JPS5932742A - Heat accumulating type heating apparatus and heating method thereby - Google Patents
Heat accumulating type heating apparatus and heating method therebyInfo
- Publication number
- JPS5932742A JPS5932742A JP57139955A JP13995582A JPS5932742A JP S5932742 A JPS5932742 A JP S5932742A JP 57139955 A JP57139955 A JP 57139955A JP 13995582 A JP13995582 A JP 13995582A JP S5932742 A JPS5932742 A JP S5932742A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- air
- box
- chambers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S60/00—Arrangements for storing heat collected by solar heat collectors
- F24S60/10—Arrangements for storing heat collected by solar heat collectors using latent heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Heating Systems (AREA)
Abstract
Description
【発明の詳細な説明】
本発明(・ま、夏期−11こは中間期のありあ提る太陽
熱を冬期の暖房熱源とするコンパクトi蓄熱暖房機vc
関する。Detailed Description of the Invention The present invention (・Compact i thermal storage heater VC that uses solar heat during the summer period as a heating heat source during the winter period)
related.
冬期の暖房給湯熱源として夏期寸たは中間期のありあま
る太陽熱全利用できるようvr−することが真の省エネ
ルギー暖房ということができる。不発明の目的はこの理
想全達成することであり、かつこれ全コンパクトな1つ
の機器として構成すると同時iccの機器+c、l:る
暖房運転が負荷VC応じて適宜制御できるようにするこ
とである。True energy-saving heating can be achieved by using VR as a heat source for heating and hot water in the winter so that all the solar heat available in the summer or mid-season can be utilized. The purpose of the invention is to achieve this ideal, and also to configure all of this as one compact device so that the heating operation of the ICC devices can be controlled appropriately according to the load VC. .
この目的において本発明・汀、1つのボックス内に、空
気式太陽熱集熱器と、潜熱蓄熱槽と、この両者またに1
方に空気が切換可能に循環するようにした空気路と、全
配置し、この潜熱蓄熱槽が使用温度て相変化可能な物質
を封入し1ζ缶体の集合体で構成されている蓄熱暖房装
埴全提供するものである。For this purpose, the present invention provides an air-type solar collector and a latent heat storage tank in one box.
A thermal storage heating system consisting of an air passage through which air can be circulated in one direction, and a collection of 1ζ can bodies arranged entirely in a latent heat storage tank filled with a substance that can change its phase at the operating temperature. This is what Hanzen offers.
以下尼図面に従って本発明の蓄熱暖房装置の細部構成を
具体的に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The detailed configuration of the thermal storage heating device of the present invention will be specifically explained below with reference to the drawings.
第1図は、縦長の長方体形状の外観メイ〕シフこ本発明
装置の全体図であり、この長刀体ボツクース中に、第2
〜7図Fついて以下に述べる91:うに、空気式太陽熱
集熱機A、a熱蓄熱槽■3、並びにこれら全連結する空
気路が配設されている1、第2図は、第1図の■−II
′線矢視断面全示し1こものであるが、縦長の長方体ボ
ックスの1つの垂直面l/7:空気式太陽熱集熱器Δ(
以後、中Vζ集熱器Δと呼ぶことがある)がその集熱面
がボックス表面となるように設itされ、この集熱器A
の背面のホ7 クス内VCVii’lJ 熱sv1.槽
゛Bが設置′19.3れrv、る3、この蓄熱槽I3に
、後に詳述するように、使用温度で相変化可能な物質全
封入し1c特殊形状の缶体全特殊形態で多数果合(〜1
こものである。FIG. 1 is an overall view of the device of the present invention, which has a vertical rectangular shape.
Figures 1 and 2 are as shown in Figure 1. ■-II
The whole cross-section shown by the line ' is 1, but one vertical plane of the vertically long rectangular box is 1/7: pneumatic solar collector Δ(
Hereinafter, a medium Vζ heat collector Δ) is installed so that its heat collecting surface becomes the box surface, and this heat collector A
VCVii'lJ heat sv1. Tank B is installed '19.3 RV, Ru 3, As will be detailed later, this heat storage tank I3 is filled with substances that can change phase at the operating temperature. Kaai (~1
It's a small thing.
ボックスの天井部にに、集熱器Aの空気連絡用チA・ン
バ−1ど蓄熱槽Bの空気循環回路用のチャンバー2が設
けられている。このチャンバー1と2の平面的な配置に
第4図(第1図のIV矢視断面)に示してあり、チャン
バー1は18と1b1チヤンバー2に2a〜2dとから
なっている。11こ、集熱器Aと蓄熱槽13の平面配置
に第5図(第1図の■矢視断面)lK−示しである。一
方、この集熱器Aと蓄熱槽■3の下部にも、集熱器への
空気連絡用チャンバー6と蓄熱槽Bの空気循環用のチャ
ンバー4が設けられており、これらの平面的な配置は第
6図(第1図のVl矢祝断面)VC示されてお弘チA′
ンバー3[3aど3b、チャンバー41d 4a 〜4
(]からなっている。そして、この下部チャンバー=の
下方vcけ機械室5が設けられていて、送風機6、流路
切換ダンパ7〜10が第7図(第1図のVll矢視断面
)tl′C示−J−、J:うな配置で設置されている。A chamber 2 for air communication of the heat collector A and a chamber 1 for the air circulation circuit of the heat storage tank B are provided on the ceiling of the box. The planar arrangement of the chambers 1 and 2 is shown in FIG. 4 (cross section taken along the IV arrow in FIG. 1), and the chamber 1 consists of 18, 1b1, chamber 2, and 2a to 2d. 11, the planar arrangement of the heat collector A and the heat storage tank 13 is shown in FIG. On the other hand, a chamber 6 for air communication to the heat collector and a chamber 4 for air circulation in the heat storage tank B are also provided at the bottom of the heat collector A and the heat storage tank 3. Figure 6 (Vl arrow cross section of Figure 1) VC is shown and Hirochi A'
Chamber 3 [3a and 3b, chamber 41d 4a ~ 4
( ). This lower chamber = lower Vc machine room 5 is provided, and a blower 6 and flow path switching dampers 7 to 10 are installed in FIG. 7 (cross section taken along the Vll arrow in FIG. 1) tl'C-J-, J: Installed in a vertical arrangement.
下部チーVンバーの3a、31)は機械室5のチャ/バ
ー3a、3bと連通している。The lower chambers 3a, 31) communicate with chambers 3a, 3b of the machine room 5.
