JP3890730B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP3890730B2
JP3890730B2 JP06426198A JP6426198A JP3890730B2 JP 3890730 B2 JP3890730 B2 JP 3890730B2 JP 06426198 A JP06426198 A JP 06426198A JP 6426198 A JP6426198 A JP 6426198A JP 3890730 B2 JP3890730 B2 JP 3890730B2
Authority
JP
Japan
Prior art keywords
fuel injection
internal combustion
fuel
combustion engine
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06426198A
Other languages
Japanese (ja)
Other versions
JPH11247684A (en
Inventor
博昭 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP06426198A priority Critical patent/JP3890730B2/en
Publication of JPH11247684A publication Critical patent/JPH11247684A/en
Application granted granted Critical
Publication of JP3890730B2 publication Critical patent/JP3890730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
この発明は内燃機関の燃料噴射制御装置に係り、特に、高負荷域からの減速時の排気有害成分値の悪化を防止し得て、触媒の劣化を防止し得て、また、ドライバビリティの悪化を防止し得る内燃機関の燃料噴射制御装置に関する。
【0002】
【従来の技術】
車両に搭載される内燃機関には、排気有害成分値であるHCやNOx、COを除去するために、排気通路に触媒を設けているものがある。触媒は、触媒作用により所定の気体構成・温度条件等のもとで排気中の有害成分値を無害なものに変換する。
【0003】
また、内燃機関には、吸気通路に燃料噴射弁を設け、この燃料噴射弁を制御して空燃比が目標空燃比になるよう燃料を供給する燃料噴射制御装置を備えているものがある。この燃料噴射制御装置には、内燃機関の減速時に、燃料の供給を停止して不要な燃料の消費を抑制するために、また、未燃焼の燃料による触媒温度の昇温を抑制するために、減速燃料カット条件成立時に燃料カットするよう燃料噴射弁を制御するものがある。
【0004】
このような内燃機関の燃料噴射制御装置としては、特開平7−310574号公報、特開平8−14082号公報、特開平9−250381号公報に開示されるものがある。
【0005】
特開平7−310574号公報に開示されるものは、内燃機関が所定の燃料供給休止条件を満たした時点から所定の遅延時間後に燃料供給を休止する燃料カット制御方法において、所定の遅延時間内に燃焼室内に発生するイオン電流の特性を検出し、検出したイオン電流の特性が所定の特性を越えていることを判定した場合に、次回の燃料供給休止条件を緩和するものである。
【0006】
特開平8−14082号公報に開示されるものは、O2 センサの出力に基づいて空燃比補正係数をスキップ処理と積分処理することにより空燃比をフィードバック制御する制御回路を設け、この制御回路によって減速が検出された際に、減速検出後の最初のスキップから2回目のスキップまでの間は通常の減速時よりも燃料が減少する側にスキップ処理と積分処理の大きさを補正するものである。
【0007】
特開平9−250381号公報に開示されるもは、エバポパージシステムと燃料噴射制御手段とを備えた燃料噴射制御装置において、燃料カット条件の検出時に、直ちにパージガスの供給カット指令を出力し、燃料カット条件になってから所定時間経過後に燃料カット指令を出力するものである。
【0008】
【発明が解決しようとする課題】
ところで、内燃機関の燃料噴射制御装置においては、高負荷域での運転時に、空燃比が理論空燃比よりもリッチな濃側空燃比になるよう燃料を増量して供給している。このような高負荷域からの減速時には、燃料消費の低減及び減速感を運転者に感知させるために、燃料カットを行っている。
【0009】
ところが、このように燃料が増量されている状態から燃料カットが行われた場合には、排気通路に濃側空燃比による未燃炭化水素HCが流れるとともに排気通路が燃料カットにより空気過剰状態となり、排気有害成分値の悪化を招くことになる。
【0010】
このため、高負荷域からの減速時には、図6に示す如く、排気通路に未燃炭化水素HCと過剰空気中の酸素O2 とが混在することになり、これら未燃炭化水素HCと過剰空気中の酸素O2 とが触媒において激しい発熱反応を引き起こし、触媒温度を急激に昇温させて触媒の劣化に不利な異常高温状態を惹起する不都合ある。
【0011】
【課題を解決するための手段】
この発明の内燃機関の燃料噴射制御装置は、内燃機関の排気通路に触媒を設け、前記触媒の温度を検出可能な触媒温度センサを設け、前記排気通路中の酸素濃度を検出するO2センサを設け、負荷量を検出可能な吸気負圧センサを設け、前記内燃機関の吸気通路に燃料噴射弁を設け、前記燃料噴射弁からの噴射量を制御する制御手段を備えている。
【0012】
この発明の内燃機関の燃料噴射制御装置は、前記制御手段は、減速燃料カット条件が成立し、かつ前記触媒温度が設定値以上の場合には、前記排気通路に流れる未燃炭化水素が減少し、前記未燃炭化水素と過剰空気の酸素とが混在する状態をなくすことが可能な時間だけ、理論空燃比になるように燃料噴射弁を制御した後に、燃料カットするように燃料噴射弁を制御することを特徴とする。
【0013】
また、この発明の内燃機関の燃料噴射制御装置は、前記制御手段は、減速燃料カット条件が成立し、かつ前記内燃機関の負荷量が設定値以上の場合には、前記排気通路に流れる未燃炭化水素が減少し、前記未燃炭化水素と過剰空気の酸素とが混在する状態をなくすことが可能な時間だけ、理論空燃比になるように燃料噴射弁を制御した後に、燃料カットするように燃料噴射弁を制御することを特徴とする。
【0014】
【発明の実施の形態】
この発明の内燃機関の燃料噴射制御装置は、触媒と触媒温度センサとO2センサと吸気負圧センサと燃料噴射弁とを設け、燃料噴射弁からの噴射量を制御する制御手段を備えている。
【0015】
この発明の内燃機関の燃料噴射制御装置は、制御手段によって、減速燃料カット条件が成立し、かつ触媒温度が設定値以上の場合には、排気通路に流れる未燃炭化水素が減少し、前記未燃炭化水素と過剰空気の酸素とが混在する状態をなくすことが可能な時間だけ、理論空燃比になるように燃料噴射弁を制御した後に、燃料カットするように燃料噴射弁を制御することにより、高負荷域からの減速時に排気通路に流れる未燃炭化水素を減少することができるとともに排気通路が空気過剰状態となる時期を遅らせることができ、排気通路に未燃炭化水素と過剰空気とが混在する状態をなくすことができる。
【0016】
また、この発明の内燃機関の燃料噴射制御装置は、制御手段によって、減速燃料カット条件が成立し、かつ内燃機関の負荷量が設定値以上の場合には、排気通路に流れる未燃炭化水素が減少し、前記未燃炭化水素と過剰空気の酸素とが混在する状態をなくすことが可能な時間だけ、理論空燃比になるように燃料噴射弁を制御した後に、燃料カットするように燃料噴射弁を制御することにより、触媒温度センサを設けることなく燃料噴射制御装置に既設の負荷を検出するセンサを利用して内燃機関の負荷量から触媒の温度を推測し得て、高負荷域からの減速時に排気通路に流れる未燃炭化水素を減少することができるとともに排気通路が空気過剰状態となる時期を遅らせることができ、排気通路に未燃炭化水素と過剰空気とが混在する状態をなくすことができる。
