects the engine speed, I! 1 is the injector.

5はスロットルバルブ6の開度を検出覆るためのスロッ
トル開度センサ、7は吸気系の絶対圧を検出するための
絶対圧センサ、8は排気系に配置されて排気ガス中の酸
素濃度を検出する酸素濃度センサ(以下02セント1と
称する)、9はマイクロプロセッサ等によって構成され
、これら各センサの出力に基づいて燃利噴剣量を制御す
るコントローラ、10は排気ガス中のCo、1−ICを
低減する三元触媒コンバータ、11はイグニッションス
イッチ、12はスタータスイッチである。13は触媒コ
ンバータ10におけるCo、HCの酸化を助けるべく排
気系に二次空気を供給するだめの二次空気供給装置であ
り、この装置は、大気がフィルタ14を経て導入される
大気室と制御室とに分離するダイヤフラム弁15と、排
気系の排気圧力の脈動に応じて自動的に開閉するリード
弁16と、フィルタ17を経て導入される大気圧ど吸気
負圧とを選択的に上記制御室に導く制御弁18とを含ん
でいる。制御弁18は02センザ8の不活性時5− 吸気負圧を選釈し、02センサ8の活性特大気圧を選択
するようにコントローラ9によって制御される。
5 is a throttle opening sensor for detecting the opening of the throttle valve 6, 7 is an absolute pressure sensor for detecting the absolute pressure of the intake system, and 8 is arranged in the exhaust system to detect the oxygen concentration in the exhaust gas. an oxygen concentration sensor (hereinafter referred to as 02 cents 1), 9 is a controller configured with a microprocessor, etc., and controls the amount of fuel injection based on the output of each of these sensors; 10 is Co in the exhaust gas; 1- A three-way catalytic converter reduces IC, 11 is an ignition switch, and 12 is a starter switch. Reference numeral 13 denotes a secondary air supply device for supplying secondary air to the exhaust system to assist in the oxidation of Co and HC in the catalytic converter 10. The above control selectively controls the diaphragm valve 15 that separates the chamber from the air, the reed valve 16 that automatically opens and closes depending on the pulsation of exhaust pressure in the exhaust system, and the atmospheric pressure or negative intake pressure introduced through the filter 17. and a control valve 18 leading to the chamber. The control valve 18 is controlled by the controller 9 to select the intake negative pressure of the 02 sensor 8 when it is inactive and to select the activated extra atmospheric pressure of the 02 sensor 8.

=1ン1〜ローラ9は、第3図に示ずJ:うに、コンデ
ンサC+ 、C2及び抵抗Rからなり02センザ8の出
力を平滑化する平滑化回路19と、初段がpnp トラ
ンジスタで構成されて平滑回路19の出ノ〕電圧を増幅
する増幅器20ど、水温センサ2゜スロツ]〜ル開度セ
ンサ5.吸気絶°対圧センザ7及び増幅器20の各出力
のレベルを修正するレベル修正回路21と、このレベル
修正回路21を経た各センサ出力の1つを選択的に出力
する入力信号切替回路22と、この入力信号切替回路2
2から出力されたアナログ信号をディジタル信号に変換
する△/D変換器23と、クランク角センサ3の出力を
波形整形する波形整形回路24と、この波形整形回路2
4から出力されるパルス間の時間を露1測するカウンタ
25と、イグニッションスイッチ11及びスタータスイ
ッチ12の各出力のレベルを修正するレベル修正回路2
6と、このレベル6− 修正回路26の出力を入力とするデジタル入力−しジコ
ール27と、インジェクタ4及び二次空気制御か18を
それぞれ駆動する駆動回路28.29と、CPU30と
、各種の処理プログラムが記憶されたROM31及びR
AM32からなっており、入力信号切替回路22.A/
D変換器23.カウンタ25.デジタル人力モジュール
27.駆動回路28,29.CPU30.ROM31及
びRAM32はパスライン33によって接続されている
=1-Roller 9 are not shown in Fig. 3, and are composed of a smoothing circuit 19 that smoothes the output of the sensor 8, which is made up of a capacitor C+, C2, and a resistor R, and a pnp transistor in the first stage. output of the smoothing circuit 19; amplifier 20 for amplifying the voltage; water temperature sensor 2°; slot opening sensor 5. a level correction circuit 21 that corrects the level of each output of the intake absolute pressure sensor 7 and the amplifier 20; an input signal switching circuit 22 that selectively outputs one of the sensor outputs that have passed through the level correction circuit 21; This input signal switching circuit 2
a Δ/D converter 23 that converts the analog signal output from the crank angle sensor 2 into a digital signal, a waveform shaping circuit 24 that shapes the waveform of the output of the crank angle sensor 3, and this waveform shaping circuit 2.
a counter 25 that measures the time between pulses output from the ignition switch 11 and the starter switch 12; and a level correction circuit 2 that corrects the level of each output of the ignition switch 11 and the starter switch 12.
6, this level 6 - a digital input which takes the output of the correction circuit 26 as an input, a drive circuit 28, 29 that drives the injector 4 and the secondary air control circuit 18, respectively, a CPU 30, and various processes. ROM31 and R where programs are stored
AM32, and an input signal switching circuit 22. A/
D converter 23. Counter 25. Digital human power module 27. Drive circuits 28, 29. CPU30. ROM31 and RAM32 are connected by a pass line 33.