図示の例において、集熱器Aは同じユニソl−ヲA1と
A、の2個並置した例が示されており、斗lこ蓄熱槽B
は、縦方向に長く延びた長刀体からなる空気通路分8個
並設し、各空気通路に後述の蓄熱5ユニツトが積層され
た例が示されている。本例の空気の流れについて説明す
ると、1ず、集熱器Aて集熱し/こ空気ケ蓄熱槽1−3
1fc循環きせる蓄熱運転VCおいては、ダンパ7およ
び9ケ開、ダンパ8および10を閉Fして送風機6仁駆
動する。これVC,1:す、機械室のチャンバー6Fl
から集熱器A、VC空気が上向きに入り、−1一部のチ
ャンバーiaから11〕に連絡12″′U集熱器A2の
側+/C下向きに入って下降したあと、第6図の下部チ
ャンバー5bから、次に蓄熱槽の十一部児、ヤンバー4
dv′C入る。この工うtでして集熱器A1どA2を通
過[〜で加熱され1こ空気は蓄熱槽Bの側(L入るが、
この蓄熱4* B vま先ボのようVC縦長の相互に独
立し1ζ室(第5図のイ〜チ)VC蓄熱器ユニントが積
層されており、まず、該下部チーヤンバー4dカ)ら第
5図q)イ室に入る。In the illustrated example, two heat collectors A, A1 and A, of the same type are placed side by side, and one heat collector A is the same as the other heat storage tank B.
In this example, eight air passages each consisting of a long sword body extending in the vertical direction are arranged in parallel, and five heat storage units, which will be described later, are stacked in each air passage. To explain the flow of air in this example, first, heat is collected by the heat collector A/heat storage tank 1-3.
In heat storage operation VC with 1 fc circulation, dampers 7 and 9 are opened, dampers 8 and 10 are closed, and 6 blowers are driven. This VC, 1: Machine room chamber 6Fl
From collector A, VC air enters upwards and connects -1 from some chambers ia to 11] 12'''U side of heat collector A2 +/C After entering downwards and descending, the air in Fig. 6 From the lower chamber 5b, the eleventh child of the heat storage tank, Yanbar 4
Enter dv'C. In this process, the air passes through the heat collectors A1 and A2 [...] and the air enters the heat storage tank B side (L,
This heat storage 4* Bv vertically long VC heat storage units (1 to 1 in Fig. 5) are stacked independently from each other, and first, from the lower chamber 4d) to the 5th VC heat storage unit. Figure q) Enter room A.
ぞし−ここのイ室全1−昇し1こあと−1一部チ〜ヤン
バー2cF入り、この2cから次に室D [下降する。- All chambers A here - 1 - Ascend 1 column - 1 part chamber - Enter 2cF, then from this 2c to chamber D [Descend.
0室全上−降し1こあと下部チャフ バー4b VCよ
ってハ室VC連絡し、ハ室全上昇して−に部チA゛ンバ
ー2a lfC入り、この2aから二室に入るといつけ
l’−y(1で−室(下1”Y−1→4a−+ボ室しE
−1′4 ) −ト2b −+−,室(下14 )
→4 C−) l−室 (−1−昇)→2(↓ →
チー室(1・薯可 ) の順Vこ流れ、最初に・下室に
人つfこ空気は仝−〇〇室イ〜チ(i−通過して最終室
チに一ト降り、、−C(る。これによって、集熱器A−
C加熱7Σれ7こイと′シリ・ま蓄熱槽B V(おいて
その熱を蓄熱物質VcJXjえる。最終のチ室を1:降
しjζ空気に、開成している夕゛ンハ9 fx−経て(
幾械室に入り、送風機乙によって再び前記同様に再循環
される。この空気循環系統は、図解的に示[また第3図
VCより、よりj:ぐ理解されるであろう。Chamber 0 goes all the way up and goes down one step, lower chaff bar 4b VC connects chamber A with VC, chamber H goes up all the way and enters chamber A in chamber 2a lfC, and when it enters chamber 2 from this 2a, it is l' -y (1 to - chamber (lower 1" Y-1 → 4a-+bo chamber E
-1'4) -to2b -+-, chamber (lower 14)
→4 C-) l-chamber (-1-rise) →2(↓ →
The air flows through the Qi room (1・薯可) in the order of V, and first, there are people in the lower room. C (ru. By this, the heat collector A-
C Heating 7 Σ Re 7 This is done in the heat storage tank B V (and the heat is stored in the heat storage material VcJXj. Through(
It enters the machine room and is recirculated again in the same manner as above by the blower B. This air circulation system is illustrated diagrammatically and will be better understood from FIG.
次に、この蓄熱暖房機の放熱運転、つ−まり蓄熱槽Bに
蓄熱された熱全負荷(第6図の13)VC放熱する場合
の空気路について説明すると、ダンパ7と9全閉、ダン
パ8.10.11全開にして送風機6を、(駆動1−る
。これ茫」:す、負荷16カ・ら流入口12全経て機械
室に人つlこ空気は送風機61/il:より直接蓄熱槽
の室イに入り、前記1iiJ様に#熱槽内を一循して流
出〔J14刀・ら負荷13Vc流れ、再びこの蓄熱暖房
磯沼戻Q循環紮ぐ0返−T。なお、ダンパ7全開、ダン
X10金閉vcすjj−は集熱器→蓄熱槽→負荷→集熱
器の回路も可能である。Next, we will explain the air passage when the heat dissipation operation of this heat storage heater is performed, that is, the full load of heat stored in the heat storage tank B (13 in Figure 6) VC heat is dissipated. 8.10.11 Fully open the blower 6, (drive 1.), the load 16, and the inlet 12 all the way to the machine room. It enters the chamber of the heat storage tank, circulates inside the heat tank as described above, and flows out. 7 fully open, DAN
r−のJ二つVこして、不発UJ1の蓄該制し191機
1・′:↓、1つのボックスV」l/L′X空気式太陽
熱集熱d、=Aと、潜熱蓄熱槽■3と、このAと13の
1方丑5fこは両者VC空気が切換可能VC循環する工
つVC[,11こ空気路全配置し7こ描成全有するもの
であり、モーしてこの潜熱音熱槽が使用温度て相変化可
能な物質全封入し10缶体の集合体で構成されtいるこ
とに大きな特徴がある、[ソ、下にこの潜熱蓄熱槽の細
部構成について詳述する。r- J two V, storage of unexploded UJ1 191 aircraft 1': ↓, one box V'l/L'X pneumatic solar heat collection d, = A, latent heat storage tank ■ 3, this A and 13 have 1 side and 5 f, both of which have a switchable VC circulation system, VC [, 11 air passages are all arranged and 7 are drawn, and this latent heat sound is A major feature of the heat tank is that it is composed of an assembly of 10 cans, all of which contain substances that can change their phase at the operating temperature.The detailed structure of this latent heat storage tank will be described in detail below.