【0017】
【実施例】
以下図面に基づいて、この発明の実施例を説明する。図1〜図3は、この発明の第1実施例を示すものである。図2において、2は内燃機関、4は吸気通路、6は排気通路、8は吸気絞り弁、10は触媒である。内燃機関2は、吸気通路4に吸気絞り弁8を設けるとともに、排気通路6に排気中の有害成分を除去する触媒10を設けている。
【0018】
この内燃機関2は、燃料噴射制御装置12を設けている。燃料噴射制御装置12は、吸気通路4に燃料噴射弁14を設け、この燃料噴射弁14を制御する制御手段16を設けている。
【0019】
制御手段16には、排気中の酸素濃度を検出するO2 センサ18と、内燃機関2の機関回転数を検出する機関回転数センサ20と、吸気通路4の吸気負圧を検出する吸気負圧センサ22と、吸気絞り弁8の絞り弁開度を検出する絞り弁開度センサ24と、内燃機関2を搭載した車両(図示せず)の車速を検出する車速センサ26と、触媒10の触媒温度を検出する触媒温度センサ28と、を接続して設けている。また、制御手段16には、タイマー30を内蔵して設けている。
【0020】
燃料噴射制御装置12は、制御手段16によって、O2 センサ18〜車速センサ26の検出する酸素濃度と機関回転数と吸気負圧と絞り弁開度と車速とを入力し、空燃比が内燃機関2の運転状態に応じて要求される目標空燃比になるよう燃料噴射弁14の作動を制御する。
【0021】
この燃料噴射制御装置12は、制御手段16に減速燃料カット条件を設定して設けている。減速燃料カット条件は、内燃機関2の減速状態における機関回転数や吸気負圧、絞り弁開度、車速等を条件値として設定している。制御手段16は、これらの条件値を満たす場合に減速燃料カット条件の成立と判断し、燃料の噴射を停止して燃料カットするよう燃料噴射弁14を制御する。
【0022】
この内燃機関2の燃料噴射制御装置12は、制御手段16によって、内燃機関2の減速燃料カット条件成立時に、触媒温度センサ28の検出する触媒10の触媒温度Tが設定値Ts以上の場合には、タイマー30のカウントする所定時間tだけ理論空燃比になるよう燃料噴射弁14を制御した後に燃料カットするよう燃料噴射弁14を制御する。
【0023】
次に第1実施例の制御を図1に基づいて説明する。
【0024】
燃料噴射制御装置12は、内燃機関2の駆動によって制御のプログラムがスタート(ステップ100)すると、内燃機関2の運転状態及び触媒10の温度状態としてO2 センサ18〜触媒温度センサ28により酸素濃度と機関回転数と吸気負圧と絞り弁開度と車速と触媒温度Tを検出し(ステップ102)、減速燃料カット条件が成立するか否かを判断する(ステップ104)。
【0025】
この判断(ステップ104)がNOの場合は、スタート(ステップ102)にリターンする。この判断(ステップ104)がYESの場合には、触媒温度Tが設定値Ts以上(T≧Ts)か否かを判断する(ステップ106)。
【0026】
この判断(ステップ106)がNOの場合は、燃料カットするよう燃料噴射弁14を制御し(ステップ116)、エンド(ステップ118)にする。この判断(ステップ106)がYESの場合には、理論空燃比になるよう燃料噴射弁14を制御し(ステップ108)、タイマー30による所定時間のカウントをスタートし(ステップ110)、減速燃料カット条件が成立中か否かを判断する(ステップ112)。
【0027】
この判断(ステップ112)がNOの場合は、タイマー30をリセットし(ステップ120)、エンド(ステップ118)にする。この判断(ステップ112)がYESの場合は、タイマー30のカウントする所定時間tが経過したか否かを判断する(ステップ114)。
【0028】
この判断(ステップ114)がNOの場合は、判断(ステップ112)にリターンする。この判断(ステップ114)がYESの場合は、燃料カットするよう燃料噴射弁14を制御し(ステップ116)し、エンド(ステップ118)にする。
【0029】
このように、燃料噴射制御装置12は、制御手段16によって、内燃機関2の減速燃料カット条件成立時に、触媒温度センサ28の検出する触媒温度Tが設定値Ts以上の場合には、タイマー30のカウントする所定時間tだけ理論空燃比になるよう燃料噴射弁14を制御することにより、高負荷域からの減速時に排気通路6に流れる未燃炭化水素HCを減少することができる。
【0030】
また、燃料噴射制御装置12は、理論空燃比の制御による所定時間tが経過した後に燃料カットするよう燃料噴射弁14を制御することにより、排気通路6が空気過剰状態となる時期を遅らせることができる。
【0031】
これにより、この燃料噴射制御装置12は、図3に示す如く、高負荷域からの減速時に排気通路6に未燃炭化水素HCと過剰空気の酸素O2 とがオーバーラップして混在する状態をなくすことができる。
【0032】
このため、この内燃機関2の燃料噴射制御装置12は、高負荷域からの減速時に排気有害成分値の悪化を防止し得て、未燃炭化水素HCと過剰空気中の酸素O2 とが触媒12において激しい発熱反応を引き起こし、触媒温度を急激に昇温させて触媒12の劣化に不利な異常高温状態を惹起する不都合を回避し得て、触媒12の劣化を防止することができる。
【0033】
また、この燃料噴射制御装置12は、制御手段16によって、所定時間t内に減速燃料カット条件が不成立となった場合には、理論空燃比及び燃料カットを中止するよう制御することにより、減速後の加速時に要求される出力を得ることができる。
【0034】
このため、この燃料噴射制御装置12は、減速後の加速時におけるドライバビリティの悪化を防止することができる。なお、触媒温度Tが設定値Ts未満(T<Ts)の場合は、触媒10が過昇温となることがないので、通常に燃料カットを行う。
【0035】
図4・図5は、この発明の第2実施例を示すものである。図5において、2は内燃機関、4は吸気通路、6は排気通路、8は吸気絞り弁、10は触媒、12は燃料噴射制御装置、14は燃料噴射弁、16は制御手段である。
【0036】
第2実施例の燃料噴射制御装置12は、制御手段16に、O2 センサ18と、機関回転数センサ20と、吸気負圧センサ22と、絞り弁開度センサ24と、車速センサ26と、を接続して設け、触媒温度センサ28を設けていない。また、第2実施例の燃料噴射制御装置12は、制御手段16にタイマー30を内蔵して設けている。
【0037】
燃料噴射制御装置12は、制御手段16によって空燃比が内燃機関2の運転状態に応じて要求される目標空燃比になるよう燃料噴射弁14の作動を制御する。また、燃料噴射制御装置12は、制御手段16に第1実施例と同様に減速燃料カット条件を設定して設け、減速燃料カット条件の成立する場合に燃料の噴射を停止して燃料カットするよう燃料噴射弁14を制御する。
【0038】
第2実施例の燃料噴射制御装置12は、制御手段16によって、内燃機関2の減速燃料カット条件成立時に、内燃機関2の負荷Lが設定値Ls以上の場合には、タイマー30のカウントする所定時間tだけ理論空燃比になるよう燃料噴射弁14を制御した後に燃料カットするよう燃料噴射弁14を制御する。
【0039】
即ち、第2実施例の燃料噴射制御装置12は、触媒12の触媒温度を検出する触媒温度センサ28を設けることなく、装置に既設の負荷を検出する機関回転数センサ20や吸気負圧センサ22、絞り弁開度センサ24等を利用して、内燃機関2の機関回転数や吸気負圧、絞り弁開度等の負荷から触媒温度を推測するものであり、内燃機関2の減速燃料カット条件成立時に、触媒温度が設定値以上となるような内燃機関2の負荷Lが設定値Ls以上の高負荷域の場合には、タイマー30のカウントする所定時間tだけ理論空燃比になるよう燃料噴射弁14を制御した後に燃料カットするよう燃料噴射弁14を制御するものである。