次に、コンl−ローラ9にJ:つて実行され本発明によ
る空燃比フィードバック制御方法の手順を第4図のフロ
ーヂャートに従って説明する。本手順においては、先ず
、スタータスイッチ12のオン検出等の方法によってエ
ンジン1の始動を検出し、そしてエンジン1の始動動作
が終了したか否かを判別する(ステップ34)。この判
別はスタータスイッチ12がオンとなり始動動作が開始
された後、エンジン回転数が例えば400r 、l)、
m程度のクランキング回転数より高くなればエンジン1
の始動動作が終了したものと判断する。エンジン1の始
動動作が終了していない場合、02フイードバツク補正
係数KO2を1にすることで制御系をオープンループと
する(ステップ35)。始動動作が終了したと判断した
場合、02センザ8が活性化完了したか否かを判別する
(ステップ36)。
Next, the procedure of the air-fuel ratio feedback control method according to the present invention, which is executed by controlling the controller 9, will be explained with reference to the flowchart of FIG. In this procedure, first, starting of the engine 1 is detected by a method such as turning on the starter switch 12, and then it is determined whether or not the starting operation of the engine 1 has been completed (step 34). This determination is made after the starter switch 12 is turned on and the starting operation is started, and if the engine rotation speed is, for example, 400r, l),
If the cranking speed is higher than about m, engine 1
It is determined that the starting operation has been completed. If the starting operation of the engine 1 has not been completed, the control system is made into an open loop by setting the 02 feedback correction coefficient KO2 to 1 (step 35). If it is determined that the starting operation has been completed, it is determined whether the activation of the 02 sensor 8 has been completed (step 36).

この02センサ8の活性化状態の判別は例えば、第5図
に示すように行われる。すなわち、02センリ8にはイ
グニッションスイッチ11のオン時点から所定の電流が
供給されて、02センサ8の出力電圧VO2は活性化ま
でに第1図に示したような応答特性で変化する。このこ
とから、先ず、02センリ8の出力電圧VO2が所定電
圧V×より小であるか否かを判別する(ステップ36a
)。
The activation state of the 02 sensor 8 is determined, for example, as shown in FIG. That is, a predetermined current is supplied to the 02 sensor 8 from the time when the ignition switch 11 is turned on, and the output voltage VO2 of the 02 sensor 8 changes with the response characteristics shown in FIG. 1 until activation. From this, first, it is determined whether the output voltage VO2 of the 02 sensor 8 is smaller than the predetermined voltage Vx (step 36a
).