物質のi′−&1:解丑たに凝固のさいの潜熱を利用し
てIi:熱装置it ”c構成すると、単位体積当りの
蓄熱器を多く1−ることかできるのでイJ−不1Jft
面がある。このような蓄熱装置は密閉容器内1/i:蓄
熱物質を封入(−1その容器壁全通じて水や空気などの
熱媒流体と熱交換するようvL−するのが通常である。By using the latent heat during solidification of the substance i'-&1: to disintegrate it and composing the thermal device it'c, it is possible to create a large number of heat storage units per unit volume, so it is possible to
There is a side. In such a heat storage device, a heat storage material is usually enclosed in a closed container (1/i) so that the entire wall of the container can be used to exchange heat with a heat medium fluid such as water or air.
このような相変態ケ利用して蓄熱する場合の蓄熱物質と
しては、各種の水和塩例えばCaC46i120. N
a、、、80410H20や、Na、、 S203・5
H20、あるいは含水リン酸塩混合物例えばNa2HP
04−NaH,、PO2−KH2PO4−I(20、あ
るいはY’+幾化金化合物ばエチレンジアミ/等、ある
いは油脂類例えばパラフィン等が提案されている。これ
らの物質の融点にそれぞれ異なるが受熱温度の相違lこ
応して適切な融点の物質を選定し、これを密閉容器内に
封入して潜熱の形態で蓄熱すれば単位体積当り多大の蓄
熱を行なうことができ、放熱と蓄熱を何回もくり返すこ
とができる。一般(で、このような潜熱蓄熱体は、同じ
熱1’a”e蓄熱する場合范、重量比で水の115、岩
石の1/25であり、容積比でに水の1/8、岩石の1
/17程度であると言われている。As heat storage materials for storing heat by utilizing such phase transformation, various hydrated salts such as CaC46i120. N
a,,,80410H20,Na,,S203・5
H20, or a hydrous phosphate mixture such as Na2HP
04-NaH,, PO2-KH2PO4-I (20, or Y'+ trichrome compounds such as ethylenediamine/etc., or oils and fats such as paraffin etc. have been proposed.The melting points of these substances differ, but depending on the heat receiving temperature Therefore, by selecting a substance with an appropriate melting point, sealing it in a sealed container, and storing heat in the form of latent heat, a large amount of heat can be stored per unit volume, and heat can be released and stored many times. This can be repeated.In general, if such a latent heat storage body stores the same amount of heat, the weight ratio is 115 of water and 1/25 of rock, and the volume ratio of water is 1/25. 1/8 of the rock, 1 of the rock
It is said to be about /17.
しかし、このような潜熱の形態での蓄熱の有利性が原理
的F刊つでいても、ζ、れ全実用化するには様々な問題
がある。これlcに蓄熱物質rH本の変成や劣化の問題
と蓄熱装置の構成上の問題に分けられる。前者1Cあっ
ては、空気や水の侵入金避けて蓄熱物質金容器内沼完全
封入1−ればこの蓄熱物質の変成−や劣化は人質上回避
できるが、実用規模での大型の蓄熱容器でにこの完全封
入を行なうのは容易ではないし、この場合1cは熱媒流
体との熱交換効率の低下が予成なくされる。後者にあっ
てに1、蓄熱の1こめの受熱量の変動と、蓄熱されlこ
熱を回収するさいの回収要求熱量の変動に対して効率よ
く対応できる装置全構成することが容易でにないという
問題である。However, even if the advantage of storing heat in the form of latent heat is theoretically obvious, there are various problems in putting it into practical use. This problem can be divided into two problems: problems with the transformation and deterioration of the heat storage material rH, and problems with the structure of the heat storage device. In the case of the former 1C, metamorphosis and deterioration of the heat storage material can be avoided by completely enclosing the heat storage material inside the gold container to avoid air and water intrusion, but this is not possible in a large heat storage container on a practical scale. It is not easy to achieve this complete encapsulation, and in this case, the heat exchange efficiency of 1c with the heat transfer fluid is inevitably reduced. In the latter case, 1. It is not easy to construct a complete system that can efficiently respond to fluctuations in the amount of heat received during heat storage and fluctuations in the amount of heat required to be recovered when recovering the stored heat. This is the problem.
本発明trsこれを解決して前記蓄熱槽J3 を構成(
〜だものであり、蓄熱物質を収容する槽を小規模な単位
ユニット(缶体)の集合によって構成すると共に各ユニ
ット缶内の蓄熱物質と熱媒(空気)との熱交換が効果的
に行なえるようにし1こものであイ)。The present invention solves this problem and configures the heat storage tank J3 (
The tank containing the heat storage material is constructed from a collection of small-scale units (can bodies), and heat exchange between the heat storage material in each unit can and the heat medium (air) can be performed effectively. (It's one small thing).
第8〜22図に、本発明に従う潜熱蓄熱物質封入の缶体
の構造並びにその集合例全示したものである。以下にこ
れを順金追って説明する。FIGS. 8 to 22 show the structure of a can housing a latent heat storage material according to the present invention and an example of its assembly. This will be explained step by step below.
第8図に本発明の蓄熱器ユニット(缶体)の基本型の1
実施例を示すもので、円筒15の上下を蓋16.16’
IC,J:つで封鎖すると共lこ、蓋16と16′の中
心部1c[円筒15と同軸の小円筒17が気密に取付け
られ、円筒15、蓋16.16′、および小円筒17で
四重れる気密空間内に使用温度で相変化する潜熱蓄熱物
質が気密に封入しである。第9図にrこのユニット全同
方向に4個並置しlζ状態を示fもので、こ7″1.は
第5図における各室イ〜チ内F収容され1部場合の単層
となり、これkl下方向に積層1−ると、各室イ〜チ内
の集合状態が形成される。第9図にみられるように、こ
の単層VC上下方向の空気全流すと、各ユニットの小円
筒17の中と、各ユニットの間隙(円筒15の外側)と
vc空気が流通すること(/′c7zる。Figure 8 shows one of the basic types of the heat storage unit (can body) of the present invention.
This shows an example, and the top and bottom of the cylinder 15 are covered with lids 16 and 16'.
IC, J: At the same time, the center part 1c of the lids 16 and 16' [a small cylinder 17 coaxial with the cylinder 15 is attached airtightly, and the cylinder 15, the lid 16, 16', and the small cylinder 17 A latent heat storage material that changes phase at the operating temperature is hermetically sealed in four airtight spaces. Fig. 9 shows a state in which four of these units are arranged in the same direction, and this 7''1. is a single layer when one unit is housed in each chamber I to F in Fig. 5. When this kl is laminated downward, a collective state is formed in each chamber.As shown in Fig. 9, when all the air flows in the vertical direction of this single layer VC, the small VC air flows within the cylinder 17 and between the gaps between the units (outside the cylinder 15).
