JPS5933669B2 - Iron-chromium damping alloy with hardened surface layer - Google Patents

Iron-chromium damping alloy with hardened surface layer

Info

Publication number
JPS5933669B2
JPS5933669B2 JP4298876A JP4298876A JPS5933669B2 JP S5933669 B2 JPS5933669 B2 JP S5933669B2 JP 4298876 A JP4298876 A JP 4298876A JP 4298876 A JP4298876 A JP 4298876A JP S5933669 B2 JPS5933669 B2 JP S5933669B2
Authority
JP
Japan
Prior art keywords
alloy
chromium
iron
vibration damping
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4298876A
Other languages
Japanese (ja)
Other versions
JPS52125423A (en
Inventor
靖 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4298876A priority Critical patent/JPS5933669B2/en
Publication of JPS52125423A publication Critical patent/JPS52125423A/en
Publication of JPS5933669B2 publication Critical patent/JPS5933669B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明にかかる制振合金は、該合金が保有する振動減衰
能を損なうことなく耐摩耗性を増大させるために、合金
部材全表面積の80%以内の範囲に、浸炭、金属メッキ
、金属またはセラミック溶射、金属拡散浸透処理法のい
ずれかにより表面硬化層を形成させた鉄一クロム系制振
合金である。
DETAILED DESCRIPTION OF THE INVENTION The damping alloy according to the present invention is carburized within 80% of the total surface area of the alloy member in order to increase wear resistance without impairing the vibration damping ability of the alloy. It is an iron-chromium vibration damping alloy with a surface hardening layer formed by metal plating, metal or ceramic spraying, or metal diffusion infiltration treatment.

近年、産業機械から発生する騒音、振動の低減対策の一
助として、振動減衰能の高い金属材料、たとえば鉄一ク
ロムを主合金成分とするフェライト系の磁壁移動型制振
合金が使用されている。しかし、これら合金の実用状態
における硬さは概ねHv150程度で、耐摩耗性が要求
される用途には適しない。このため、何らかの耐摩耗性
向上手段を講する必要がある。金属の耐摩耗性向上手段
として種々の表面硬化処理法が実用されているが、振動
減衰能が犠牲になることは好ましくない。
In recent years, metallic materials with high vibration damping ability, such as ferrite-based domain wall displacement vibration damping alloys whose main alloy components are iron-chromium, have been used to help reduce noise and vibration generated from industrial machinery. However, the hardness of these alloys in practical use is approximately Hv150, making them unsuitable for applications requiring wear resistance. For this reason, it is necessary to take some measure to improve wear resistance. Although various surface hardening treatment methods have been put into practice as means for improving the wear resistance of metals, it is undesirable to sacrifice vibration damping ability.

この点から表面硬化処理が振動減衰能におよぼす影響を
実験により調査したところ、合金部材全表面積の80%
以内の範囲を表面硬化処理するならば、振動減衰能はさ
ほど減退しないことが確認できた。この実験結果にもと
づいて、本発明者はさきに軟窒化処理により、合金部材
全表面積の80%以内の範囲に表面硬化層を形成させた
鉄−クロム系磁壁移動型制振合金部材を特許出願(特願
昭50−117481号)した。
From this point of view, when we conducted an experiment to investigate the effect of surface hardening on the vibration damping ability, we found that 80% of the total surface area of the alloy member
It was confirmed that if the surface hardening treatment is performed within the range below, the vibration damping ability does not decrease significantly. Based on the results of this experiment, the inventor filed a patent application for an iron-chromium magnetic domain wall displacement damping alloy member in which a hardened surface layer was formed within 80% of the total surface area of the alloy member through soft nitriding treatment. (Patent Application No. 117481/1981).

