JPS5929746A - Feedback control method of air-fuel ratio - Google Patents

Feedback control method of air-fuel ratio

Info

Publication number
JPS5929746A
JPS5929746A JP14032482A JP14032482A JPS5929746A JP S5929746 A JPS5929746 A JP S5929746A JP 14032482 A JP14032482 A JP 14032482A JP 14032482 A JP14032482 A JP 14032482A JP S5929746 A JPS5929746 A JP S5929746A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
state
feedback control
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14032482A
Other languages
Japanese (ja)
Inventor
Shunpei Hasegawa
俊平 長谷川
Yutaka Otobe
乙部 豊
Tomoji Makino
牧野 友司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14032482A priority Critical patent/JPS5929746A/en
Publication of JPS5929746A publication Critical patent/JPS5929746A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make the drivability so smooth, by discriminating a state of activation in an oxygen content sensor again when a specific driving condition continued for a prescribed period of time, after starting the feedback control followed by the activation of the oxygen content sensor. CONSTITUTION:Based on the output of an oxygen content sensor 8 disposed in an exhaust system, a control valve 17 is controlled by a controller 9. An air- fuel ratio in a mixture to be fed to an engine 1 through the control valve 17 is feedback-controlled. After starting the feedback control followed by activation in the oxygen content sensor 8, when such a state of driving as entailing a temperature drop in exhaust gas continues for a prescribed period of time, a state of the activation in the oxygen content sensor 8 is discriminated again at the controller 9 whereby the air-fuel ratio is continuously controlled according to the activation state. Thus, not only drivability comes ever so smooth but also exhaust gas purification control is much improved.

Description

【発明の詳細な説明】 本発明はエンジンの空燃比フィードバック制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio feedback control method for an engine.

エンジンの排気系に配置された酸素濃度セン(〕の出力
に基づいてエンジンに供給される混合気の空燃比をフィ
ードバック制m−tする空燃比フィードバック制御装置
が知られている。
An air-fuel ratio feedback control device is known that performs feedback control of the air-fuel ratio of an air-fuel mixture supplied to an engine based on the output of an oxygen concentration sensor disposed in an exhaust system of the engine.

かかる空燃比フィードバック制御装置では、従来、イグ
ニッションスイッチをオンし、エンジンが始動した後、
酸素濃度センサが活性化したか否かを判別し、一度活性
化したと判別すると、その後(よ酸素m度センサの活性
化状態が継続しているものとみなしていた。ところが、
フューエルカット状態、アイドリング状態、低回転走行
状態、排気系の二次空気供給状態等、排気ガスの温度が
低下づるような運転状態が長詩間継続した場合には、酸
M潤度センサが冷え、不活性化状態となり、酸素濃度セ
ン1)の内部抵抗が増大するためリーンであってもリッ
チと誤認し史にリーンとなるようにフィードバック制御
をしてしまい、ドライバビリディ上不都合であった。
Conventionally, in such an air-fuel ratio feedback control device, after the ignition switch is turned on and the engine starts,
It was determined whether the oxygen concentration sensor was activated or not, and once it was determined that it was activated, it was assumed that the oxygen concentration sensor continued to be activated.However,
If operating conditions that cause the exhaust gas temperature to drop continue for a long time, such as fuel cut, idling, low RPM, exhaust system secondary air supply, etc., the acid M humidity sensor will cool down. As a result, the internal resistance of the oxygen concentration sensor 1) increases, causing it to be misjudged as rich even when it is lean, and feedback control is performed to make it lean, which is inconvenient in terms of drivability. .

そこで、本発明は酸素m度センサが一度活性状態と判別
後に再度不活性状態になった場合にもスムーズなドライ
バビリティを可能とした空燃比フィードバック制御方法
を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide an air-fuel ratio feedback control method that enables smooth drivability even when the oxygen m degree sensor is once determined to be in an active state and then becomes inactive again.

本発明による空燃比フィードバック制御方法は、酸素濃
度センサの活性化に伴なうフィードバック制御開始後、
排気ガスの温度が低下するような運転状態が所定時間継
続したとき再度酸素濃度センサの活性化状態を判別づる
ようにしている。
In the air-fuel ratio feedback control method according to the present invention, after starting feedback control accompanying activation of an oxygen concentration sensor,
When the operating state in which the exhaust gas temperature decreases continues for a predetermined period of time, the activation state of the oxygen concentration sensor is determined again.