第10図に、各ユニット金縦方向に積層する場合の空気
流れ全混合して一層熱交換′を高めるようにした接合方
式を示すもので、積層接合vc特殊なリングジヨイント
19を利用したものである。このリングジョイント19
ハ第11図に示したように、気体が透過する開口20が
−1−下リング21と22の間fこ設けられており、こ
の上下リング21と22VC対し、績み重ねようとする
蓄熱器ユニットの端部全嵌め込む0、そして、支持板2
3(第14図)をこのリングジヨイント19の中央部で
支持させる。Figure 10 shows a joining method in which the air flow is completely mixed when each unit is stacked in the vertical direction to further enhance heat exchange, and a special ring joint 19 is used for the stacked joining VC. It is. This ring joint 19
C. As shown in FIG. 11, an opening 20 through which gas passes is provided between the lower rings 21 and 22, and the heat accumulator to be stored is connected to the upper and lower rings 21 and 22. The end of the unit is fully fitted 0, and the support plate 2
3 (FIG. 14) is supported at the center of this ring joint 19.
24はこの支持板25ケ受けるための張り出し片金示し
ている。この支持板23を使用(−かつ蓄熱器ユニット
の積み重ねl/i: gいして小円筒同志の接続全若干
切離しておくと、小円筒17から小円筒17へ流れる気
体の1部に1開〔コ20”f経て缶体の外側に流れ出る
し、逆に缶体の外側を流れる気体に支持板251/c衝
突して(この支持板23がパンフルプレートとじて機能
して)この開口20から小円筒内VC流入するような気
流の流れが生じ、缶体の外側と内側(小円筒)に気η毛
が混合しながC)流れることになり、この気体と蓄熱物
質との熱交換が各蓄熱器ユニット内の蓄熱物質全域にわ
lこって効果的lこ行なわれる。Reference numeral 24 indicates an overhanging piece for receiving these 25 support plates. By using this support plate 23 (- and stacking the heat storage unit l/i: g) and slightly disconnecting all the connections between the small cylinders, one part of the gas flowing from the small cylinder 17 to the small cylinder 17 can be opened. The gas flowing outside the can body collides with the support plate 251/c (this support plate 23 functions as a pan full plate) and flows out from this opening 20. An air current flows into the VC inside the small cylinder, and the air mixes between the outside and inside of the can (the small cylinder), causing heat exchange between this gas and the heat storage material. This is effectively done over the entire area of the heat storage material within each heat storage unit.
rxvc、第12[RJV′c示すニー71− if、
・氾8図のユニットの内部に水金循環きせるコイルを組
み込ん/Cもので、この第12図のユニット全本発明の
蓄熱暖房機に使用すると、暖房用空気のほかVこ給湯1
11その他の温水も同時に得ることができることんなる
。丁lわち、この第12図に示すユニット(では、この
小円筒17を取巻く裏うし′Cしてコイル26が配置1
tシである。コイル26の1方の端は化1本の下方に、
他方の4i ri缶体の上方に突出しており、この缶体
へのコイ′ル端の接Hしも気密が保持されている9、2
6は蓄熱物質の注入口、27は蓄熱物質の14i出口で
あり、蓄熱物質充填後はこの注入C’126と1非出口
27はめくらに(−でおく。このようにして蓄熱物質′
)f:封入する容器/バ形成され、この容器内に熱媒連
体ケ流1−1ζめの通路、すなわち小円筒17とコイル
26が形成される。、この小円筒17は気体例えば空気
を流す通路としで使用され、コイル26は液体例えば水
を流す通路として使用される。この図示の蓄熱器ユニツ
l−r、j Jx下左右が実質上対称であり、図示の位
置全1−下に逆さ[(−でも同一形状に現われ、これ全
同軸的に積み重ねた場合、図の破線で示す他の同型の蓄
熱器ユニットにおける小円筒17′の出口eま実線の小
円筒17の入[]と整合して連結され、同様にコイル2
6もLiS Oと入口が配管接続きれるようになってい
る。rxvc, 12th [RJV'c showing knee 71-if,
・A coil for circulating water and metal is incorporated inside the unit shown in Fig. 8. When the unit shown in Fig. 12 is used in the thermal storage heater of the present invention, in addition to heating air, it also generates hot water 1.
11 You can also get other types of hot water at the same time. In other words, in the unit shown in FIG.
It is tshi. One end of the coil 26 is placed below the
9, 2 which protrudes above the other 4iri can body and maintains airtightness even when the coil end is in contact with this can body.
6 is an injection port for the heat storage material, 27 is an outlet 14i for the heat storage material, and after filling the heat storage material, the injection C' 126 and 1 non-exit 27 are left blank (-).In this way, the heat storage material'
)f: A container/bar is formed to enclose the heat medium, and a passage for the heat medium coupling flow 1-1ζ, that is, a small cylinder 17 and a coil 26 are formed in this container. The small cylinder 17 is used as a passage for a gas such as air, and the coil 26 is used as a passage for a liquid such as water. The lower left and right sides of the illustrated heat storage unit l-r, j The outlet e of the small cylinder 17' shown by the broken line in another heat storage unit of the same type is aligned and connected with the inlet [ ] of the small cylinder 17 shown by the solid line, and similarly the coil 2
6 is also designed so that the LiSO and inlet can be connected to piping.
第13図は第12図の蓄熱器ユニットを8個組み合わせ
て1単位の蓄熱槽全構成し1こ状態全図解的に示したも
のである。この1単位の蓄熱槽は、第13図に示1〜だ
ように、方形の4隅に組゛まれ1こa〜dの4本の垂直
な中空パイプと、これらの中空パイプa、−b、 b−
c、 c=d、d−a間の中心の辺に配置された4本の
垂直な中空・ぐイゾイ〜二と、中央に位置する1本の垂
直な中空パイプCPと刀1らなる枠組みの中に、8個の
蓄熱器コー=ノド全2段にして収めることによって構成
されている。FIG. 13 schematically shows the complete configuration of one unit of heat storage tank by combining eight heat storage units shown in FIG. 12. This one unit heat storage tank is assembled at the four corners of a rectangle as shown in Fig. 13, and consists of four vertical hollow pipes a to d, and these hollow pipes a, -b. , b-
A framework consisting of four vertical hollow pipes placed on the center sides between c, c=d, and d-a, one vertical hollow pipe CP located in the center, and a sword 1. It is constructed by housing eight heat storage units in two stages.
これらの中空パイプのうち、中央のバイゾCPf除い1
ζ周辺のものは、この1単位の蓄熱槽全隣り合わせて集
合するさいに、その隣接する槽と共用される。71i:
お、各ユニットの積層のσいV7−は、第10〜11図
のリングジヨイント19の使用、並びに第14図のバッ
フルプレート25の使用が好適である。Among these hollow pipes, 1 except for the central bizo CPf
Those around ζ are shared with the adjacent tanks when all of the heat storage tanks in one unit are assembled next to each other. 71i:
For the V7- of the lamination of each unit, it is preferable to use the ring joint 19 shown in FIGS. 10 and 11 and the baffle plate 25 shown in FIG. 14.