その後、表面硬化層形成手段として、他の手段適用の可
否を実験により調べたところ、浸炭、金属メッキ、金属
またはセラミック溶射、金属拡散浸透などによる表面硬
化処理が有効であることを確認した。尚、前記の金属拡
散浸透処理法とは、主として金属元素を拡散被覆する処
理方法で、浸透させる元素は、Cr、Si、B、Mo、
W、V、Be、Ti、Ta、Al、Zn等であり、窒化
処理はこれに含まれない。
Thereafter, we conducted experiments to determine whether other methods could be used to form a hardened surface layer, and it was confirmed that surface hardening treatments such as carburizing, metal plating, metal or ceramic spraying, and metal diffusion penetration were effective. The above-mentioned metal diffusion infiltration treatment method is a treatment method in which a metal element is mainly diffused and coated, and the elements to be infiltrated include Cr, Si, B, Mo,
W, V, Be, Ti, Ta, Al, Zn, etc., and nitriding is not included.

本発明にかかる制振合金部材の合金組成は鉄−クロム系
で、その具体例はつぎのとおりである。(ハ 基本成分
:C:0.1%以下、Si:4.5%以下、Mn:3.
0%以下、Cr:5〜35%、Co:30%以下、Al
:8%以下、(ただし、51とAlは単独または複合金
有させる)、残余Feおよび不純物。
The alloy composition of the damping alloy member according to the present invention is iron-chromium based, and specific examples thereof are as follows. (C) Basic components: C: 0.1% or less, Si: 4.5% or less, Mn: 3.
0% or less, Cr: 5-35%, Co: 30% or less, Al
: 8% or less (however, 51 and Al are used alone or in combination), residual Fe and impurities.

(2)上記成分よりなる合金部材の制振効果助長成分:
V:0.05〜3.0%、Mo:0.05〜5.0%、
Nbまたは/およびTa:0.05〜2.0%のいづれ
か1種または2種以上(合計量で0.05〜6.0%)
(2) Ingredients that promote the damping effect of alloy members consisting of the above components:
V: 0.05-3.0%, Mo: 0.05-5.0%,
Nb or/and Ta: one or more of 0.05 to 2.0% (total amount 0.05 to 6.0%)
.

(3)(ハ、または(1)と(2)よりなる合金部材の
被削性改善成分:S:0.05〜0.20%、Pb:0
.03〜0.30%、Be:0.03〜0.20%、T
e:0.01〜0.20%、Bi:0.03〜0.30
%、Ca:0.001〜0.030%のいづれか1種ま
たは2種以上。
(3) (C) or machinability improving components of alloy members consisting of (1) and (2): S: 0.05-0.20%, Pb: 0
.. 03-0.30%, Be: 0.03-0.20%, T
e: 0.01-0.20%, Bi: 0.03-0.30
%, Ca: one or more of 0.001 to 0.030%.

本発明合金部材の合金元素およびその含有量の数値限定
の理由を説明する。
The reason for numerically limiting the alloying elements and their content in the alloy member of the present invention will be explained.

(イ)C:強度増大のために加えるが、制振効果を損な
わないためには0.10%までの範囲が適量である。
(a) C: Added to increase strength, but the appropriate amount is up to 0.10% so as not to impair the damping effect.

(ロ)S1 :溶解精錬時の脱酸剤としての作用効果の
ほか合金自体の最大透磁率を高め、制振効果の助長に有
効であるが、多量の添加は塑性加工性、靭性を害するか
ら4.5%までの範囲が適量である。
(b) S1: In addition to acting as a deoxidizing agent during melting and refining, it increases the maximum magnetic permeability of the alloy itself and is effective in promoting vibration damping effects, but adding a large amount will impair plastic workability and toughness. A range of up to 4.5% is suitable.

(ハ)Mn:溶解精錬時の脱硫脱酸剤としての作用効果
のほか、合金自体の熱間加工性助長に有効であるから、
3.0%までの範囲で含有させる。
(c) Mn: In addition to acting as a desulfurization deoxidizer during melting and refining, Mn is effective in promoting hot workability of the alloy itself.
Contain up to 3.0%.

(ニ)Cr:フエライト安定化と制振効果の確保のため
の必須元素であるから、5〜35%の範囲で含有させる
。とくに好ましい範囲は10〜26%である。(ホ)C
O:Fe−Cr系磁壁移動型匍腺合金において、COを
添加すると磁歪の増大、950℃以下の焼なまし処理で
フエライトの安定化に有効であるから30%までの範囲
で適量添加することが望ましい。
(d) Cr: Since it is an essential element for stabilizing ferrite and ensuring a damping effect, it is contained in a range of 5 to 35%. A particularly preferred range is 10 to 26%. (e)C
O: In the Fe-Cr domain wall displacement type alloy, the addition of CO increases magnetostriction and is effective in stabilizing ferrite during annealing at 950°C or less, so it should be added in an appropriate amount within the range of 30%. is desirable.