VO2<VX場合には更に所定時間t×が経過したか否
かを判別する(ステップ36b)。所定時間t×を設c
プだのは、暖機中には時間に対する出力電圧の変化率が
その電圧が小さくなる程小さくなることにより現実の比
較回路等の性質上比較的高い精度で検出しやすいように
所定電圧v×を高い値に設定したためでこの時点では0
2センサは未だ不活性の状態にある。この所定電圧Vx
達成後所定時間t×が経過している場合には02センサ
8の出力電圧が十分低くなっており02 tフサ8の活
性化が完了したと判断する。しかし、所定時間[×経過
していない場合には、ステップ36aでV。
If VO2<VX, it is further determined whether a predetermined time tx has elapsed (step 36b). Set a predetermined time t×
The reason for this is that during warm-up, the rate of change of the output voltage with respect to time becomes smaller as the voltage decreases, so the predetermined voltage v× Because I set it to a high value, it is 0 at this point.
2 sensors are still in an inactive state. This predetermined voltage Vx
If the predetermined time tx has elapsed after the achievement, it is determined that the output voltage of the 02 sensor 8 has become sufficiently low and activation of the 02 t fuser 8 has been completed. However, if the predetermined time [x has not elapsed, V in step 36a.

2≧v×の場合と同様に02センサ8は活性化していな
いと判断してステップ35に移行する。
As in the case of 2≧v×, it is determined that the 02 sensor 8 is not activated, and the process moves to step 35.

02センサ8が活性化したと判別されると、オープン条
件成立か否かが判別される(ステップ37)。すなわら
、フューエルカット状態、アイドリング状態、低回転走
行状態、排気系への二次空気供給状態等、排気ガスの温
度が低下するような運転状態が発生した場合(オープン
条件成立)には、o2センサ8が冷え不活性化状態とな
ってリーンであってもリッチと誤認し易い為、ステップ
35に移行しオープンループ制御とする。オープン条件
が成立しなければ、02フイードバツク補正係数KO2
を算出する(ステップ38)。以上が02センサ活性化
判別のためのサブルーチンで9− ある。
When it is determined that the 02 sensor 8 is activated, it is determined whether the open condition is satisfied (step 37). In other words, if an operating condition occurs that causes the exhaust gas temperature to drop (open condition is satisfied), such as a fuel cut condition, idling condition, low speed running condition, or secondary air supply condition to the exhaust system, Since the O2 sensor 8 becomes cold and inactivated, even if it is lean, it is likely to be mistaken as rich, so the process moves to step 35 and open loop control is performed. If the open condition is not satisfied, 02 feedback correction coefficient KO2
is calculated (step 38). The above is the subroutine 9- for determining the activation of the 02 sensor.

なお、エンジンの暖機運転中、即ちo2センサの不活性
時にはエンジンから未燃成分が多量に排出される。排気
系への二次空気はこの暖機運転中に供給し三元触媒を酸
化雰囲気即ちリーン雰囲気下で運転させることにより、
この未燃成分を大幅に低減させることができる。上記実
施例において、02センサ8の活性化判別は02tンサ
8をり一ン雰囲気下において行う為、第2図において説
明した様に、排気系への二次空気を不活性時に供給ハ VO2が上昇するためリッチ雰囲気による影響のないセ
ンサ活性化による電圧VO2のみを基準電圧Vxと比較
することによってセンサ活性化を正しく判別出来るから
である。また排気系への二次空気は未然成分の多いオー
プンループ時(減速等)にも供給されることもある。
Note that during engine warm-up, that is, when the O2 sensor is inactive, a large amount of unburned components are discharged from the engine. By supplying secondary air to the exhaust system during this warm-up operation and operating the three-way catalyst in an oxidizing atmosphere, that is, a lean atmosphere,
This unburned component can be significantly reduced. In the above embodiment, since the activation of the 02t sensor 8 is determined in a single atmosphere, as explained in FIG. 2, when the secondary air to the exhaust system is inactive, the supply This is because sensor activation can be correctly determined by comparing only the voltage VO2 due to sensor activation, which is not affected by the rich atmosphere, with the reference voltage Vx. Furthermore, secondary air to the exhaust system may also be supplied during open loop situations (such as during deceleration) when there are many unnatural components.