第15図は、第12〜13図の空気および水循環用ユニ
ットの平面配置の1例全示し1こもので、1単位の蓄熱
槽(Ul)VCおける隅のバイグa−dが、成る方向(
図′T:は紙面の」二下方向)では隣接する単位蓄熱槽
の隅のパイプとして共+4−1されるが、成る方向(図
でに紙面の左右方向)では隣接する単位蓄熱槽の辺のパ
イプとして共用される。そして、これらのパイプの全て
(a −cl、・1〜二、C,P)Vユ蓄熱器ユニソト
ヲ組み合わせて固定する支柱としての役割のは刀1に、
各蓄熱器ユニットの内部に配されたコイル26(第12
図)全圧い1c連結して水金循環させるための熱媒配管
と(−て機能させるようにしである。各々の単位蓄熱槽
において、各パイプに第14図に示[〜1こような水平
な支持板25全上中下の合計6枚使用して互いに位16
決めされ、このように位置決めされ1こ9本のパイプと
6枚の支持板によって、8個の蓄熱器ユニットが2個づ
つ軸心に合わせて積み重ねた4本の筒となり、この4本
の簡で1単位の蓄熱槽に構成される。この軸心に合わせ
て績み重ねられることによって、小円筒17(第12図
)は互いに整合して連結きれ、この中に空気が通される
。Fig. 15 shows an example of the planar arrangement of the air and water circulation units shown in Figs.
In the figure 'T', the corner pipes of the adjacent unit heat storage tanks are both +4-1 in the two-down direction of the paper, but in the direction of the formation (left and right of the paper in the figure), the sides of the adjacent unit heat storage tanks are shared as a pipe. The sword 1 serves as a support for combining and fixing all of these pipes (a-cl, ・1-2, C, P) and the V-yu heat storage unit.
Coil 26 (12th
Figure) The total pressure tank 1c is connected to the heat medium piping for circulating water and metal.In each unit heat storage tank, each pipe is connected to the A total of 6 horizontal support plates 25 (top, middle, and bottom) are used to position each other 16 times.
With the 9 pipes and 6 support plates positioned in this way, 8 heat storage units become 4 cylinders stacked 2 each along the axis, and these 4 simple It consists of one unit of heat storage tank. By stacking the small cylinders 17 (FIG. 12) along the axis, the small cylinders 17 (FIG. 12) are aligned and connected to each other, allowing air to pass through them.
次に、本発明に従うさら范好1(〜い蓄熱器コヘ、−、
ノドについて第16〜22図に従って説明する。このユ
ニットに、第8図および第12図F示したような密閉缶
体の内部V7−さらに輪状容器のバンクを積層し、この
各輪状バンク内に潜熱蓄熱物質全封入し1こものである
。第16図はこの輪状)くツクの外観図であり、図示の
ように個々独立[、i輪状容器32ヲ同心状に積み重ね
る状態を概念的に示(〜でおり、この積層体が例えば第
8図のような缶体の内部に封入される。Next, according to the present invention, the heat storage device 1 (-,
The throat will be explained according to FIGS. 16 to 22. In this unit, the inside of a closed can body V7 as shown in FIGS. 8 and 12F and a bank of annular containers are stacked, and the latent heat storage material is completely enclosed in each annular bank. FIG. 16 is an external view of this ring-shaped container, and conceptually shows a state in which the ring-shaped containers 32 are individually stacked concentrically as shown in the figure. It is sealed inside the can as shown in the figure.
第17図はこの輪状容器62の中心軸を通る面で切断L
7こ断面図であり、このドーナツ状の輪状容器62内V
cr!潜熱蓄熱用の既述の如き蓄熱物質61が封入され
ている。この蓄熱物質51の4」人1cさいして汀、こ
の蓄熱物質と共に、分離防止剤例えばグラスウール、ア
ルミ、ノア/レスなどの金属モール″!!/ζは化繊フ
ィルターメディアなど全混入[2てj・・くとよい。こ
の輪状容器32に金属&−c作ってもよいが、合成樹脂
のフィルムやンートなど全円いると、倉の製作が容易′
T′蓄熱物質の封入も容易である。66(づ蓋を示゛す
が、この蓋361.1−用いる場合は本体とのシール全
完全にする1こめの密封結合を行な′5゜
第18図は第17図のΔ部の拡大図であり、輪状容H(
52の壁面全凹凸のあるコルゲート面67に構成1−た
例を示している。このようなコルゲート面ろ7とするこ
とにより輪状容器32の伝熱面積金人巾fこ増加させる
ことができ、この輪状容器ジ2の外側雰囲気と輪状容器
32内の蓄熱物質ろ1との間]熱の気骨、7つ二良好と
なる。FIG. 17 shows a cut L along a plane passing through the central axis of this annular container 62.
7 is a sectional view showing the inside of this donut-shaped ring-shaped container 62.
CR! A heat storage material 61 as described above for latent heat storage is enclosed. This heat storage material 51-4 is mixed with the heat storage material along with a separation preventive agent such as glass wool, aluminum, metal molding such as Noah/Res, etc., including synthetic fiber filter media [2・This ring-shaped container 32 may be made of metal, but if the entire ring is made of synthetic resin film or cant, it will be easier to make the warehouse.
Enclosing the T' heat storage material is also easy. 66 (The lid is shown here, but when this lid 361.1 is used, it must be sealed once to ensure a complete seal with the main body.'5゜Figure 18 is an enlarged view of the Δ section in Figure 17. It is a diagram, and the annular volume H(
An example of configuration 1 is shown in which the corrugated surface 67 has all the irregularities on the wall surface of 52. By using such a corrugated surface groove 7, it is possible to increase the heat transfer area of the annular container 32 by a width f, and between the outside atmosphere of the annular container 2 and the heat storage material filter 1 inside the annular container 32. ] Heat grit, 7 out of 2 good.
第19図に輪状容器32を缶体内に装」眞しlで、ユニ
ットの例を示す縦断面:(!: 、 i 7こ第2τ〕
図はx−x’線矢視断面を示し1ξもので、第16〜1
7図に示しtこような蓄熱物質31全封入した輪状容器
52を、中央部に軸に沿つ/ζ空気通路易を有する缶体
15の中に、積層して装填1〜tこ状態全示している9
7缶体15(グ、例えば1斗缶程度の容積金もつ円筒ド
ラムであり、その中心部に同軸的な小円筒17が底板1
6′と上蓋16とを貫通I〜て数個げられていて、この
小円筒17と底板16′および上蓋16と缶体外周本体
とは互いに気密に接合きれている。このようにして形成
された缶体15の2重円筒空間の中に輪状容器62のバ
ックを積み重ねて装填するが、このバンク同志の間隙な
らびにこのバンクと缶体との間の間隙(空間)V′c伝
熱物質ケ挿入しておく。この伝熱物質としてはこのユニ
ットの使用温度で常i/こ液状である物質?用いるとJ
二い3.この液体の封入によって輪状容器と缶体との伝
熱+!Fが良好となると共VC蓄熱物質が融解状態にあ
るときの洩漏に対してもこれを抑止する役割を果/こ丁
ことができる。このようにして構成した潜熱蓄熱j(]
ユニット汀、缶体15の外側の雰囲気(例えば空気流)
と空気通路33の空気流に対して熱の受授が効果的に行
なわれるので、このユ7ニソトヲ多数筬続もしくa集合
することによって、単位容積当りの蓄熱量と放熱量が極
めて人きくかつその蓄f)°5の貯蔵期間も夏から冬V
こ至るような長期の期間とすることができる蓄熱槽を構
成することができる。Fig. 19 is a longitudinal cross-section showing an example of a unit in which the annular container 32 is installed inside the can body.