(へ)Al:溶解精錬時の脱酸剤としての作用効果とと
もに、フエライトの安定化と制振効果の助長に有効であ
り、塑性加工性、磁歪特性に支障ない範囲は8.0%ま
での範囲である。
(f) Al: In addition to acting as a deoxidizing agent during melting and refining, it is effective in stabilizing ferrite and promoting vibration damping effects, and the range that does not affect plastic workability and magnetostriction properties is up to 8.0%. range.

なお、SiIAlの添加効果による作用効果はほぼ類似
しているから、いずれか一方または両者を含有させる。
(卜) V:0.05〜3.0%、 MO:0.
05〜5.0%、Nbまたは/およびTa:0.05〜
2.0%:磁歪増大、制振効果助長、耐食性の改善など
の作用効果が期待できるから、いづれか1種または2種
以上(合計量で0.05〜6.0%)含有させる。
Note that since the effects of adding SiIAl are almost similar, either one or both of them are included.
(卜) V: 0.05-3.0%, MO: 0.
05-5.0%, Nb or/and Ta: 0.05-5.0%
2.0%: One or more types (0.05 to 6.0% in total) are included because effects such as increased magnetostriction, promotion of damping effect, and improved corrosion resistance can be expected.

(f) S:0.05〜0.20%、Pb:0.03〜
0.30%、Se:0.03〜0.20%、Te:0.
01〜0.20%、Bi:0.03〜0.30%、Ca
:0.001〜0.030%:本発明合金部材の制振効
果、塑性加工性、強度などを損なわないで被削性改善の
ために、上記範囲内で少なくとも1種以上含有させる。
(f) S: 0.05~0.20%, Pb: 0.03~
0.30%, Se: 0.03-0.20%, Te: 0.
01-0.20%, Bi: 0.03-0.30%, Ca
: 0.001 to 0.030%: At least one element within the above range is included in order to improve machinability without impairing the vibration damping effect, plastic workability, strength, etc. of the alloy member of the present invention.

前記合金組成からなる本発明合金部材はあらかじめ80
0℃以上の温度領域で焼なまし処理を行ない、つぎに該
合金部材全表面積の80%以内の範囲に表面硬化層を形
成させる。以下、実施例をもつて具体的に説明する。
The alloy member of the present invention having the above-mentioned alloy composition was prepared in advance by 80%
Annealing is performed in a temperature range of 0° C. or higher, and then a surface hardening layer is formed within 80% of the total surface area of the alloy member. Hereinafter, the present invention will be specifically explained using examples.

実施例 1: 浸炭法により表面硬化層を形成した場合 第1表記載の化学成分からなる供試材(10mm径X2
5OmlL長)を850供CX1hr炉冷による焼なま
し処理後、酸洗法により表面肌を清浄化し、ついで所定
部分をあらかじめ浸炭防止処理(例えば、銅メツキ)を
施し、プロパン変成ガスに少量の都市ガスを加えた混合
ガスを使用して900℃×6hr加熱保持するガス浸炭
を行ない、ついで100℃焼入れ、750℃焼もどし処
理した。
Example 1: When a surface hardening layer is formed by carburizing method A test material (10 mm diameter x 2
After annealing the 50ml length) using 850 CX 1hr furnace cooling, the surface skin is cleaned by pickling, and then predetermined areas are treated to prevent carburization (e.g., copper plating). Gas carburizing was performed using a mixed gas to which gas was added, heating and holding at 900°C for 6 hours, followed by quenching at 100°C and tempering at 750°C.