【0040】
次に第2実施例の制御を図4に基づいて説明する。
【0041】
燃料噴射制御装置12は、内燃機関2の駆動によって制御のプログラムがスタート(ステップ200)すると、内燃機関2の運転状態及び触媒10の温度状態としてO2 センサ18〜車速センサ26により酸素濃度と機関回転数と吸気負圧と絞り弁開度と車速とを検出し(ステップ202)、減速燃料カット条件が成立するか否かを判断する(ステップ204)。
【0042】
この判断(ステップ204)がNOの場合は、スタート(ステップ202)にリターンする。この判断(ステップ204)がYESの場合には、機関回転数や吸気負圧、絞り弁開度等の負荷を示す信号によって、触媒温度が設定値(例えば、700℃)以上となるような負荷Lが設定値Ls以上(L≧Ls)の高負荷域か否かを判断する(ステップ206)。
【0043】
この判断(ステップ206)がNOの場合は、燃料カットするよう燃料噴射弁14を制御し(ステップ216)、エンド(ステップ218)にする。この判断(ステップ206)がYESの場合には、理論空燃比になるよう燃料噴射弁14を制御し(ステップ208)、タイマー30による所定時間のカウントをスタートし(ステップ210)、減速燃料カット条件が成立中か否かを判断する(ステップ212)。
【0044】
この判断(ステップ212)がNOの場合は、タイマー30をリセットし(ステップ220)、エンド(ステップ218)にする。この判断(ステップ212)がYESの場合は、タイマー30のカウントする所定時間tが経過したか否かを判断する(ステップ214)。
【0045】
この判断(ステップ214)がNOの場合は、判断(ステップ212)にリターンする。この判断(ステップ214)がYESの場合は、燃料カットするよう燃料噴射弁14を制御し(ステップ216)し、エンド(ステップ218)にする。
【0046】
このように、第2実施例の燃料噴射制御装置12は、制御手段16によって、内燃機関2の減速燃料カット条件成立時に、触媒温度Tが設定値Ts以上となるような内燃機関2の負荷Lが設定値Ls以上の高負荷域の場合には、タイマー30のカウントする所定時間tだけ理論空燃比になるよう燃料噴射弁14を制御することにより、高負荷域からの減速時に排気通路6に流れる未燃炭化水素HCを減少することができ、また、理論空燃比の制御による所定時間tが経過した後に、燃料カットするよう燃料噴射弁14を制御することにより、排気通路6が空気過剰状態となる時期を遅らせることができる。
【0047】
これにより、第2実施例の燃料噴射制御装置12は、第1実施例と同様に、図3に示す如く、高負荷域からの減速時に排気通路6に未燃炭化水素HCと過剰空気の酸素O2 とがオーバーラップして混在する状態をなくすことができ、高負荷域からの減速時に排気有害成分値の悪化を防止し得て、未燃炭化水素HCと過剰空気中の酸素O2 とが触媒12において激しい発熱反応を引き起こし、触媒温度を急激に昇温させて触媒12の劣化に不利な異常高温状態を惹起する不都合を回避し得て、触媒12の劣化を防止することができる。
【0048】
また、第2実施例の燃料噴射制御装置12は、制御手段16によって、所定時間t内に減速燃料カット条件が不成立となった場合には、理論空燃比及び燃料カットを中止するよう制御することにより、減速後の加速時に要求される出力を得ることができ、減速後の加速時におけるドライバビリティの悪化を防止することができる。
【0049】
さらに、第2実施例の燃料噴射制御装置12は、触媒温度センサを設けることなく燃料噴射制御装置12に既設の負荷を検出する機関回転数センサ20等を利用して内燃機関2の負荷から触媒温度を推測し得ることにより、追加部品を要することなくプログラムの変更により触媒10の劣化の防止を果たすことができ、低コストに実施し得るものである。
【0050】
【発明の効果】
このように、この発明の内燃機関の燃料制御装置は、高負荷域からの減速時に排気通路に流れる未燃炭化水素を減少することができるとともに排気通路が空気過剰状態となる時期を遅らせることができ、排気通路に未燃炭化水素と過剰空気とが混在する状態をなくすことができ、また、触媒温度センサを設けることなく燃料噴射制御装置に既設の負荷を検出するセンサを利用して内燃機関の負荷から触媒温度を推測し得て、高負荷域からの減速時に排気通路に未燃炭化水素と過剰空気とが混在する状態をなくすことができ、減速後の加速時に要求される出力を得ることができる。
【0051】
このため、この内燃機関の燃料噴射制御装置は、高負荷域からの減速時に排気有害成分値の悪化を防止し得て、触媒の劣化を防止し得て、また、追加部品を要することなくプログラムの変更により触媒の劣化の防止を果たし得て、低コストに実施し得て、ドライバビリティの悪化を防止し得る。
【図面の簡単な説明】
【図1】この発明の第1実施例を示す内燃機関の燃料噴射制御装置の制御のフローチャートである。
【図2】内燃機関の燃料噴射制御装置の概略構成図である。
【図3】減速時における未燃炭化水素と酸素と触媒の温度との変化を示す図である。
【図4】この発明の第2実施例を示す内燃機関の燃料噴射制御装置の制御のフローチャートである。
【図5】内燃機関の燃料噴射制御装置の概略構成図である。
【図6】従来の減速時における未燃炭化水素と酸素と触媒の温度との変化を示す図である。
【符号の説明】
2 内燃機関
4 吸気通路
6 排気通路
8 吸気絞り弁
10 触媒
12 燃料噴射制御装置
14 燃料噴射弁
16 制御手段
18 O2 センサ
20 回転数センサ
22 吸気負圧センサ
24 絞り弁開度センサ
26 車速センサ
28 触媒温度センサ
30 タイマー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for an internal combustion engine, and in particular, can prevent deterioration of exhaust harmful component values when decelerating from a high load range, can prevent catalyst deterioration, and deteriorates drivability. The present invention relates to a fuel injection control device for an internal combustion engine.
[0002]
[Prior art]
Some internal combustion engines mounted on vehicles are provided with a catalyst in an exhaust passage in order to remove HC, NOx, and CO, which are exhaust gas harmful component values. The catalyst converts a harmful component value in the exhaust gas into a harmless one by a catalytic action under a predetermined gas configuration and temperature condition.
[0003]