このように、本発明の空燃比フィードバック制御方法に
よれば、エンジンの始動動作時において10− エンジンの始動動作が完全に終了したか否かを判別し、
エンジンの始動動作終了直後に、すなF′、)ち、燃料
供給の基本°E−ド動作が開始してから02センリ゛の
活性化状態の判別を開始するようにしたので、02セン
サの出力電圧が完全に立上がった後活性化判別が出来、
活性化状態の誤認がなくなるため、特にエンジン始動時
におけるドライバピリテ、r及びエミッションを向上出
来る。
As described above, according to the air-fuel ratio feedback control method of the present invention, during the engine starting operation, 10- it is determined whether the engine starting operation is completely completed;
Immediately after the engine starting operation is completed, i.e., after the basic fuel supply operation starts, the determination of the activation state of the 02 sensor is started. Activation can be determined after the output voltage has completely risen.
Since there is no misidentification of the activation state, driver safety, r and emissions can be improved especially when starting the engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は02センサの出力電圧応答特性図、第2図は本
発明の制御方法を適用1ノだ電子制御式燃料供給装置を
示す概略構成図、第3図は第2図にお4−Jるコントロ
ーラの具体的構成を示すブ[179図、第4図は本発明
による制御方法のりブルーチンを示すフローチレート図
、第5図は第4図の02センサ活性化完了判別の具体的
フローヂャート図である。 主要部分の符号の説明 2・・・・・・水温センサ 3・・・・・・クランク角センサ 4・・・・・・インジェクタ 5・・・・・・スロワ1〜ル開度センリフ・・・・・・
吸気絶対圧センサ 8・・・・・・02セン4) 9・・・・・・コントローラ 13・・・・・・二次空気供給装置 15・・・・・・ダイヤフラム弁 16・・・・・・リード弁  18・・・・・・制御弁
出願人   本田技研工業株式会社 代理人   弁理士  藤利元彦
Fig. 1 is an output voltage response characteristic diagram of the 02 sensor, Fig. 2 is a schematic configuration diagram showing the first electronically controlled fuel supply system to which the control method of the present invention is applied, and Fig. 3 is a diagram showing the output voltage response characteristics of the 02 sensor. FIG. 4 is a flowchart showing a routine of the control method according to the present invention, and FIG. 5 is a specific flowchart for determining the completion of activation of the 02 sensor in FIG. 4. It is. Explanation of symbols of main parts 2...Water temperature sensor 3...Crank angle sensor 4...Injector 5...Thrower 1~le opening sense lift... ...
Intake absolute pressure sensor 8...02 sensor 4) 9...Controller 13...Secondary air supply device 15...Diaphragm valve 16...・Reed valve 18... Control valve applicant Honda Motor Co., Ltd. agent Patent attorney Motohiko Fujitoshi

Claims (1)

【特許請求の範囲】 (1) 内燃エンジンの排気系に配置された酸素i度セ
ンサの出力に基づいてエンジンに供給される混合気の空
燃比をフィードバック制御する空燃比フィードバック制
御方法であって、イグニッションスイッチのオン後前記
酸素温度センサに電流を流し込みエンジン始動動作時に
おいてエンジンの始動動作が終了したか否かを検出し、
エンジンの始動動作終了直後に前記酸素温度センサの出
力電圧に応じて前記酸素濃度センサの活性化状態の判別
を開始することを特徴とする空燃比フィードバック制御
方法。 く2) スタータスイッチのオン後エンジン回転数がク
ランキング回転数を越えたときに前記エンジンの始動動
作が終了したと判別することを特徴とする特許請求の範
囲第1項記載の空燃比フィードバック制御方法。 (3) 前記酸素温度センサが不活性時、前記酸素温度
センサをリーン雰囲気下におき前記酸素濃度センクーの
出力電圧が所定値を下回った時活性化したと判別するこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
空燃比フィードバック制御方法。 (4) 前記酸素濃度センサが不活性時、前記酸素温度
センサをリーン雰囲気下におき前記酸素濃度センサの出
ツノ電圧が所定値を下回ってから所定時間の経過後に活
性化したと判別することを特徴とする特許請求の範囲第
1項又は第2項記載の空燃比フィードバック制御方法。
[Scope of Claims] (1) An air-fuel ratio feedback control method for feedback-controlling the air-fuel ratio of an air-fuel mixture supplied to an engine based on the output of an oxygen degree sensor disposed in an exhaust system of an internal combustion engine, comprising: After the ignition switch is turned on, a current is applied to the oxygen temperature sensor to detect whether or not the engine starting operation has been completed during the engine starting operation;
An air-fuel ratio feedback control method characterized in that immediately after an engine starting operation ends, determination of an activation state of the oxygen concentration sensor is started in accordance with an output voltage of the oxygen temperature sensor. (2) The air-fuel ratio feedback control according to claim 1, wherein it is determined that the engine starting operation has ended when the engine speed exceeds the cranking speed after the starter switch is turned on. Method. (3) When the oxygen temperature sensor is inactive, the oxygen temperature sensor is placed in a lean atmosphere, and when the output voltage of the oxygen concentration sensor falls below a predetermined value, it is determined that the oxygen temperature sensor is activated. The air-fuel ratio feedback control method according to range 1 or 2. (4) When the oxygen concentration sensor is inactive, the oxygen temperature sensor is placed in a lean atmosphere, and the oxygen concentration sensor is determined to be activated after a predetermined time has elapsed since the output horn voltage of the oxygen concentration sensor has fallen below a predetermined value. An air-fuel ratio feedback control method according to claim 1 or 2, characterized in that:
JP14373182A 1982-08-19 1982-08-19 Air-fuel ratio feedback control method Pending JPS5934438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14373182A JPS5934438A (en) 1982-08-19 1982-08-19 Air-fuel ratio feedback control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14373182A JPS5934438A (en) 1982-08-19 1982-08-19 Air-fuel ratio feedback control method