以下、図面を用いて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る電子制御式燃料供給装置を示す概
略構成図である。図において、1はエンジン、2はこの
エンジン1の冷却水温を検出するための水濡センサ、3
はエンジン回転数を検出するだめのクランク角センサ、
4はインジェクタ、5はスロットルバルブ60開度を検
出するためのスロットル間度しンリ、7は吸気系の絶対
圧を検出するための絶対圧センサ、8は排気系に配置さ
れて排気ガス中の酸素濃度を検出する酸素′IA度レン
し(以下02センサと称する)、9はマイクロプロセッ
サ等によって構成されこれら各センサの出力に基づいて
燃利噴射泪を制御するコントローラ、10は排気ガス中
のGO,1−ICを低減する触媒コンバータ、11はイ
グニッションスイッチである。12は触媒コンバータ1
0におけるco。
FIG. 1 is a schematic configuration diagram showing an electronically controlled fuel supply system according to the present invention. In the figure, 1 is an engine, 2 is a water wetness sensor for detecting the cooling water temperature of this engine 1, and 3
is the crank angle sensor that detects the engine speed,
4 is an injector, 5 is a throttle valve for detecting the opening degree of the throttle valve 60, 7 is an absolute pressure sensor for detecting the absolute pressure in the intake system, and 8 is arranged in the exhaust system to detect the amount of gas in the exhaust gas. An oxygen sensor (hereinafter referred to as 02 sensor) that detects the oxygen concentration; 9 is a controller composed of a microprocessor and the like and controls fuel injection based on the outputs of these sensors; 10 is an oxygen sensor that detects oxygen concentration in the exhaust gas; GO, 1 - a catalytic converter for reducing IC; 11 is an ignition switch; 12 is catalytic converter 1
co at 0.

1」Cの酸化を助けるべく排気系に二次空気を供給する
ための二次空気供給装置であり、この装置は、大気がフ
ィルタ13を経て導入される大気室と制御室とに分離す
るダイA7フラム弁14と、排気系の排気圧ツノの脈動
に応じて自動的に開閉するり一ド弁15と、フィルタ1
6を経て導入される大気h[と吸気負圧とを選択的に上
記制御室に導く制御弁17とを含んでいる。制御弁17
はo2センサ8の不活性部吸気負圧を選択し、02セン
サ8の活性特大気圧を選択するようにコントローラ9に
Jこって制御される。
This is a secondary air supply device for supplying secondary air to the exhaust system to assist in the oxidation of C. A7 flam valve 14, a drain valve 15 that automatically opens and closes according to the pulsation of the exhaust pressure horn of the exhaust system, and a filter 1.
6, and a control valve 17 that selectively guides the atmospheric air h [introduced through the control chamber 6 and the intake negative pressure into the control chamber. Control valve 17
is controlled by the controller 9 to select the inactive intake negative pressure of the O2 sensor 8 and select the active special atmospheric pressure of the O2 sensor 8.