なお、供試材SC−1は未浸炭材、SC−2ないしSC
−4は試料の一端より該当表面積だけ浸炭処理した。S
C−5は全表面浸炭処理材、SC−6は試料の一端から
25W!l間隔で交互に浸炭層、浸炭防止層を形成した
試料である。つぎに、これらの供試材を自由振動状態に
維持し、一定の打撃力を加えて振動を与え、その振動減
衰状況をシンクロスコープで観察した結果を第1図に示
す。
In addition, the sample material SC-1 is an uncarburized material, SC-2 or SC
-4 was carburized by the corresponding surface area from one end of the sample. S
C-5 is a fully surface carburized material, SC-6 is 25W from one end of the sample! This is a sample in which carburized layers and carburization prevention layers were formed alternately at intervals of l. Next, these test materials were maintained in a free vibration state, and a constant impact force was applied to give them vibration, and the vibration damping state was observed using a synchroscope. The results are shown in FIG.

浸炭面積率と制振効果との関係を示す第2図によれば、
浸炭面積率が全表面積の80%以内であれば制振効果は
ほとんど損なわれず、浸炭による制振効果への影響は少
ないことがわかつた。実施例 2: 金属メツキ、金属溶射、金属拡散浸透法により表面硬化
層を形成した場合第2表記載の化学成分からなる供試材
(101W!径×250mm長)を850るCX1hr
P冷による焼なまし処理後、酸洗法により表面肌を清浄
化し、ついで、第3表に示す手段により表面硬化層を形
成した場合の振動減衰状況を実施例1と同様な方法で測
定した結果を第3,4および5図に示す。
According to Figure 2, which shows the relationship between carburized area ratio and vibration damping effect,
It was found that if the carburized area ratio was within 80% of the total surface area, the damping effect was hardly impaired, and carburization had little effect on the damping effect. Example 2: When a hardened surface layer is formed by metal plating, metal spraying, or metal diffusion infiltration method A test material (101 W! diameter x 250 mm length) consisting of the chemical components listed in Table 2 was heated at 850 CX1 hr.
After annealing by P cooling, the surface skin was cleaned by pickling, and then a hardened surface layer was formed by the means shown in Table 3. The vibration damping condition was measured in the same manner as in Example 1. The results are shown in Figures 3, 4 and 5.

同図に示す測定結果から表面硬化層の面積率が増すにし
たがつて振動減衰能が若干損なわれることがわかる。し
かし75%以内ならばその影響は比較的小さいことが第
6図に示す制振効果の減退傾向を示す曲線から理解でき
る。
The measurement results shown in the figure show that as the area ratio of the surface hardening layer increases, the vibration damping ability is slightly impaired. However, if it is within 75%, the effect is relatively small, as can be seen from the curve shown in FIG. 6 showing the decreasing tendency of the damping effect.

以上のとおり、本発明は鉄−クロムを主合金成分とする
フエライト系磁壁移動型制振合金本来の制振効果をほと
んど損なうことなく、耐摩耗性を改善するために表面硬
化層を形成させる場合、その面積率は如何ほどまで許容
できるかという知見から出発したもので、ほぼ80%以
内であることがわかつた。
As described above, the present invention provides a case in which a hardened surface layer is formed in order to improve wear resistance without substantially impairing the original vibration damping effect of a ferrite domain wall displacement damping alloy whose main alloy components are iron and chromium. This was started from the knowledge of how much the area ratio can be tolerated, and it was found that it is approximately within 80%.

したがつて、耐摩耗性が要求される制振合金部材の全表
面積は、要求面製の1.25倍以上になるように調整す
ることが望ましい。なお、表面硬化処理した制振合金部
材の耐摩耗性試験結果によると、前記処理法のうち、金
属溶射法による場合が最も優れていることを確認してい
る。
Therefore, it is desirable that the total surface area of a damping alloy member required to have wear resistance is adjusted to be at least 1.25 times the required surface area. According to the results of wear resistance tests of surface-hardened damping alloy members, it has been confirmed that among the above-mentioned treatment methods, the metal spraying method is the most excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2,3および4図は浸炭、硬質クロムメツキ、金
属溶射およびボロナイジング処理した合金部材の振動減
衰状況を示す図、第5および6図は上記処理した合金部
材の制振効果の減退傾向と処理面積率との関係を示す図
である。
Figures 1, 2, 3, and 4 are diagrams showing the vibration damping status of alloy members treated with carburizing, hard chrome plating, metal spraying, and boronizing, and Figures 5 and 6 are diagrams showing the tendency of the damping effect of alloy members treated as described above to decrease. It is a figure showing the relationship with a processing area rate.