Some internal combustion engines are provided with a fuel injection control device that is provided with a fuel injection valve in an intake passage and controls the fuel injection valve to supply fuel so that the air-fuel ratio becomes a target air-fuel ratio. In this fuel injection control device, at the time of deceleration of the internal combustion engine, in order to stop the supply of fuel and suppress the consumption of unnecessary fuel, and to suppress the temperature rise of the catalyst due to unburned fuel, Some control the fuel injection valve to cut the fuel when the deceleration fuel cut condition is satisfied.
[0004]
Examples of such a fuel injection control device for an internal combustion engine include those disclosed in JP-A-7-310574, JP-A-8-14082, and JP-A-9-250381.
[0005]
Japanese Patent Laid-Open No. 7-310574 discloses a fuel cut control method in which fuel supply is stopped after a predetermined delay time from a point in time when the internal combustion engine satisfies a predetermined fuel supply stop condition, within a predetermined delay time. When the characteristic of the ion current generated in the combustion chamber is detected and it is determined that the detected characteristic of the ion current exceeds a predetermined characteristic, the next fuel supply stop condition is relaxed.
[0006]
JP-A-8-14082 discloses a control circuit that feedback-controls the air-fuel ratio by performing skip processing and integration processing of the air-fuel ratio correction coefficient based on the output of the O 2 sensor. When deceleration is detected, between the first skip after the deceleration detection and the second skip, the size of the skip processing and integration processing is corrected to the side where the fuel decreases compared to the normal deceleration. .
[0007]
JP-A-9-250381 discloses a fuel injection control apparatus having an evaporation purge system and a fuel injection control means, which immediately outputs a purge gas supply cut command when a fuel cut condition is detected. A fuel cut command is output after a predetermined time has elapsed since the cut condition was met.
[0008]
[Problems to be solved by the invention]
By the way, in the fuel injection control device for an internal combustion engine, the fuel is increased and supplied so that the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio during operation in a high load range. At the time of deceleration from such a high load region, fuel cut is performed in order to make the driver sense a reduction in fuel consumption and a feeling of deceleration.
[0009]
However, when the fuel cut is performed from the state in which the fuel is increased in this way, the unburned hydrocarbon HC due to the rich side air-fuel ratio flows in the exhaust passage and the exhaust passage becomes an excess air state due to the fuel cut, Exhaust harmful component values will be worsened.
[0010]
For this reason, when decelerating from a high load range, as shown in FIG. 6, unburned hydrocarbon HC and oxygen O 2 in excess air are mixed in the exhaust passage, and these unburned hydrocarbon HC and excess air are mixed. There is a disadvantage that the oxygen O 2 in the catalyst causes a violent exothermic reaction in the catalyst, and the catalyst temperature is rapidly raised to cause an abnormally high temperature state which is disadvantageous for the deterioration of the catalyst.