コン1〜ローラ9は、第2図に示す様に、コンデンリC
+ 、C2及び抵抗Rからなり、02センサ8の出力を
平滑化する平滑化回路18と、初段がpnp l−ラン
ジスタで構成されて平滑化回路18の出力電圧を増幅す
る増幅器1つと、水温センサ2、スロットル開度センサ
5、絶対圧センリフ及び増幅器19の各出力のレベルを
修正するレベル修正回路20と、このレベル修正回路2
0を経た各セン勺出力の1つを選択的に出力する入ツノ
信号切替回路21と、この入力信号切替回路21から出
力されICアナログ信号を1イジタル信号に変換器るA
/D変換器22と、クランク角センサ3の出力を波形整
形づる波形整形回路23と、この波形整形回路23から
出力されるパルス間の時間を計測するカウンタ24と、
イグニッションスイッチ11の出力のレベルを修正り゛
るレベル修正回路25と、このレベル修正回路25の出
力を入力とづるデジタル入力モジュール26と、インジ
エクタ4及び二次空気制御弁17をそれぞれ駆動する駆
動回路27.28と、C,PU29と、各種の処理プロ
グラムが記憶されたROM30及びRAM31からなっ
ており、入力信号切替回路21、Δ/[)変換器22、
カウンタ24、デジタル入力[ジコール26、駆動回路
27.28、CPU29.1【0M30及びRAM31
はパスライン32にJ、って接続されている。
As shown in FIG.
+, C2 and resistor R, smoothing circuit 18 that smoothes the output of 02 sensor 8, one amplifier whose first stage is composed of a pnp l-transistor and amplifying the output voltage of smoothing circuit 18, and a water temperature sensor. 2. A level correction circuit 20 that corrects the levels of the outputs of the throttle opening sensor 5, absolute pressure sensor 5, and amplifier 19; and this level correction circuit 2.
An input signal switching circuit 21 that selectively outputs one of the outputs of each sensor that has passed through 0, and A that converts the IC analog signal output from the input signal switching circuit 21 into a digital signal.
/D converter 22, a waveform shaping circuit 23 that shapes the output of the crank angle sensor 3, and a counter 24 that measures the time between pulses output from the waveform shaping circuit 23.
A level correction circuit 25 that corrects the level of the output of the ignition switch 11, a digital input module 26 that receives the output of the level correction circuit 25, and a drive circuit that drives the injector 4 and the secondary air control valve 17, respectively. 27, 28, C, PU 29, ROM 30 and RAM 31 in which various processing programs are stored, input signal switching circuit 21, Δ/[) converter 22,
Counter 24, digital input [Gicor 26, drive circuit 27.28, CPU 29.1 0M30 and RAM 31
is connected to the pass line 32 by J.

次に、本発明による空燃比フィードバック制御方法の手
順を第3図のフローチャートに従って説明する。コント
ローラ9では、まず、エンジンの始動時02センサ活性
化判別フラグnoz(n。
Next, the procedure of the air-fuel ratio feedback control method according to the present invention will be explained according to the flowchart of FIG. The controller 9 first sets the 02 sensor activation determination flag noz(n) when the engine is started.

2の初期値は0)が″0″か否かを判別しくステップ3
3)、no2=oであれば更に02センサ8が活性化完
了したか否かを判別する(ステップ34)。この02セ
ンサ8の活性化状態を判別するために、コントローラ9
はイグニッションスイッチ11のオン時点から02セン
サ8に所定の電流を流し込む。そして02センサ8の出
力電圧が所定基準電圧を下回ったとき活性化したと判別
量る。なお、始動時は所定基準電圧を下回った時から更
に設定時間Tx経過した時点において活性化したと判別
する。ステップ34で02センサ8が未だ活性化されて
いないと判別された場合、02)イードバック補正係数
KO2を1にすることで制御系をオープンループとしく
ステップ35)、02L?ンサ8が活性化完了と判別さ
れた場合、O2センザ活性化フラグをno2=1とづる
(ステップ36)。02センザ8の活性化後フィードバ
ック制御を開始する。
The initial value of 2) is "0" or not. Step 3
3) If no2=o, it is further determined whether the 02 sensor 8 has been activated (step 34). In order to determine the activation state of this 02 sensor 8, the controller 9
A predetermined current is applied to the 02 sensor 8 from the time when the ignition switch 11 is turned on. When the output voltage of the 02 sensor 8 falls below a predetermined reference voltage, it is determined that the sensor is activated. At the time of starting, activation is determined when a set time Tx has further elapsed since the voltage fell below a predetermined reference voltage. If it is determined in step 34 that the 02 sensor 8 has not been activated yet, the control system is set to open loop by setting the 02) feedback correction coefficient KO2 to 1, and in step 35), the 02L? If it is determined that the sensor 8 has been activated, the O2 sensor activation flag is set to no2=1 (step 36). 02 After activation of sensor 8, feedback control is started.