The figure shows a cross section taken along the line xx' and is 1ξ.
As shown in FIG. 7, the annular container 52 in which the heat storage material 31 is completely enclosed is stacked in a can body 15 having an air passage along the axis in the center. Showing 9
7 Can body 15 (for example, a cylindrical drum with a volume of about the size of a 1-ton can, with a coaxial small cylinder 17 in the center of the drum and the bottom plate 1
The small cylinder 17 and the bottom plate 16' and the upper cover 16 and the outer peripheral body of the can body are hermetically joined to each other. The bags of the annular containers 62 are stacked and loaded into the double cylindrical space of the can body 15 formed in this way, and the gaps between the banks and the gap (space) V between the banks and the can bodies are Insert the heat transfer material. Is this heat transfer material a substance that is normally liquid at the operating temperature of this unit? When used, J
2.3. Heat transfer between the annular container and the can body is increased by enclosing this liquid! When F is good, it can also serve to prevent leakage when the VC heat storage material is in a molten state. Latent heat storage j constructed in this way (]
Unit base, atmosphere outside the can body 15 (e.g. air flow)
Since heat is effectively transferred to and from the air flow in the air passage 33, the amount of heat storage and heat dissipation per unit volume can be greatly increased by connecting or aggregating a large number of these units. And the storage period of F) °5 is also from summer to winter.
It is possible to construct a heat storage tank that can last for a long period of time.
第21図および第22図は、熱媒体として気体(例えば
空気)と液体(例えば水)どの両方を使用する場合(/
′C有利な潜熱蓄熱用ユニットの例を示すもので、第2
1図Vこ示したように、蓄熱物質全封入した大径の輪、
状容器32aと同じく蓄熱物質全封入した小径の輪状容
器32bと金、2重の輪が形成されるようF積み重ねな
がら、第22図の缶体17vつ中(L装填しlこもので
ある。すなわち大径の輪状容器52aの内径よりも小さ
な外径をもつ小径の輪状容器32b ’(7、大径の輪
状容器32aの内方に同心的に入れ、これ全空気通路3
5を有′J−る缶体17の中で績み重ねて装填したもの
である。し1こがって、缶体17の中において、大径の
輪状容器52aからなる外輪積層体と小径の輪状容器5
2bからなる内輪積層体とが形成されることになる。こ
の外輪積層体と内輪積層体との間隙41に、液状の熱媒
を流すためのコイル26が配置されている。この2重の
内外輪積層体全形成しかつコイル26を配置した以外は
、第19〜20図で説明したと同様T:あり、気体(空
気)全熱媒とする場合にも効果的な使用のしか1ζがで
きる。また、この輪状容器32aと52b並びにコイル
26を配置した缶体17内の空隙には液状の伝熱物質ケ
封入すること茫よつ゛C第19〜2【コ図の場合と同様
の効果が得られる。Figures 21 and 22 show the case where both gas (e.g. air) and liquid (e.g. water) are used as the heat medium (/
'C shows an example of an advantageous latent heat storage unit, and the second
As shown in Figure 1, a large-diameter ring completely filled with heat storage material,
The small-diameter ring-shaped container 32b, which is completely filled with a heat storage material like the shaped container 32a, and gold are stacked so that a double ring is formed, and the inside of the can body 17v in FIG. 22 (L is loaded. A small-diameter annular container 32b' (7) is placed concentrically inside the large-diameter annular container 32a and has an outer diameter smaller than the inner diameter of the large-diameter annular container 52a.
5 was stacked and loaded in a can body 17 having a J-size. 1. In the can body 17, an outer ring laminate consisting of a large-diameter annular container 52a and a small-diameter annular container 5 are placed.
2b is formed. A coil 26 for flowing a liquid heat medium is arranged in a gap 41 between the outer ring laminate and the inner ring laminate. The same as explained in Figs. 19 and 20 except that this double layered inner and outer ring laminate is completely formed and the coil 26 is arranged. Noshika 1ζ is produced. In addition, a liquid heat transfer material can be filled in the voids in the can body 17 in which the annular containers 32a and 52b and the coil 26 are arranged. It will be done.
この第16〜22Nに示(〜だ蓄熱器ユニソ1゛も、第
8〜12図に示し1こ蓄熱器ユニットについて説明し!
このと同様にして互いに接合もしく(づ積層イーること
が′Cき、これによって本発明の前述の蓄熱槽13を構
成することができる。The heat storage units shown in Figures 16 to 22N (~1) will also be explained about the heat storage units shown in Figures 8 to 12.
In the same manner, they can be bonded or laminated together to form the heat storage tank 13 of the present invention.
以」−説明し/こような蓄熱器コーニノト7)集合体力
)らなる蓄熱槽Bを設け1こ本発明の蓄熱暖房機は、夏
期や中間期のありあする太陽熱全長期に保存てきる。す
なわち、日射の強いシーズンに先述の蓄熱運転全行なっ
て蓄熱槽B内の各ユニットの蓄熱物質全融解しておけば
、熱媒流を積極的に流さないかぎり、より具体的には第
2〜3、第7図の送風機6を停止し、各所のダンパ全閉
成しておけば、また給湯する場合の水循環機構全前設す
る場合りに水循環全停止しておけば、この蓄熱物質が融
解した状態を長期にわ1こって維持でき、1部の凝固熱
に系内の保温用に消費されることけあってもその大部分
は冬期の暖房−またけ給湯に活用できる。The heat storage heater of the present invention can store solar heat for a long period of time during the summer and intermediate seasons. In other words, if all the heat storage operations described above are carried out during the season of strong solar radiation and all the heat storage materials in each unit in the heat storage tank B are melted, unless the heat medium flow is actively carried out, more specifically, the second to 3. If the blower 6 in Fig. 7 is stopped and the dampers at various locations are fully closed, and if the water circulation mechanism is installed in front of the hot water supply system, if the water circulation is completely stopped, this heat storage material will melt. This state can be maintained for a long time, and even though some of the solidification heat is consumed for keeping the system warm, most of it can be used for heating and hot water supply in the winter.