Publications (1)

Publication Number Publication Date
JPS5934438A true JPS5934438A (en) 1984-02-24

Family

ID=15345693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14373182A Pending JPS5934438A (en) 1982-08-19 1982-08-19 Air-fuel ratio feedback control method

Country Status (1)

Country Link
JP (1) JPS5934438A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106935A (en) * 1987-10-20 1989-04-24 Toyota Motor Corp Control device for air-fuel ratio of internal combustion engine
US4941318A (en) * 1988-03-01 1990-07-17 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system having short-circuit detection for air-fuel ratio sensor
JPH0331735U (en) * 1989-08-03 1991-03-27

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106935A (en) * 1987-10-20 1989-04-24 Toyota Motor Corp Control device for air-fuel ratio of internal combustion engine
US4941318A (en) * 1988-03-01 1990-07-17 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system having short-circuit detection for air-fuel ratio sensor
JPH0331735U (en) * 1989-08-03 1991-03-27

Similar Documents

Publication Publication Date Title
JPS5934439A (en) Air-fuel feedback control method
JPH05202785A (en) Air/fuel ratio control device of internal combustion engine
JPH03100353A (en) Activation discriminating method for exhaust concentration sensor with heater
JPS6229631B2 (en)
JPS647217B2 (en)
JPS5934438A (en) Air-fuel ratio feedback control method
JPS62139944A (en) Air-fuel ratio control device for automobile engine
JP3680178B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006220085A (en) Controller of internal combustion engine
US4819601A (en) Diagnostic system of an air-fuel ratio control device
US5946907A (en) Engine catalyst activation determining device and engine controller related thereto
JP3890730B2 (en) Fuel injection control device for internal combustion engine
JP2006097510A (en) Air-fuel ratio control device of engine
JPS5929746A (en) Feedback control method of air-fuel ratio
JP2000045851A (en) Failure determination device for water temperature sensor
JP3438531B2 (en) Heater control device for oxygen sensor
JP2006097511A (en) Air-fuel ratio control device of engine
JPH09195829A (en) Fuel supply controller for internal combustion engine
JPH065053B2 (en) Failure diagnosis device for air-fuel ratio control system
JPH0874568A (en) Secondary air feeding method of internal combustion engine and device thereof
JPH0617692A (en) Failure judgment device for engine fuel system
KR100373044B1 (en) Method for learning of fuel feedback gain of a car
JPH0612178Y2 (en) Secondary air supply controller for multi-cylinder internal combustion engine
JPH06129245A (en) Device for determining activation of catalyst
JPS60259743A (en) Idling control for internal-combustion engine