その後、所定時間排気ガスの温度が低下づるような所定
の運転状態の検出を行う。まず、アイドリング状態であ
るか否かを判別しくステップ37)、アイドリング状態
であれば更にその状態が所定時間t1継続したか否かを
判別しくステップ38)、判別開始と同時にス、テップ
35へ移行し、時間[■継続した場合には02センサ活
性化フラグを1102=Oとしたくステップ39)後ス
テップ35へ移行する。このアイドリング状態の判別は
クランク角ヒンサ3によって検出されたエンジン回転数
Neと絶対圧センリ゛7によって検出された吸気絶対圧
PBAに基づいて行われる。アイドリング状態でな()
れば、エンジン回転数Neが所定のエンジン回転数NL
OP(低速側オープンループ臨界値、例えば900rp
m)以下であるか否か(Ne =Oも含む)を判別しく
ステップ40)、NLOP以下のエンジン回転数であれ
ば更にその状態が所定時間[■継続したか否かを判別し
くステップ41)、この判別開始と同時にステップ35
へ移行し、時間tl継続した場合には02センリ活性化
フラグをno2=oとしたくステップ42)後ステップ
35へ移行する。アイドリング状態及び所定のエンジン
回転数以下のエンジン回転状態では、単位時間当りの排
気量が少ない為に02レンザ8の温度が低下することに
なる。従って、どちらかの条件が成立した時点からt1
秒経過するまでに両条件から外れな【プれば再活性化判
別を行う必要がある為、同一タイマとしている。
Thereafter, a predetermined operating state in which the temperature of the exhaust gas decreases for a predetermined period of time is detected. First, it is determined whether or not it is in an idling state (step 37), and if it is in an idling state, it is further determined whether or not the state has continued for a predetermined time t1 (step 38), and at the same time as the determination starts, the process moves to step 35. If the process continues for a period of time [■, the 02 sensor activation flag should be set to 1102=O (step 39), and then the process moves to step 35. This determination of the idling state is performed based on the engine rotational speed Ne detected by the crank angle hinger 3 and the intake absolute pressure PBA detected by the absolute pressure sensor 7. While idling ()
If so, the engine speed Ne is the predetermined engine speed NL.
OP (low speed side open loop critical value, e.g. 900 rpm
m) or less (including Ne = O) (step 40), and if the engine speed is less than NLOP, the state continues for a predetermined period of time [■ determine whether or not it has continued (step 41) , at the same time as this discrimination starts, step 35
If the process continues for the time tl, the process moves to step 35 after step 42) to set the 02 sensor activation flag to no2=o. In the idling state and in the engine rotation state below a predetermined engine rotation speed, the temperature of the 02 lens 8 decreases because the displacement per unit time is small. Therefore, from the time either condition is satisfied, t1
If both conditions are not met by the time seconds elapse, reactivation must be determined, so the same timer is used.

エンジン回転数NeがNLOP以下でな【ノれば、リー
ン化領域(KL s < 1 )か否かを判別しくステ
ップ43)、KLS<1であれば更にその状態が所定時
間tLS継続したか否かを判別しくステップ44)、こ
の判別開始と同時にステップ35へ移行し、時間tLS
継続した場合には02センサ活性化フラグをno2=o
とした(ステップ45)後ステップ35へ移行層る。リ
ーン化領域にd3いては、エンジンの燃焼温度自体が低
い為、排気温度もそれにつれて低下する。1ノーン4ヒ
領域でな()れば、フューエルカット状態であるh\否
hsを判別しくステップ46)、フユーエルノJット状
態であればその状態が所定時間tFC継続し1= /)
X盃かを判別しくステップ47)、この判別量り0と1
司時にステップ35へ移行し、時間tFc継続しlこ場
合には02’l?ンサ活性化フラグを+10’2=oと
したくステップ48)後ステップ35へ移11する。
If the engine speed Ne is not less than NLOP, it is determined whether it is in the lean region (KL s < 1) (Step 43), and if KLS < 1, it is determined whether the state has continued for a predetermined time tLS. At the same time as the start of this determination, the process moves to step 35, and the time tLS
If it continues, set the 02 sensor activation flag to no2=o
After that (step 45), the transition layer is transferred to step 35. In the lean region d3, the combustion temperature of the engine itself is low, so the exhaust temperature also decreases accordingly. If it is not in the 1-4-hi region (), it is determined whether the fuel cut state is h\nohs (step 46), and if it is the fuel cut state, the state continues for a predetermined time tFC (1 = /).
Step 47) to determine whether it is X cup or not, use this determination scale 0 and 1
In this case, the process moves to step 35 and continues for a time tFc. After step 48), the process moves to step 35 to set the sensor activation flag to +10'2=o.