[0011]
[Means for Solving the Problems]
The fuel injection control device for an internal combustion engine according to the present invention is provided with a catalyst in an exhaust passage of the internal combustion engine, a catalyst temperature sensor capable of detecting the temperature of the catalyst, and an O2 sensor for detecting an oxygen concentration in the exhaust passage. In addition, an intake negative pressure sensor capable of detecting a load amount is provided, a fuel injection valve is provided in the intake passage of the internal combustion engine, and control means for controlling the injection amount from the fuel injection valve is provided.
[0012]
The fuel injection control apparatus for an internal combustion engine of the invention, the control means, the deceleration fuel cut condition is satisfied, and when the catalyst temperature is equal to or greater than the set value, unburned hydrocarbons flowing in the exhaust passage is reduced The fuel injection valve is controlled so that the fuel is cut after the fuel injection valve is controlled so that the stoichiometric air-fuel ratio becomes the amount of time that can eliminate the state where the unburned hydrocarbon and oxygen in the excess air coexist. It is characterized by doing.
[0013]
In the fuel injection control device for an internal combustion engine according to the present invention, the control means is configured such that when the deceleration fuel cut condition is satisfied and the load amount of the internal combustion engine is equal to or greater than a set value, the unburned fuel flowing in the exhaust passage Fuel is cut after controlling the fuel injection valve so that the stoichiometric air-fuel ratio is maintained for a time period in which hydrocarbons decrease and the state where the unburned hydrocarbons and oxygen in excess air coexist can be eliminated. The fuel injection valve is controlled.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The fuel injection control device for an internal combustion engine according to the present invention includes a catalyst, a catalyst temperature sensor, an O2 sensor, an intake negative pressure sensor, and a fuel injection valve, and includes control means for controlling an injection amount from the fuel injection valve.
[0015]
In the fuel injection control device for an internal combustion engine according to the present invention, when the deceleration fuel cut condition is established by the control means and the catalyst temperature is equal to or higher than a set value, unburned hydrocarbons flowing in the exhaust passage are reduced , By controlling the fuel injection valve so as to cut the fuel after controlling the fuel injection valve so that the stoichiometric air-fuel ratio becomes the amount of time in which it is possible to eliminate the state where the mixture of fuel hydrocarbons and oxygen in excess air is mixed In addition, it is possible to reduce unburned hydrocarbons that flow into the exhaust passage when decelerating from a high load range, and to delay the time when the exhaust passage is in an excessive air state. A mixed state can be eliminated.
[0016]
In the fuel injection control device for an internal combustion engine according to the present invention, when the deceleration fuel cut condition is satisfied by the control means and the load amount of the internal combustion engine is equal to or greater than a set value, unburned hydrocarbons flowing in the exhaust passage are The fuel injection valve is controlled so that the fuel is cut after the fuel injection valve is controlled to be at the stoichiometric air-fuel ratio for a period of time during which the unburned hydrocarbon and oxygen in the excess air can be reduced and eliminated. Therefore, the temperature of the catalyst can be estimated from the load amount of the internal combustion engine by using a sensor that detects the existing load in the fuel injection control device without providing the catalyst temperature sensor, and the deceleration from the high load range can be performed. It is possible to reduce unburned hydrocarbons that sometimes flow into the exhaust passage and to delay the time when the exhaust passage is in an excessive air state, so that the exhaust passage contains a mixture of unburned hydrocarbons and excess air. Succoth can.
[0017]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a first embodiment of the present invention. In FIG. 2, 2 is an internal combustion engine, 4 is an intake passage, 6 is an exhaust passage, 8 is an intake throttle valve, and 10 is a catalyst. The internal combustion engine 2 is provided with an intake throttle valve 8 in the intake passage 4 and a catalyst 10 for removing harmful components in the exhaust in the exhaust passage 6.
[0018]
The internal combustion engine 2 is provided with a fuel injection control device 12. The fuel injection control device 12 is provided with a fuel injection valve 14 in the intake passage 4 and control means 16 for controlling the fuel injection valve 14.
[0019]
The control means 16 includes an O 2 sensor 18 that detects the oxygen concentration in the exhaust, an engine speed sensor 20 that detects the engine speed of the internal combustion engine 2, and an intake negative pressure that detects the intake negative pressure in the intake passage 4. Sensor 22, throttle valve opening sensor 24 that detects the throttle valve opening of intake throttle valve 8, vehicle speed sensor 26 that detects the vehicle speed of a vehicle (not shown) on which internal combustion engine 2 is mounted, and catalyst of catalyst 10 A catalyst temperature sensor 28 for detecting the temperature is connected and provided. Further, the control means 16 is provided with a built-in timer 30.
[0020]
The fuel injection control device 12 inputs the oxygen concentration detected by the O 2 sensor 18 to the vehicle speed sensor 26, the engine speed, the intake negative pressure, the throttle valve opening, and the vehicle speed by the control means 16, and the air-fuel ratio is the internal combustion engine. The operation of the fuel injection valve 14 is controlled so that the target air-fuel ratio required according to the operation state 2 is obtained.
[0021]
This fuel injection control device 12 is provided with a deceleration fuel cut condition set in the control means 16. The deceleration fuel cut condition is set such that the engine speed, the intake negative pressure, the throttle valve opening, the vehicle speed, and the like in the deceleration state of the internal combustion engine 2 are set as condition values. The control means 16 determines that the deceleration fuel cut condition is satisfied when these condition values are satisfied, and controls the fuel injection valve 14 to stop the fuel injection and cut the fuel.
[0022]
The fuel injection control device 12 of the internal combustion engine 2 is operated by the control means 16 when the catalyst temperature T of the catalyst 10 detected by the catalyst temperature sensor 28 is equal to or higher than a set value Ts when the deceleration fuel cut condition of the internal combustion engine 2 is satisfied. Then, the fuel injection valve 14 is controlled so that the fuel is cut after the fuel injection valve 14 is controlled so that the stoichiometric air-fuel ratio is maintained for a predetermined time t counted by the timer 30.