次にこの潜熱蓄熱を用いた暖房方法Wついて説明する。Next, a heating method W using this latent heat storage will be explained.
本発明の蓄熱暖房装置に特に一般住宅用に適しており、
−戸に1機ま1ζは複数基を据え付けておき、その蓄熱
容量で厳冬期の暖房熱源の一部一または全部に利用する
。この場合、その潜熱の放熱量の無駄を省き〃・つ負荷
VC応じた制御量の放熱を行なうた−めに、床下温風循
環方式とするのがよい。すなわち、建物の床下空間に閉
鎖し!−空気循環路を形成1〜、この床下空気循環路v
c既述の本発明蓄熱暖房機の空気路全連結し、集熱器A
お工び/または蓄熱槽Bとこの床下空気循環路に制御量
の空気を循環させるとよい。The thermal storage heating device of the present invention is particularly suitable for general residential use,
- One or more 1ζ units are installed in each door, and their heat storage capacity is used as part or all of the heating heat source during the harsh winter months. In this case, in order to avoid wasting the amount of latent heat radiated and to radiate heat in a controlled amount according to the load VC, it is preferable to use an underfloor hot air circulation system. That is, closed to the space under the floor of the building! - Forming an air circulation path 1~, this underfloor air circulation path v
c All the air passages of the heat storage heater of the present invention described above are connected, and the heat collector A
It is preferable to circulate a controlled amount of air between the heat storage tank B and this underfloor air circulation path.
第26図はこの暖房方法の例全図解的に示し1こもので
、マイクロコンピュータ−μを用いて開側)運転する例
を示している。図において、45に床下空気往路、46
ハ床下空気還路であり、この床下空気往路45から居室
、寝室、台所その他の床下各路45a〜45cなど全循
環し1こあとの空気はその実質」二全てが床下空気還路
46ニ戻りζ送風機6V′Cよって、蓄熱暖房機と床下
空気路どの間全閉鎖循環するように(〜である。図中の
引用記号A、■3.6〜14ニ第2〜7図のものと同じ
要素を示しており、i7(、47〜49に温度センサー
とこれに追従するリレーからなるスイッチ機構、50〜
521r:h47〜49VCJj)でON −oFpす
る自動夕゛ンバ、56〜54ホ蓄熱槽Bの温度センサー
を示している。FIG. 26 shows a complete diagram of this heating method, and shows an example in which a microcomputer .mu. is used for open side operation. In the figure, 45 indicates an underfloor air outgoing path, and 46
(3) It is an underfloor air return path, and from this underfloor air outgoing path 45, all the air in the living room, bedroom, kitchen, and other underfloor paths 45a to 45c is circulated, and the air after that is substantially returned to the underfloor air return path 46. ζBlower 6V'C allows complete closed circulation between the storage heater and the underfloor air passage. Elements are shown, and i7 (47-49 is a switch mechanism consisting of a temperature sensor and a relay that follows it, 50-
521r: h47 to 49VCJj) shows an automatic damper that turns ON-oFp, and 56 to 54 shows a temperature sensor for heat storage tank B.
送風機6は可変速モーターにより風量全調節できるもの
であり、47〜49の指令により負荷に応じ1ζζ風量
制御性なうよう1Cなっている。寸7こ、蓄熱運転時(
であっても、53〜54の指令VCより容量1jlJ仰
運転を行なうようにしである。暖房運転においてマイク
ロコンピュータ−μに各室の要求負荷に応じて、夕゛シ
バ7〜11の閉開制(H、ダンパ5り〜52の開開制御
、並びに送風機モーターの回転散開@1を適切vcなる
ように演算し、これF基いて制御を自動的に行なう。The blower 6 is capable of fully adjusting the air volume by a variable speed motor, and is set to 1C so that the air volume can be controlled by 1ζζ according to the load using commands 47 to 49. Dimensions 7, during heat storage operation (
Even so, the commands VC of 53 and 54 are used to perform supine operation with a capacity of 1 jlJ. During heating operation, the microcomputer μ controls the closing and opening of dampers 7 to 11 (H, the opening and closing control of dampers 5 to 52, and the rotational opening of the blower motor @1) according to the required load of each room. VC is calculated, and control is automatically performed based on this F.
このようにして本発明によると冒頭に述べ1ζ目的が好
適に達成され、夏期寸には中間期のありあまる太陽熱全
冬期の暖房時に無駄なく利用され、]−カ・も本発明の
蓄熱暖房機汀運搬司能な独立した装置す:として製作さ
れるものであり、この装置単位の大きびを住宅規模にあ
わせて製作することも、ま1こ単位袋@全組合せて負荷
に対応させ1ζりすることもでき、製作および使用に便
宜であって、真の省エイ、ルギー暖房fこ大きく貢献1
−るものである。In this way, according to the present invention, the purpose 1ζ mentioned at the beginning is suitably achieved, and the excess solar heat in the middle of the summer season is utilized without waste during heating during the winter season. It is manufactured as an independent device that handles transportation, and the size of this device unit can be manufactured according to the size of the house, or it can be made into one bag per bag @ all combinations to correspond to the load. It is convenient to manufacture and use, and it greatly contributes to true stingray saving and energy heating f1.
-.
第1図に1本発明装置の1例ケ示す全体斜視図、小2図
r」第1図のLl−11’線矢視断面図、第6図は第1
図の装置の空気路系統図、第4図は第1図のtV部分の
平断面図、第5図は同じくV部分の平断面図、第6図は
同じ(V1部分の平断面図、第7図に同じく■部分の平
断面図、第8図に蓄熱器ユニットの1例を示す全体斜視
図、第9図は第8図のユニットの組合せ例金示す斜視図
、第10図は第8図のユニットの連結例全示す略断面図
、第11図はユニット連結ジョインI・の例を示す斜視
図、第12図は蓄熱器ユニットの他の例を示す略断面図
、第13図は第12図のユニットの組合せ例を示す斜視
図、第14図はパンファープレーt・(7) 斜451
図、第15図は第12図のユニットの平面配置ヒ【例を
示す平面図、第16図は蓄熱器ユニット内に装填するバ
ンクの積層概念図、第17図はバンクの断面図、第18
図に第17図のA部拡大図、第19図に蓄熱器ユニット
の他の例を示f縦断面図、第2゜図は第19図のx −
x’線矢視断面図、第21図にバンクの他の例を示す積
層概念図、第22図は蓄熱器ユニットの他の例を示す縦
断面図、第25図に本発明の蓄熱暖房機の運転力法分説
明する/ζめの制御フロー図である。
A・・・空気式太陽熱集熱器、B・・・潜熱蓄熱槽、1
.2・・・」二部チャンノ(−16,4・・・トーを庇
チャンバー、5・・・機械室、6・・可変速送風機、7
〜11・・−ダンパ、14・・・空気流出路、12・・
・空気流入路、13・・・負荷、45・・・床下空気往
路、46・・・床下空気還路、50〜52・・・ダンパ
、μ・・・マイクロ二17ピユーター、
戸 第1図
第81”1
17
第9図
第15図
一243−
第17図
第18図
第19図
第20図
第21図
ゝ−−−−−−−−/′
二〇Fig. 1 is an overall perspective view showing one example of the device of the present invention;
4 is a plan sectional view of the tV section in FIG. 1, FIG. 5 is a plan sectional view of the V section, and FIG. Figure 7 is a plan sectional view of the part ■, Figure 8 is an overall perspective view showing an example of the heat storage unit, Figure 9 is a perspective view showing an example of the combination of the units in Figure 8, and Figure 10 is the FIG. 11 is a perspective view showing an example of a unit connection joint I. FIG. 12 is a schematic sectional view showing another example of a heat storage unit. FIG. 13 is a schematic sectional view showing an example of unit connection. A perspective view showing an example of the combination of the units shown in Fig. 12, and Fig. 14 is a perspective view showing an example of the combination of the units shown in Fig. 12.