フューエルカット状態の判別は低エンジン回転数ではア
イドルス[1ット間度時のスロワ1〜ルl1ll T’
A tレザ5の出力に応じて、又高エンジン回転数でG
マ絶対圧センサ7によって検出さtした吸気絶り4圧P
BAに基づいて行なわれる。
The fuel cut state can be determined by checking the idle speed at low engine speeds.
Depending on the output of Atreza 5, G at high engine speed
4 pressure P detected by absolute pressure sensor 7
This is done based on BA.

フューエルカッ1〜状態でなけit c、r、他の1ノ
ツチ化オ一ブン条件成立か否かを判別しくステップ4つ
)、成立であればステップ35へ移1テシてA−プンル
ープ制御11(KO2=1)とし、成立しな【ノれば0
2フイードバツク補正係数KO2を算831’る(ステ
ップ50)。なお、上述した各運転1人態での所定時間
t+、tcs、tFcL、を各j車転条イ牛により空燃
比が異なるので02センサ8が冷却される度合も異なっ
てくる。従ってその冷却痕合に応じて、づなわち02セ
ンサ8の出力電圧が基準電斤を越えるまでの時間に応じ
て決定される。
It is determined whether or not the fuel cut-off condition is satisfied (step 4). KO2 = 1), and if it does not hold, then 0
2 feedback correction coefficient KO2 is calculated 831' (step 50). Note that since the air-fuel ratio differs depending on the predetermined time t+, tcs, and tFcL in each of the above-mentioned single-person driving situations, the degree to which the 02 sensor 8 is cooled also differs. Therefore, it is determined according to the cooling effect, that is, according to the time until the output voltage of the 02 sensor 8 exceeds the reference voltage.

また、リードバルブ制御によって排気中に2次エアーが
供給されて02センサが冷Wされる場合として、特に減
速時では減速初期には過濃の混合気が供給され排気2次
エアーによる冷却は行われないが、減速状態が長く続い
た場合、その中期以後においてはその空燃比は大となる
が依然として+7L気2次エアーは供給され続けるので
、02センリの冷却が行われてしまう。
In addition, when secondary air is supplied to the exhaust gas by reed valve control and the 02 sensor is cooled, especially during deceleration, a rich mixture is supplied at the beginning of deceleration, and cooling by the exhaust secondary air is not performed. However, if the deceleration state continues for a long time, the air-fuel ratio increases after the middle period, but +7L secondary air continues to be supplied, resulting in cooling of 0.2 centigrade.

以上が02t?ンサ活性化判別のためのサブルーチンで
あり、このサブルーチンは他のサブルーチンを経て繰り
返される。その結果、02センサ8の活性化に伴ないフ
ィードバック制御を開始した後、上述した各運転状態の
1状態が所定時間継続したとe O2センlす活性化フ
ラグをno2=0とすることで再度02セン1ノ8の活
性化状態を判別りることになる。そして再活性と判別し
た時直ちにループクローズとする。なJ3、o2センサ
8の活性化判別は02センサ8をリーン雰囲気下におい
て行なう為第1図において説明した様に、排気系への二
次空気を不活性時に供給できるように構成されている。
Is the above 02t? This subroutine is used to determine sensor activation, and this subroutine is repeated via other subroutines. As a result, after starting feedback control in conjunction with the activation of the 02 sensor 8, if one of the above-mentioned operating states continues for a predetermined period of time, the activation flag for the 02 sensor is set to no2=0, and then the activation flag is set to no2=0. The activation state of 02 sen 1 no 8 will be determined. Then, when it is determined that it is reactivated, the loop is immediately closed. Since the activation of the J3 and O2 sensors 8 is determined in a lean atmosphere, the 02 sensor 8 is configured to be able to supply secondary air to the exhaust system when it is inactive, as explained in FIG.

以上詳述した如く、本発明によれば、02センリーの活
性化に伴なうフィードバック制御開始後、排気ガスの温
度が低下覆るような運転状態が所定時間継続したとき再
度02センザの活性化状態を判別し、常に02t?ン→
ノの活性化状態に応じて空燃比を制御するようにしたの
で、異常な空燃比補正がなくなりドライバビリティもス
ムーズである。
As described in detail above, according to the present invention, after the start of feedback control accompanying the activation of the 02 sensor, when the operating state continues for a predetermined period in which the exhaust gas temperature decreases and reverses, the 02 sensor is activated again. and always 02t? →
Since the air-fuel ratio is controlled according to the activation state of the engine, there is no abnormal air-fuel ratio correction and drivability is smooth.