[0023]
Next, the control of the first embodiment will be described with reference to FIG.
[0024]
When the control program is started by driving the internal combustion engine 2 (step 100), the fuel injection control device 12 uses the O 2 sensor 18 to the catalyst temperature sensor 28 to set the oxygen concentration as the operation state of the internal combustion engine 2 and the temperature state of the catalyst 10. The engine speed, intake negative pressure, throttle valve opening, vehicle speed, and catalyst temperature T are detected (step 102), and it is determined whether the deceleration fuel cut condition is satisfied (step 104).
[0025]
If this determination (step 104) is NO, the process returns to start (step 102). If this determination (step 104) is YES, it is determined whether or not the catalyst temperature T is equal to or higher than a set value Ts (T ≧ Ts) (step 106).
[0026]
If this determination (step 106) is NO, the fuel injection valve 14 is controlled to cut the fuel (step 116), and the end (step 118) is set. If this determination (step 106) is YES, the fuel injection valve 14 is controlled to reach the stoichiometric air-fuel ratio (step 108), the predetermined time is counted by the timer 30 (step 110), and the deceleration fuel cut condition Is determined (step 112).
[0027]
If this determination (step 112) is NO, the timer 30 is reset (step 120) and the end (step 118) is set. If this determination (step 112) is YES, it is determined whether or not a predetermined time t counted by the timer 30 has elapsed (step 114).
[0028]
If this determination (step 114) is NO, the process returns to determination (step 112). If this determination (step 114) is YES, the fuel injection valve 14 is controlled to cut the fuel (step 116), and the end (step 118) is set.
[0029]
As described above, the fuel injection control device 12 causes the timer 30 of the timer 30 to be controlled by the control means 16 when the catalyst temperature T detected by the catalyst temperature sensor 28 is equal to or higher than the set value Ts when the deceleration fuel cut condition of the internal combustion engine 2 is established. By controlling the fuel injection valve 14 so that the stoichiometric air-fuel ratio is maintained for a predetermined time t to be counted, the unburned hydrocarbon HC flowing in the exhaust passage 6 during deceleration from the high load region can be reduced.
[0030]
Further, the fuel injection control device 12 can delay the time when the exhaust passage 6 is in an excessive air state by controlling the fuel injection valve 14 to cut the fuel after a predetermined time t by the control of the stoichiometric air-fuel ratio has elapsed. it can.
[0031]
Thereby, as shown in FIG. 3, the fuel injection control device 12 is in a state in which unburned hydrocarbons HC and excess oxygen O 2 overlap in the exhaust passage 6 when decelerating from the high load region. Can be eliminated.
[0032]
For this reason, the fuel injection control device 12 of the internal combustion engine 2 can prevent the deterioration of the exhaust harmful component value at the time of deceleration from the high load range, and the unburned hydrocarbon HC and the oxygen O 2 in the excess air are the catalyst. 12 can cause a severe exothermic reaction and abruptly raise the catalyst temperature to cause an abnormally high temperature state disadvantageous to the deterioration of the catalyst 12, thereby preventing the catalyst 12 from deteriorating.
[0033]
Further, the fuel injection control device 12 controls the stoichiometric air-fuel ratio and the fuel cut to be stopped by the control means 16 when the deceleration fuel cut condition is not satisfied within a predetermined time t. The output required at the time of acceleration can be obtained.
[0034]
For this reason, this fuel injection control device 12 can prevent deterioration of drivability during acceleration after deceleration. Note that when the catalyst temperature T is less than the set value Ts (T <Ts), the catalyst 10 will not be overheated, so the fuel is cut normally.
[0035]
4 and 5 show a second embodiment of the present invention. In FIG. 5, 2 is an internal combustion engine, 4 is an intake passage, 6 is an exhaust passage, 8 is an intake throttle valve, 10 is a catalyst, 12 is a fuel injection control device, 14 is a fuel injection valve, and 16 is a control means.
[0036]
The fuel injection control device 12 of the second embodiment includes a control means 16, an O 2 sensor 18, an engine speed sensor 20, an intake negative pressure sensor 22, a throttle valve opening sensor 24, a vehicle speed sensor 26, Are connected and the catalyst temperature sensor 28 is not provided. In the fuel injection control device 12 of the second embodiment, a timer 30 is built in the control means 16.
[0037]
The fuel injection control device 12 controls the operation of the fuel injection valve 14 by the control means 16 so that the air-fuel ratio becomes the target air-fuel ratio required according to the operating state of the internal combustion engine 2. Further, the fuel injection control device 12 sets the deceleration fuel cut condition in the control means 16 as in the first embodiment, and stops the fuel injection when the deceleration fuel cut condition is satisfied and cuts the fuel. The fuel injection valve 14 is controlled.
[0038]
In the fuel injection control device 12 of the second embodiment, when the deceleration fuel cut condition of the internal combustion engine 2 is satisfied by the control means 16, if the load L of the internal combustion engine 2 is greater than or equal to the set value Ls, the timer 30 counts the predetermined value. The fuel injection valve 14 is controlled so that the fuel is cut after the fuel injection valve 14 is controlled so that the stoichiometric air-fuel ratio is reached for the time t.
[0039]
That is, the fuel injection control device 12 of the second embodiment is not provided with the catalyst temperature sensor 28 for detecting the catalyst temperature of the catalyst 12, and the engine speed sensor 20 and the intake negative pressure sensor 22 for detecting the existing load on the device. The catalyst temperature is estimated from the engine speed, intake negative pressure, throttle valve opening, and other loads of the internal combustion engine 2 using the throttle valve opening sensor 24 and the like. If the load L of the internal combustion engine 2 is such that the catalyst temperature becomes equal to or higher than the set value when established, the fuel injection is performed so that the stoichiometric air-fuel ratio is maintained for a predetermined time t counted by the timer 30. The fuel injection valve 14 is controlled so that fuel is cut after the valve 14 is controlled.
[0040]
Next, the control of the second embodiment will be described with reference to FIG.