Claims (1)

【特許請求の範囲】[Claims] 1 合金部材全表面積の80%以内の範囲に、浸炭、金
属メッキ、金属またはセラミック溶射、金属拡散浸透処
理法のいずれかによつて表面硬化層を形成させることに
より、実用上充分な耐摩耗性および振動減衰能を付与し
たことを特徴とする鉄−クロム系制振合金。
1 By forming a surface hardening layer within 80% of the total surface area of the alloy member by carburizing, metal plating, metal or ceramic spraying, or metal diffusion penetration treatment, sufficient wear resistance for practical use can be achieved. and an iron-chromium vibration damping alloy characterized by being imparted with vibration damping ability.
JP4298876A 1976-04-15 1976-04-15 Iron-chromium damping alloy with hardened surface layer Expired JPS5933669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4298876A JPS5933669B2 (en) 1976-04-15 1976-04-15 Iron-chromium damping alloy with hardened surface layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4298876A JPS5933669B2 (en) 1976-04-15 1976-04-15 Iron-chromium damping alloy with hardened surface layer

Publications (2)

Publication Number Publication Date
JPS52125423A JPS52125423A (en) 1977-10-21
JPS5933669B2 true JPS5933669B2 (en) 1984-08-17

Family

ID=12651402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4298876A Expired JPS5933669B2 (en) 1976-04-15 1976-04-15 Iron-chromium damping alloy with hardened surface layer

Country Status (1)

Country Link
JP (1) JPS5933669B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2589555B2 (en) * 1988-10-05 1997-03-12 三菱製鋼 株式会社 Damping material
CN103397271B (en) * 2013-08-08 2015-08-05 常熟市东方特种金属材料厂 Ferromagnetic type Damping Alloys

Also Published As

Publication number Publication date
JPS52125423A (en) 1977-10-21

Similar Documents

Publication Publication Date Title
JP3421265B2 (en) Metastable austenitic stainless steel sheet for continuously variable transmission belt and method of manufacturing the same
JP3588826B2 (en) Heat treatment method for high nitrogen containing stainless steel
JPS6140750B2 (en)
JPH0559488A (en) Precipitation hardening type high strength steel for soft-nitriding excellent in machinability
JP2906996B2 (en) Method for producing nitrided steel member excellent in cold forgeability and fatigue characteristics
JPS5933669B2 (en) Iron-chromium damping alloy with hardened surface layer
JPH0593245A (en) High-strength nonmagnetic stainless steel
JP5999751B2 (en) Manufacturing method of ferrous materials
JPS5916948A (en) Soft-nitriding steel
JP3471576B2 (en) Surface high hardness, high corrosion resistance, high toughness martensitic stainless steel
JPH0447023B2 (en)
JP2885061B2 (en) Method for producing nitrided steel member excellent in fatigue characteristics
JP3887912B2 (en) High corrosion resistance and long life stainless steel with excellent cold plastic workability
JPS5811764A (en) Case hardening boron steel or small heat treatment strain
JP2952318B2 (en) High strength steel for induction hardening
JP7196707B2 (en) Forged member for nitriding and its manufacturing method, and surface hardened forged member and its manufacturing method
JPH0280539A (en) Steel for nitriding
JP7408331B2 (en) Case-hardened steel for mechanical structures with excellent tooth surface fatigue strength on carburized surfaces, and mechanical structural parts using the case-hardened steel
JPH06228734A (en) Production of steel for clutch diaphragm spring
JPH04297550A (en) Delayed fracture resistant carburizing steel and its manufacture
JPS626614B2 (en)
KR0147719B1 (en) Method for manufacturing high-strength ni-cr-v steel material for conveyor chain
JPH0137472B2 (en)
JPS63216950A (en) Low alloy steel for soft nitriding
JPH0759737B2 (en) High toughness high carbon thin steel plate