また、再活性判別後は直ちにフィードバック制御を開始
するので排ガス浄化上も良い。
Furthermore, since feedback control is started immediately after reactivation is determined, it is also good for purifying exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電子制御式燃料供給装置を示す概
略構成図、第2図は第1図におけるコン1〜ローラの具
体的構成を示すブロック図、第3図は酸素濃度センサの
活性化判別のサブルーチンを示す70ニチセ一ト図であ
る。 主要部分の符号の説明 2・・・・・・水濡レンサ 3・・・・・・クランク角センサ 4・・・・・・インジェクタ 5・・・・・・スロットル開度センサ゛7・・・・・・
絶対圧センサ 8・・・・・・酸素濃度セン4ノ゛ 9・・・・・・コントローラ 12・・・・・・二次空気供給装置 14・・・・・・ダイ°Vフラム弁 15・・・・・・リード弁 17・・・・・・制御弁 出願人   本田技研工業株式会社 代理人   弁理士  藤村元彦
Fig. 1 is a schematic configuration diagram showing an electronically controlled fuel supply system according to the present invention, Fig. 2 is a block diagram showing the specific configuration of the controller 1 to roller in Fig. 1, and Fig. 3 is an activation diagram of the oxygen concentration sensor. FIG. 7 is a 70-page diagram showing a subroutine for color determination. Explanation of symbols of main parts 2...Water sensor 3...Crank angle sensor 4...Injector 5...Throttle opening sensor ゛7...・・・
Absolute pressure sensor 8... Oxygen concentration sensor 4 No. 9... Controller 12... Secondary air supply device 14... Die °V flam valve 15. ...Reed valve 17 ...Control valve Applicant Honda Motor Co., Ltd. Agent Patent attorney Motohiko Fujimura

Claims (5)

【特許請求の範囲】[Claims] (1) 排気系に配置された酸素濃度センサの出力に基
づいてエンジンに供給される混合気の空燃比をフィード
バック制御する空燃比フィードバック制御方法であって
、エンジンの始動時前記酸素濃度ピン1ノの活性化状態
を判別し、活性化状態であ′ればフィードバック制御を
開始し、その後排気ガスの温度が低下するような所定の
運転状態を検出し、この所定の運転状態が所定時間継続
したどき再度前記酸素m度センサの活性化状態を判別す
ることを特徴とする空燃比フィードバック制御力が、。
(1) An air-fuel ratio feedback control method for feedback-controlling the air-fuel ratio of the air-fuel mixture supplied to the engine based on the output of an oxygen concentration sensor disposed in the exhaust system, the method comprising: The system determines the activation state of the engine, starts feedback control if it is activated, and then detects a predetermined operating state in which the temperature of the exhaust gas decreases, and if this predetermined operating state continues for a predetermined period of time. The air-fuel ratio feedback control force is characterized in that the activation state of the oxygen m degree sensor is determined once again.
(2) 前記所定の運転状態は、フューエルカッ1−状
態、アイドリング状態1.所定のエンジン回転数以下の
エンジン回転状態、エンジンの減速状態及び゛排気系へ
の二次空気供給状態のうちの少なくとも1状態であるこ
とを特徴とする特許請求の範囲第1項記載の空燃比フィ
ードバック制御方法。
(2) The predetermined operating states include a fuel cup 1-state and an idling state 1-. The air-fuel ratio according to claim 1, wherein the air-fuel ratio is at least one of an engine rotation state below a predetermined engine rotation speed, an engine deceleration state, and a secondary air supply state to the exhaust system. Feedback control method.
(3) 前記酸素濃度センサに所定の電流を流し込み、
この酸素濃度センサの出力電圧が所定電圧を下回るとき
活性化と判別することを特徴とする特許請求の範囲第1
項記載の空燃比フィードバック制御方法。
(3) Applying a predetermined current to the oxygen concentration sensor,
Claim 1, characterized in that activation is determined when the output voltage of the oxygen concentration sensor is less than a predetermined voltage.
The air-fuel ratio feedback control method described in .
(4) 前記所定時間は、前記各種運転状態に応じて決
定されることを特徴とする特許請求の範囲第2項記載の
空燃比フィードバック制御方法。
(4) The air-fuel ratio feedback control method according to claim 2, wherein the predetermined time is determined depending on the various operating conditions.
(5) 前記・酸素濃度センサに所定の電流を流し込み
、始動時は、この酸素濃度eンリの出力電圧が所定電圧
を下回った時から更に設定時間の経過したとき活性化と
判別りることを特徴とする特r[請求の範囲第1項記載
の空燃比フィードバック制御力法。
(5) A predetermined current is applied to the oxygen concentration sensor, and at the time of starting, activation is determined when a set time has elapsed since the output voltage of the oxygen concentration sensor became lower than the predetermined voltage. Characteristic Features [The air-fuel ratio feedback control force method according to claim 1].
JP14032482A 1982-08-12 1982-08-12 Feedback control method of air-fuel ratio Pending JPS5929746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14032482A JPS5929746A (en) 1982-08-12 1982-08-12 Feedback control method of air-fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14032482A JPS5929746A (en) 1982-08-12 1982-08-12 Feedback control method of air-fuel ratio