[0041]
When the control program is started by driving the internal combustion engine 2 (step 200), the fuel injection control device 12 uses the O 2 sensor 18 to the vehicle speed sensor 26 as the operating state of the internal combustion engine 2 and the temperature state of the catalyst 10 to determine the oxygen concentration. The engine speed, intake negative pressure, throttle valve opening, and vehicle speed are detected (step 202), and it is determined whether or not a deceleration fuel cut condition is satisfied (step 204).
[0042]
If this determination (step 204) is NO, the process returns to start (step 202). When this determination (step 204) is YES, a load at which the catalyst temperature becomes equal to or higher than a set value (for example, 700 ° C.) by a signal indicating a load such as engine speed, intake negative pressure, throttle valve opening, etc. It is determined whether or not L is in a high load range that is equal to or greater than a set value Ls (L ≧ Ls) (step 206).
[0043]
If this determination (step 206) is NO, the fuel injection valve 14 is controlled to cut the fuel (step 216), and the end (step 218) is set. If this determination (step 206) is YES, the fuel injection valve 14 is controlled so that the stoichiometric air-fuel ratio is reached (step 208), the timer 30 starts counting for a predetermined time (step 210), and the deceleration fuel cut condition Is determined (step 212).
[0044]
If this determination (step 212) is NO, the timer 30 is reset (step 220) and the end (step 218) is set. If this determination (step 212) is YES, it is determined whether or not a predetermined time t counted by the timer 30 has elapsed (step 214).
[0045]
If this determination (step 214) is NO, the process returns to determination (step 212). If this determination (step 214) is YES, the fuel injection valve 14 is controlled to cut the fuel (step 216), and the end (step 218) is set.
[0046]
As described above, the fuel injection control device 12 of the second embodiment is configured so that the control means 16 causes the load L of the internal combustion engine 2 such that the catalyst temperature T becomes equal to or higher than the set value Ts when the deceleration fuel cut condition of the internal combustion engine 2 is satisfied. When the engine is in a high load range that is equal to or greater than the set value Ls, the fuel injection valve 14 is controlled so that the stoichiometric air-fuel ratio is maintained for a predetermined time t counted by the timer 30, thereby allowing the exhaust passage 6 to enter the exhaust passage 6 during deceleration from the high load range. The flowing unburned hydrocarbons HC can be reduced, and the exhaust passage 6 is in an excess air state by controlling the fuel injection valve 14 to cut the fuel after a predetermined time t by controlling the stoichiometric air-fuel ratio has elapsed. Can be delayed.
[0047]
As a result, the fuel injection control device 12 of the second embodiment performs unburned hydrocarbons HC and excess air oxygen in the exhaust passage 6 during deceleration from the high load region, as shown in FIG. It is possible to eliminate the state where O 2 overlaps and coexists, and it is possible to prevent deterioration of exhaust harmful component values when decelerating from a high load range, and the unburned hydrocarbon HC and oxygen O 2 in excess air However, it is possible to avoid the inconvenience of causing a violent exothermic reaction in the catalyst 12 and causing the catalyst temperature to be rapidly raised to cause an abnormally high temperature state that is disadvantageous to the deterioration of the catalyst 12, thereby preventing the deterioration of the catalyst 12.
[0048]
Further, the fuel injection control device 12 of the second embodiment controls the control unit 16 to stop the stoichiometric air-fuel ratio and the fuel cut when the deceleration fuel cut condition is not satisfied within the predetermined time t. Thus, an output required during acceleration after deceleration can be obtained, and deterioration of drivability during acceleration after deceleration can be prevented.
[0049]
Further, the fuel injection control device 12 of the second embodiment uses the engine speed sensor 20 or the like that detects the existing load in the fuel injection control device 12 without providing a catalyst temperature sensor. Since the temperature can be estimated, the deterioration of the catalyst 10 can be prevented by changing the program without requiring additional parts, and the cost can be reduced.
[0050]
【The invention's effect】
As described above, the fuel control device for an internal combustion engine according to the present invention can reduce unburned hydrocarbons flowing in the exhaust passage when decelerating from a high load range, and can delay the time when the exhaust passage enters an excessive air state. Internal combustion engine using a sensor that detects the existing load in the fuel injection control device without providing a catalyst temperature sensor, and can eliminate the state where unburned hydrocarbons and excess air are mixed in the exhaust passage The catalyst temperature can be estimated from the load of the engine, and the state where unburned hydrocarbons and excess air are mixed in the exhaust passage during deceleration from a high load range can be eliminated, and the output required during acceleration after deceleration can be obtained. be able to.
[0051]
For this reason, this fuel injection control device for an internal combustion engine can prevent deterioration of exhaust harmful component values when decelerating from a high load range, can prevent deterioration of the catalyst, and can be programmed without requiring additional parts. By changing the above, deterioration of the catalyst can be prevented, and the cost can be reduced, and the drivability can be prevented from deteriorating.
[Brief description of the drawings]
FIG. 1 is a flowchart of control of a fuel injection control device for an internal combustion engine according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a fuel injection control device for an internal combustion engine.
FIG. 3 is a graph showing changes in unburned hydrocarbon, oxygen, and catalyst temperature during deceleration.
FIG. 4 is a flowchart of control of a fuel injection control device for an internal combustion engine showing a second embodiment of the present invention.
FIG. 5 is a schematic configuration diagram of a fuel injection control device for an internal combustion engine.
FIG. 6 is a diagram showing changes in unburned hydrocarbon, oxygen, and catalyst temperatures during conventional deceleration.
