JPS593227A - Direct ratio photometric type spectrophotometer - Google Patents

Direct ratio photometric type spectrophotometer

Info

Publication number
JPS593227A
JPS593227A JP11197882A JP11197882A JPS593227A JP S593227 A JPS593227 A JP S593227A JP 11197882 A JP11197882 A JP 11197882A JP 11197882 A JP11197882 A JP 11197882A JP S593227 A JPS593227 A JP S593227A
Authority
JP
Japan
Prior art keywords
signal
output
sample
ratio
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11197882A
Other languages
Japanese (ja)
Other versions
JPH0567892B2 (en
Inventor
Kenji Nakamura
健次 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP11197882A priority Critical patent/JPS593227A/en
Publication of JPS593227A publication Critical patent/JPS593227A/en
Publication of JPH0567892B2 publication Critical patent/JPH0567892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To enable a highly accurate measurement with high S/N ratio preventing the lowering of the computation accuracy in a weak signal area by controlling the integrated time of a measuring sample photometry signal depending on the magnitude of a reference sample photometry signal. CONSTITUTION:While a reference sample transmission light is being emitted from a spectrometer 1, a sampling circuit 4 fetches a output of an amplifier 3 or while a measuring sample transmission light is being emitted sampling circuit 5 does so. Outputs of the circuits 4 and 5 are counted with counters 10 and 11 respectively through A/D converters 6 and 7, AND gates 8 and 9. Then, an integrated value A of the counter 10 is compared 13 with the set value C and according to a comparison output (a), the integration operation of the counters 10 and 11 is switched ON or OFF while a latch pulse (b) and a reset pulse (c) are outputted from a control pulse generation circuit 15. An integrated value B of the counter 11 is divided 12 by the integrated value A and output is latched with a circuit 16 by the pulse (b).

Description

【発明の詳細な説明】 本発明は測定試料に対する測光信号を基部試別に対する
測光信号で割勢、シて両側光信号の比を求める直接化測
光方式分光光度計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct photometry type spectrophotometer in which a photometric signal for a measurement sample is divided by a photometric signal for a base sample, and the ratio of optical signals on both sides is determined.

比記録方式分光光度計において、測定試料の基準試ネ]
に対する透過率を測定する方式として、基準試イ;4の
測光信号が常に一定になるように可変利−,−1,−− 得増幅の利?Oを制御したり或は検出器の感度を制御す
る(フォトマルチプライヤを用いた場合のダイノードフ
ィードバック制御)、或は又光学系のスリット幅を制御
する等の負帰還方式と、負帰還制御を行わず測定試料の
測光信号を直接基準試別の測光信号で割算する直接比測
光方式とがある。
In a ratio recording method spectrophotometer, the reference sample of the measurement sample]
As a method for measuring the transmittance of the light, a standard test method is used. Negative feedback methods such as controlling O or the sensitivity of the detector (dynode feedback control when using a photomultiplier), or controlling the slit width of the optical system, and negative feedback control. There is a direct ratio photometry method in which the photometric signal of the measurement sample is directly divided by the photometric signal of the reference sample.