Publications (1)

Publication Number Publication Date
JPS5929746A true JPS5929746A (en) 1984-02-17

Family

ID=15266164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14032482A Pending JPS5929746A (en) 1982-08-12 1982-08-12 Feedback control method of air-fuel ratio

Country Status (1)

Country Link
JP (1) JPS5929746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946350A (en) * 1982-09-09 1984-03-15 Toyota Motor Corp Method of controlling air-fuel ratio of internal- combustion engine
JPS60237134A (en) * 1984-05-07 1985-11-26 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
JPS62126236A (en) * 1985-11-22 1987-06-08 Honda Motor Co Ltd Air-fuel ratio control method for fuel feed device of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946350A (en) * 1982-09-09 1984-03-15 Toyota Motor Corp Method of controlling air-fuel ratio of internal- combustion engine
JPH0454056B2 (en) * 1982-09-09 1992-08-28 Toyota Motor Co Ltd
JPS60237134A (en) * 1984-05-07 1985-11-26 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
JPH0565699B2 (en) * 1984-05-07 1993-09-20 Toyota Motor Co Ltd
JPS62126236A (en) * 1985-11-22 1987-06-08 Honda Motor Co Ltd Air-fuel ratio control method for fuel feed device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP2724387B2 (en) Failure detection method for exhaust air supply system for internal combustion engine
JPH0819871B2 (en) Method for detecting abnormality in fuel supply system of internal combustion engine
JPS6328216B2 (en)
JPH0518234A (en) Secondary air control device for internal combustion engine
JPS6229631B2 (en)
JPS5929746A (en) Feedback control method of air-fuel ratio
JPH0674765B2 (en) Air-fuel ratio control method for internal combustion engine
JPS5934438A (en) Air-fuel ratio feedback control method
JP2965797B2 (en) Abnormality detection device for fuel supply system of internal combustion engine
JPS63154847A (en) Air-fuel ratio control device for internal combustion engine
JPS6139065Y2 (en)
JPH0648133Y2 (en) Air-fuel ratio sensor activity discrimination device
JPH09195829A (en) Fuel supply controller for internal combustion engine
JPS6090939A (en) Method of detecting inactivation of oxygen-concentration sensor in air-fuel ratio feedback control system for internal-combustion engine
JPH065053B2 (en) Failure diagnosis device for air-fuel ratio control system
JP2633652B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0874568A (en) Secondary air feeding method of internal combustion engine and device thereof
JPH06280549A (en) Failure detecting device in secondary air supplying system
JPH0988689A (en) Air-fuel ratio control device for internal combustion engine
JPS6235037A (en) Air-fuel ratio controlling system
JPS63259146A (en) Failure diagnosis device for air-fuel ratio control system
JPH01123141A (en) Air-fuel-ratio control apparatus for internal combustion engine
JPH04255543A (en) Air-fuel ratio control device for alcohol-contained fuel engine
JP2004092486A (en) Emission control device of internal combustion engine
JPS61132738A (en) Air-fuel ratio controller of internal-conbustion engine