15 is a plan view showing an example of the planar arrangement of the unit in FIG.
The figure shows an enlarged view of part A in Fig. 17, Fig. 19 shows another example of the heat storage unit, f is a vertical sectional view, and Fig. 2 is an enlarged view of part A in Fig.
21 is a laminated conceptual diagram showing another example of a bank, FIG. 22 is a vertical sectional view showing another example of a heat storage unit, and FIG. 25 is a heat storage heater of the present invention. It is a control flow diagram of /ζth explaining the driving force method. A...Air type solar heat collector, B...Latent heat storage tank, 1
.. 2..."Second part Channo (-16, 4...Toe eaves chamber, 5...Machine room, 6...Variable speed blower, 7
~11...-damper, 14... air outflow path, 12...
・Air inflow path, 13...Load, 45...Underfloor air outgoing path, 46...Underfloor air return path, 50-52...Damper, μ...Micro 217 computer, door Fig. 1 81”1 17 Fig. 9 Fig. 15 - 243- Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21
Claims (2)
潜熱蓄熱槽I3と、前記ΔとBの1方ま/こに両者に空
気が切換可能に循環するようにし7こ空気路と、全配置
し、前記の潜熱蓄熱槽Bが使用温度で相変化可能な物質
全封入し/こ缶体の集合体で構成きれている蓄熱暖房機
。(1) In one box, pneumatic solar collector A,
The latent heat storage tank I3 and 7 air passages are arranged so that air can be circulated switchably between both Δ and B, and the latent heat storage tank B changes phase at the operating temperature. A thermal storage heater consisting of an assembly of cans that contain all possible substances.
空気循環路に前記特許請求の範囲第1項記載の蓄熱暖房
機の空気路を連結し、該蓄熱暖房機の空気式太陽熱集熱
器Δお工び/また1潜熱蓄熱槽13と該床下空気循環路
とに制御量の空気全循環させる暖房方法。(2) An air circulation path is formed in the underfloor space of the building, and the air path of the regenerative heater according to claim 1 is connected to the underfloor air circulation path, and the air-type solar heat collector of the regenerative heater is A heating method for completely circulating a controlled amount of air through the latent heat storage tank 13 and the underfloor air circulation path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57139955A JPS5932742A (en) | 1982-08-13 | 1982-08-13 | Heat accumulating type heating apparatus and heating method thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57139955A JPS5932742A (en) | 1982-08-13 | 1982-08-13 | Heat accumulating type heating apparatus and heating method thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5932742A true JPS5932742A (en) | 1984-02-22 |
JPH033870B2 JPH033870B2 (en) | 1991-01-21 |
Family
ID=15257558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57139955A Granted JPS5932742A (en) | 1982-08-13 | 1982-08-13 | Heat accumulating type heating apparatus and heating method thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5932742A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5196929A (en) * | 1989-07-05 | 1993-03-23 | Olympus Optical Co., Ltd. | Display system of camera having tracking apparatus |
JP2003106681A (en) * | 2001-09-27 | 2003-04-09 | Daiwa House Ind Co Ltd | Solar heat utilizing system provided with heat storage means |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5464741A (en) * | 1977-11-02 | 1979-05-24 | Ohbayashigumi Ltd | Solar aided heating system |
-
1982
- 1982-08-13 JP JP57139955A patent/JPS5932742A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5464741A (en) * | 1977-11-02 | 1979-05-24 | Ohbayashigumi Ltd | Solar aided heating system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5196929A (en) * | 1989-07-05 | 1993-03-23 | Olympus Optical Co., Ltd. | Display system of camera having tracking apparatus |
JP2003106681A (en) * | 2001-09-27 | 2003-04-09 | Daiwa House Ind Co Ltd | Solar heat utilizing system provided with heat storage means |
Also Published As
Publication number | Publication date |
---|---|
JPH033870B2 (en) | 1991-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lizana et al. | Advanced low-carbon energy measures based on thermal energy storage in buildings: A review | |
AU2007268277B2 (en) | Chemical heat pump working with a hybrid substance | |
JP6267187B2 (en) | Improved thermal energy storage device | |
US4124018A (en) | Solar heat collecting, storing and utilizing apparatus | |
US8839642B2 (en) | Thermal solar energy collector for producing heat and/or cooling | |
US6059016A (en) | Thermal energy storage and delivery system | |
US20050247430A1 (en) | Storage heat exchanger, related operating methods and use of the storage heat exchanger | |
US3946720A (en) | Solar heat collector | |
WO1997047937A9 (en) | Thermal energy storage and delivery system | |
US3946721A (en) | Method of collecting and storing solar heat | |
US3946944A (en) | Method of heating a building structure with solar heat | |
CN110749226A (en) | Solid-liquid phase change heat storage device with built-in movable heat exchanger and use method | |
CN108139177A (en) | For the component and hinged panel of thermal insulation | |
CA1038176A (en) | Thermal storage systems | |
JPS5932742A (en) | Heat accumulating type heating apparatus and heating method thereby | |
Cabeza et al. | Thermal energy storage for renewable heating and cooling systems | |
US10907878B2 (en) | Electricity free portable evaporative cooling device | |
JP2016500040A (en) | Storage unit for drive system in vehicle | |
JPH0253716B2 (en) | ||
JPH0348437B2 (en) | ||
JPH0354327Y2 (en) | ||
JPS5869360A (en) | Heater or hot water feeder utilizing solar heat | |
JPH0135967B2 (en) | ||
JP2001132986A (en) | Solar energy-utilizing heating system | |
JPS5862457A (en) | Space cooling and heating apparatus utilizing solar heat |