この直接比測光方式は特別な負帰還回路や利得或は感度
可変の調節要素が不要であるため、負帰還方式に比し機
器構成が単純で安定性が良い等の利点を有し非常に有用
な方式であるが、反面、信号の絶対量が少い場合には測
定試料信月、基準試別信号が小さいため所定精度を得る
計算手段の実現が困難であると云う欠点がある。即ち上
述した割算をアナログ的電気回路により実現する場合に
は、アナログ割算器の精度を保証するだめの分母のダイ
ナミックレンジが通常−桁程度とせまい点が問題となり
、ディジタル演算方式を用いる場合、A/D変換におい
て有効データ分解能が低下する、いわゆるビット落ち(
例えば8ビットのデータを扱うものとすると20Jj:
2進数8桁だが同じ有効数字3桁でも]、 O,O,i
d: 2進数4桁となる)のため測定1i’i一度が確
保できない。また負帰還方式中電気的利得を制御する方
式や直接比測光方式では測定信号量が減少すると検出器
及び増幅器が本来持っている’A(音d、一定であるか
らS / N比が悪化する。ダイノードフィードバック
方式はフォトマルチプライヤが感度を上げた場合、雑音
が増加傾向を有するものの感度に比例しては増加しない
ので、弱信号の場合でもS/N比が余り低下しないと云
う特徴を有するが直接比測光方式に比し装置が高価にな
る。
This direct ratio photometry method does not require a special negative feedback circuit or gain or sensitivity variable adjustment elements, so it has the advantages of a simpler equipment configuration and better stability than the negative feedback method, making it very useful. However, on the other hand, it has the disadvantage that when the absolute amount of the signal is small, the measurement sample signal and the reference sample signal are small, so it is difficult to realize a calculation means that achieves a predetermined accuracy. That is, when the above-mentioned division is implemented using an analog electric circuit, the problem is that the dynamic range of the denominator is narrow, usually on the order of -digits, which guarantees the accuracy of the analog divider, and when using a digital calculation method, , so-called bit loss (bit drop), which reduces the effective data resolution in A/D conversion
For example, if we are dealing with 8-bit data, 20Jj:
8 binary digits, but the same 3 significant digits], O, O, i
d: 4 digits in binary), measurement 1i'i once cannot be secured. In addition, in the negative feedback method, a method that controls electrical gain, and a direct ratio photometry method, when the amount of measured signal decreases, the S/N ratio worsens because the detector and amplifier's original sound d is constant. The dynode feedback method has the characteristic that when the photomultiplier increases the sensitivity, the noise tends to increase, but it does not increase in proportion to the sensitivity, so the S/N ratio does not decrease much even in the case of a weak signal. However, the equipment is more expensive than the direct specific photometry method.

上述したように従来用いられて来た種々な方式の比記録
方式分光光度計は何れも問題点を有する。
As mentioned above, all of the various types of ratio recording spectrophotometers that have been used in the past have problems.

これらの問題は整理すると演算精度の問題2弱信号時の
S / N比の問題、装置価格の問題である。
These problems can be summarized as calculation accuracy, S/N ratio at 2-weak signal, and equipment cost.

本発明はこれらの諸問題を調和的に解決した比記録方式
分光光度計を得ることを目的としてなされたもので、直
接比測光方式を採用するととて装置価格を安価ならしめ
、信号を積分して割算を行うことで弱信号時の演算精度
の低下を防ぐと共にS/N比についても改善を得た比記
録方式分光光度計を提供する。
The present invention has been made with the aim of obtaining a ratio recording type spectrophotometer that harmoniously solves these problems.By adopting the direct ratio photometry method, the cost of the device can be reduced and the signal can be integrated. To provide a ratio recording type spectrophotometer which prevents deterioration of calculation accuracy in the case of a weak signal and also improves the S/N ratio by performing division.

本発明直接化測光方式分光光度計は測定試料に対する測
光信号(サンプル信号と云う)及び基準試料に対する測
光信号(リファレンス信号と云う)を夫々積分し、リフ
ァレンス信号の積分出力が予め定めた一定レベル以上に
なったとき両方の積分を停止j〜でサンプル信号の積分
出力をリファレンス信号の積分出力で割算するようにし
た点に特徴を有する。こ\で信号の積分を停止するタイ
ミングはリファレンス信号の積分出力が予め定めた一定
レベルに一致すると云うことにこだわらず、一定レベル
に到達した後停止すればよいのである。
The direct photometry spectrophotometer of the present invention integrates a photometric signal for a measurement sample (referred to as a sample signal) and a photometric signal for a standard sample (referred to as a reference signal), and when the integrated output of the reference signal exceeds a predetermined level. The feature is that both integrations are stopped when j~ is reached, and the integrated output of the sample signal is divided by the integrated output of the reference signal. In this case, the timing for stopping the integration of the signal does not necessarily depend on when the integrated output of the reference signal matches a predetermined constant level, but it may be stopped after reaching a certain level.

このようにするのけ、信号を連続的に扱う場合は積分出
力が予め定めた一定レベルに丁度一致すると云う時点が
求め得るが、信号を時分割的にサンプリングして積算j
〜で行く形で積分を行う場合には積分出力が適宜に定め
た一定値と一致すると云うことは一般にあり得ないから
で、即ち本発明は信号を連続的に扱う場合、時分割的に
サンプリングする場合の何れにも適用できるものである
。以下実施例に」二つて本発明を説明する。
In this way, if the signal is handled continuously, it is possible to find the point in time when the integral output exactly matches a predetermined constant level, but by sampling the signal in a time-sharing manner and integrating the
This is because when performing integration in the form of ~, it is generally impossible for the integral output to match an appropriately determined constant value. It can be applied to any case. The present invention will be explained in the following examples.

第1図は本発明の一実施例を示す。1は分光器で測定試
料透過光と基準試料透過光とが交互に出射され、光検出
器2に入射される。3は増幅器で光検出器2の出力を増
幅する。4,5はサンプリング回路で分光器コ−から送
られて来る同期信号によって、分光器lから基準試料透
過光が出射している間はサンプリング回路4が増幅器3
の出力を取込み、分光器1から測定試料透過光が出射し
ている間−、サンプリング回路5が増幅器3の出力を取
込む。即ちサンプリング回路4はリファレンス信号をサ
ンプリングしており、5はサンプを芦プ信号を取込んで
いる。ここまでの構成は従来の複光束分光光度計の基本
構成と同じである。6.′7はA / D変換器でこの
実施例では電圧周波数変換型が用いられており、サンプ
リング回路4,5によって直流平滑化されたリファレン
ス信号及びサンプル信号を入力信号に比例したパルス列
に変換している。このパルス列は夫々アンドゲート8゜
9を通して次段のカウンタ1.0.11に入力され計数
される。この計数動作が前述した測光信号の積分動作で
、カウンタ10,1.1は積分器に相当する。アンドゲ
ート8,9は通常開いており、サンプル信号の積分出力
であるカウンタ10の計数出力がディジタルコンパレー
タ13によって設定器14に予め設定しである一定値と
比較され、カウンタ]0の計数出力Aが設定器14に予
め設定しである値Cに対してA〉Cの関係になったとき
コンパレータ13の出力は1”から10” に変り、ア
ンドゲート8,9はこのコンパレータ13の出力″1”
で開、′0”で閉となるので、A〉Cになるとカウンタ
10,11による積分動作は停止する。
FIG. 1 shows an embodiment of the invention. Reference numeral 1 denotes a spectroscope, from which light transmitted through a measurement sample and light transmitted through a reference sample are alternately emitted and incident on a photodetector 2 . An amplifier 3 amplifies the output of the photodetector 2. Reference numerals 4 and 5 denote sampling circuits, and the sampling circuit 4 operates as the amplifier 3 while the reference sample transmitted light is being emitted from the spectrometer 1 by the synchronization signal sent from the spectrometer 1.
The sampling circuit 5 takes in the output of the amplifier 3 while the measurement sample transmitted light is being emitted from the spectrometer 1. That is, the sampling circuit 4 samples the reference signal, and the sampling circuit 5 takes in the sampled signal. The configuration up to this point is the same as the basic configuration of a conventional double beam spectrophotometer. 6. '7 is an A/D converter, which is of the voltage frequency conversion type in this embodiment, and converts the DC smoothed reference signal and sample signal into a pulse train proportional to the input signal by the sampling circuits 4 and 5. There is. This pulse train is input to the next stage counter 1.0.11 through the AND gate 8.9 and counted. This counting operation is the aforementioned photometric signal integration operation, and the counters 10 and 1.1 correspond to integrators. AND gates 8 and 9 are normally open, and the count output of the counter 10, which is the integral output of the sample signal, is compared with a constant value preset in the setting device 14 by the digital comparator 13, and the count output of the counter 0 is When the relationship A>C is established for a value C preset in the setting device 14, the output of the comparator 13 changes from 1" to 10", and the AND gates 8 and 9 change the output of this comparator 13 to "1". ”
Since it is open at `0'' and closed at '0'', the integrating operation by the counters 10 and 11 stops when A>C.

第2図は第1図の装置の動作の一サイクルのタイムチャ
ートで、aはディジタルコンパレータの出力でtがA〉
Cとなった時点である。]、5は第2図にす、  cで
示す信号を発生する制御パルス発生回路で、2つのワン
ショット回路よシナリ、コンハl/−夕13の出力の立
下りで第1のパルス信号すを出力し、信号すの立下りで
第2のパルス信号Cを出力する。第3図に戻り、12は
ディジタル割算器で、カランタコ]、の計数出力B即ち
サンプル信号の積分値をカランタコ−00計数出力A即
ちリファレンス信号の積分値Aで割算しており、]−6
はデークラッチ回路でパルス信号b(第2図b)が印加
されることにより、そのときの割算器]2の出力をラッ
チする。第2図Cの信号の立下りでカウンタ10,1.
]はクリヤされ、同時にコンバレータコ3の出力は]”
に戻ってゲート8,9が開き積分が再開される。
Figure 2 is a time chart of one cycle of the operation of the device in Figure 1, where a is the output of the digital comparator and t is A>
This is the point when it becomes C. ], 5 is a control pulse generation circuit that generates the signal shown in Fig. 2, c, which generates the first pulse signal at the falling edge of the output of the two one-shot circuits. A second pulse signal C is output at the falling edge of the signal S. Returning to FIG. 3, 12 is a digital divider, which divides the count output B of the Carantaco], ie, the integral value of the sample signal, by the count output A of the Calantaco-00, ie, the integral value A of the reference signal, ]- 6
When the pulse signal b (FIG. 2b) is applied to the data latch circuit, the output of the divider 2 at that time is latched. At the falling edge of the signal shown in FIG. 2C, the counters 10, 1 .
] is cleared, and at the same time the output of converter tacho 3 is ]”
Returning to , gates 8 and 9 are opened and integration is restarted.

この装置ではリファレンス信号の大小によって積分時間
が減増され、リファレンス信号が17 M倍になると積
分時間はM倍になる。サンプル信号及びリファレンス信
号に含まれるノイズが信号の大小に関係なく一定である
場合、積分時間をM倍することによって信号はM倍され
るがランダムノイズは政倍されるだけであるので、信号
強度を1としたときのS / N比を19とすると、信
号強度が1.7MになったときのS / N比は17 
Mであり、M倍時間積分1〜だときは信号強度は1.ノ
イズは凸であるから、S / N比は」/凸になり、結
局信号強度が17 MになったときS / N比がl 
/ Mになるべき所を0倍だけS / N比が改善され
たことになる。
In this device, the integration time is decreased or increased depending on the magnitude of the reference signal, and when the reference signal increases by 17M, the integration time increases by M times. If the noise contained in the sample signal and reference signal is constant regardless of the signal size, the signal will be multiplied by M by multiplying the integration time, but the random noise will only be multiplied, so the signal strength will be If the S/N ratio is 19 when the signal strength is 1, then the S/N ratio is 17 when the signal strength is 1.7M.
M, and when the M times time integral is 1~, the signal strength is 1. Since the noise is convex, the S/N ratio becomes "/convex," and when the signal strength reaches 17 M, the S/N ratio becomes l.
This means that the S/N ratio has been improved by 0 times when it should have been /M.

上述実施例では一回の測光動作(積分動作)を終了する
タイミングとしてリファレンス信号の積分値が一定値以
−にになるタイミングを用いているが、反対にサンプル
信号の積分が一定値以上になるタイミングを用いてもよ
く、これは本発明の本質とは無関係のことである。まだ
本発明はアナログ方式で実施することも勿論可能である
In the above embodiment, the timing at which the integral value of the reference signal becomes equal to or greater than a certain value is used as the timing to end one photometry operation (integral operation), but conversely, the integral value of the sample signal becomes equal to or greater than a certain value. Timing may also be used, but this is not relevant to the essence of the invention. It is of course also possible to implement the invention in an analog manner.

本発明分光光度計は上述したような構成で、利得制御要
素が全く不要な北側光方式の長所はそのま\受継いで安
定性が良い等の特徴を有し、ダイナミックレンジについ
て制約がなく、弱信号域でも演算精度が低下せず高精度
の測定が可能であバまだ弱信号時においてもS / N
比の低下が抑制できる等の効果を有する。
The spectrophotometer of the present invention has the above-mentioned configuration, and inherits the advantages of the north light method, which does not require any gain control elements, and has features such as good stability, and has no restrictions on the dynamic range. Highly accurate measurement is possible even in the weak signal range without compromising accuracy, and S/N is still high even in the weak signal range.
This has the effect of suppressing a decrease in the ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置のブロック図、第2図は
同実施例装置の動作の一部を示すタイムチャートである
。 ]・・・分光器、2・・・光検出器、4,5・・・サン
プリング回路、6,7・・・A / D変換器、10,
11.・・・積分器としてのカウンタ、]2・・・ディ
ジタル割算器、]3・・・ディジタルコンパレータ、]
、4・・・一定値設定器、コ5・・・制御パルス発生回
路、16・・・データラッチ。 代理人 弁理士  蒜   浩  介 大2又
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention, and FIG. 2 is a time chart showing a part of the operation of the apparatus according to the embodiment. ]... Spectrometer, 2... Photodetector, 4, 5... Sampling circuit, 6, 7... A/D converter, 10,
11. ...Counter as an integrator,]2...Digital divider,]3...Digital comparator,]
, 4... constant value setter, 5... control pulse generation circuit, 16... data latch. Agent Patent Attorney Hiroshi Hiru Keidai Futamata

Claims (1)

【特許請求の範囲】[Claims] 測定試料に対する測光信号(ザンプル信号)及び基準試
料に対する測光信号(リファレンス信号)を夫々積分す
る手段と、何れかの積分手段の出力を予め定めた一定値
と比較し、同積分手段の出力がその一定値以上になった
とき、上記両積分手段の積分動作を停止させる手段と、
そのときの」二記サンプル信号積分手段の出力を上記リ
ファレンス信号積分手段の出力で割算する割算手段とを
有することを特徴とす、る直接化測光方式分光光度計。
Means for integrating the photometric signal for the measurement sample (sample signal) and the photometric signal for the reference sample (reference signal), and comparing the output of either of the integrating means with a predetermined constant value, and determining whether the output of the integrating means is the same. means for stopping the integrating operation of both of the integrating means when the value exceeds a certain value;
and dividing means for dividing the output of the sample signal integrating means at that time by the output of the reference signal integrating means.
JP11197882A 1982-06-28 1982-06-28 Direct ratio photometric type spectrophotometer Granted JPS593227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11197882A JPS593227A (en) 1982-06-28 1982-06-28 Direct ratio photometric type spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11197882A JPS593227A (en) 1982-06-28 1982-06-28 Direct ratio photometric type spectrophotometer

Publications (2)

Publication Number Publication Date
JPS593227A true JPS593227A (en) 1984-01-09
JPH0567892B2 JPH0567892B2 (en) 1993-09-27

Family

ID=14574885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11197882A Granted JPS593227A (en) 1982-06-28 1982-06-28 Direct ratio photometric type spectrophotometer

Country Status (1)

Country Link
JP (1) JPS593227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327538A (en) * 1986-07-18 1988-02-05 Nitto Electric Ind Co Ltd Thin film of polyvinyl chloride subjected to releasing treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879276B1 (en) * 2017-02-03 2018-07-18 주식회사 코어볼트 Fixing means

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115878A (en) * 1974-02-22 1975-09-10
JPS55140121A (en) * 1979-03-05 1980-11-01 Pye Ltd Spectrophotometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115878A (en) * 1974-02-22 1975-09-10
JPS55140121A (en) * 1979-03-05 1980-11-01 Pye Ltd Spectrophotometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327538A (en) * 1986-07-18 1988-02-05 Nitto Electric Ind Co Ltd Thin film of polyvinyl chloride subjected to releasing treatment
JPH0416494B2 (en) * 1986-07-18 1992-03-24 Nitto Denko Corp

Also Published As

Publication number Publication date
JPH0567892B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
JPS6132607B2 (en)
US5179580A (en) X-ray analyzer with self-correcting feature
CA1272806A (en) Optical detector circuit for photometric instrument
JPS593227A (en) Direct ratio photometric type spectrophotometer
Nieman et al. Development and characterization of a computer-controlled vidicon spectrometer
US3963909A (en) Method and apparatus for computation in a kinetic analyzer
US8957363B2 (en) Differential photodiode integrator circuit for absorbance measurements
JPS6241332B2 (en)
JPH05264352A (en) Spectorophotometer
US4417812A (en) Circuit arrangement for determining the characteristics of liquids and/or gases, in particular the hemoglobin content of the blood
JPS58139036A (en) Spectrophotometer
JPS62215850A (en) Photometric apparatus for emission spectrum analysis
JPH0728415B2 (en) White balance adjustment device
JPH0690088B2 (en) Color sensor circuit
JPS6315535B2 (en)
JPH0249459B2 (en) KYUKOBUNSEKIKEI
SU1386942A1 (en) Method of determining width of photodetector single-electron pulse
JP3821364B2 (en) Measurement conditions setting method for photoelectric photometry
JPS62133432A (en) Method and circuit for automatically determining exposure value
SU1723544A1 (en) Spectrometric amplifier
SU552521A1 (en) Photometer with a pulsed radiation source
SU1518684A1 (en) Spectral method of determining concentration of substances and atomic-absorption analyzer
JP2000504841A (en) Detector
SU1545092A1 (en) Photometer
JPH05240733A (en) Distributed optical fiber sensor