[Explanation of symbols]
2 Internal combustion engine 4 Intake passage 6 Exhaust passage 8 Intake throttle valve 10 Catalyst 12 Fuel injection control device 14 Fuel injection valve 16 Control means 18 O 2 sensor 20 Speed sensor 22 Intake negative pressure sensor 24 Throttle valve opening sensor 26 Vehicle speed sensor 28 Catalyst temperature sensor 30 timer

Claims (2)

内燃機関の排気通路に触媒を設け、前記触媒の温度を検出可能な触媒温度センサを設け、前記排気通路中の酸素濃度を検出するO2センサを設け、前記内燃機関の負荷量を検出可能な吸気負圧センサを設け、前記内燃機関の吸気通路に燃料噴射弁を設け、前記燃料噴射弁からの噴射量を制御する制御手段を備えた内燃機関の燃料噴射制御装置において、前記制御手段は、減速燃料カット条件が成立し、かつ前記触媒温度が設定値以上の場合には、前記排気通路に流れる未燃炭化水素が減少し、前記未燃炭化水素と過剰空気の酸素とが混在する状態をなくすことが可能な時間だけ、理論空燃比になるように燃料噴射弁を制御した後に、燃料カットするように燃料噴射弁を制御することを特徴とする内燃機関の燃料噴射制御装置。Intake air capable of detecting a load amount of the internal combustion engine by providing a catalyst in an exhaust passage of the internal combustion engine, a catalyst temperature sensor capable of detecting the temperature of the catalyst, an O2 sensor detecting the oxygen concentration in the exhaust passage In a fuel injection control apparatus for an internal combustion engine, comprising a negative pressure sensor, a fuel injection valve provided in an intake passage of the internal combustion engine, and a control means for controlling an injection amount from the fuel injection valve, the control means includes a deceleration unit When the fuel cut condition is satisfied and the catalyst temperature is equal to or higher than a set value, the unburned hydrocarbon flowing in the exhaust passage is reduced , and the state where the unburned hydrocarbon and excess oxygen are mixed is eliminated. A fuel injection control device for an internal combustion engine, wherein the fuel injection valve is controlled so that the fuel is cut after the fuel injection valve is controlled so that the stoichiometric air-fuel ratio is maintained for a possible time. 内燃機関の排気通路に触媒を設け、前記触媒の温度を検出可能な触媒温度センサを設け、前記排気通路中の酸素濃度を検出するO2センサを設け、前記内燃機関の負荷量を検出可能な吸気負圧センサを設け、前記内燃機関の吸気通路に燃料噴射弁を設け、前記燃料噴射弁からの噴射量を制御する制御手段を備えた内燃機関の燃料噴射制御装置において、前記制御手段は、減速燃料カット条件が成立し、かつ前記内燃機関の負荷量が設定値以上の場合には、前記排気通路に流れる未燃炭化水素が減少し、前記未燃炭化水素と過剰空気の酸素とが混在する状態をなくすことが可能な時間だけ、理論空燃比になるように燃料噴射弁を制御した後に、燃料カットするように燃料噴射弁を制御することを特徴とする内燃機関の燃料噴射制御装置。Intake air capable of detecting a load amount of the internal combustion engine by providing a catalyst in an exhaust passage of the internal combustion engine, a catalyst temperature sensor capable of detecting the temperature of the catalyst, an O2 sensor detecting the oxygen concentration in the exhaust passage In a fuel injection control apparatus for an internal combustion engine, comprising a negative pressure sensor, a fuel injection valve provided in an intake passage of the internal combustion engine, and a control means for controlling an injection amount from the fuel injection valve, the control means includes a deceleration unit When the fuel cut condition is satisfied and the load amount of the internal combustion engine is equal to or greater than a set value, unburned hydrocarbons flowing in the exhaust passage are reduced, and the unburned hydrocarbons and excess oxygen are mixed. A fuel injection control device for an internal combustion engine, wherein the fuel injection valve is controlled so that the fuel is cut after the fuel injection valve is controlled so that the stoichiometric air-fuel ratio is maintained for a time during which the state can be eliminated .
JP06426198A 1998-02-27 1998-02-27 Fuel injection control device for internal combustion engine Expired - Fee Related JP3890730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06426198A JP3890730B2 (en) 1998-02-27 1998-02-27 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06426198A JP3890730B2 (en) 1998-02-27 1998-02-27 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11247684A JPH11247684A (en) 1999-09-14
JP3890730B2 true JP3890730B2 (en) 2007-03-07

Family

ID=13253089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06426198A Expired - Fee Related JP3890730B2 (en) 1998-02-27 1998-02-27 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3890730B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103314B2 (en) * 2000-08-09 2008-06-18 トヨタ自動車株式会社 Control device for internal combustion engine
DE10048392A1 (en) * 2000-09-29 2002-04-18 Emitec Emissionstechnologie Procedure for temperature-dependent overrun fuel cut-off
JP3702798B2 (en) * 2001-03-02 2005-10-05 三菱自動車工業株式会社 Catalyst deterioration suppressing device for internal combustion engine
CN100436790C (en) * 2001-10-19 2008-11-26 雅马哈发动机株式会社 Fuel cut controll method
JP2005337171A (en) * 2004-05-28 2005-12-08 Toyota Motor Corp Engine electronic control device and vehicle having the same mounted thereon

Also Published As

Publication number Publication date
JPH11247684A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
EP2188510B1 (en) Control apparatus for internal combustion engine
US8464522B2 (en) Control apparatus for internal combustion engine
US7249453B2 (en) Control device for an internal combustion engine
CN112005002B (en) Method and device for controlling internal combustion engine
US7757480B2 (en) Air-fuel ratio control apparatus of internal combustion engine
JP2008082292A (en) Exhaust emission control device
EP1515017B1 (en) Catalyst control apparatus of internal combustion engine
JP4003768B2 (en) Exhaust gas purification system for internal combustion engine
JP3890730B2 (en) Fuel injection control device for internal combustion engine
WO2012049916A1 (en) Exhaust gas recirculation control device for internal combustion engine
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JPH0674765B2 (en) Air-fuel ratio control method for internal combustion engine
JP4026576B2 (en) Exhaust gas purification system for internal combustion engine
US6835357B2 (en) Exhaust emission control system for internal combustion engine
JP4325264B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007077913A (en) Fuel injection control device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP2010138791A (en) Air-fuel ratio control device
JP4225168B2 (en) Vehicle control device
JP2007056712A (en) Control device of internal combustion engine
JP4356249B2 (en) Exhaust gas purification device for internal combustion engine
JPH09217642A (en) Control device of internal combustion engine
JP4363193B2 (en) Fuel injection control device for internal combustion engine
JP4103334B2 (en) Air-fuel ratio control device for internal combustion engine
JP2005351108A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees