JPS5931879B2 - potentiometer - Google Patents

potentiometer

Info

Publication number
JPS5931879B2
JPS5931879B2 JP51131383A JP13138376A JPS5931879B2 JP S5931879 B2 JPS5931879 B2 JP S5931879B2 JP 51131383 A JP51131383 A JP 51131383A JP 13138376 A JP13138376 A JP 13138376A JP S5931879 B2 JPS5931879 B2 JP S5931879B2
Authority
JP
Japan
Prior art keywords
magnetic
magnet
magnetoresistive element
magnetic flux
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51131383A
Other languages
Japanese (ja)
Other versions
JPS5355764A (en
Inventor
昇 増田
悠 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Onkyo Co Ltd
Original Assignee
Denki Onkyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Onkyo Co Ltd filed Critical Denki Onkyo Co Ltd
Priority to JP51131383A priority Critical patent/JPS5931879B2/en
Publication of JPS5355764A publication Critical patent/JPS5355764A/en
Publication of JPS5931879B2 publication Critical patent/JPS5931879B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 本発明は磁気抵抗素子を用いたポテンショメータに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a potentiometer using a magnetoresistive element.

この種のポテンショメータは、磁気回路の構成が最終的
性能のバラツキに大きな影響を与える。
In this type of potentiometer, the configuration of the magnetic circuit has a large effect on the final performance variation.

ポテンショメータの磁気回路は、通常、実公昭41−1
4587号公報「磁気抵抗素子を使用した可変抵抗器」
に示されているように、有底円筒状コアや回転磁性体お
よび永久磁石と共に閉磁路として構成され、回転磁性体
の先端部分に形成した間隙に磁気抵抗素子を配置して、
回転磁性体の回転に応じた出力を発生するようになつて
いる。また、上述のボテンシヨンメータは、回転磁性体
の先端間隙を変えることにより、換言すれば回転磁性体
の先端を所定の関数加工することにより磁気抵抗素子か
ら所定の関数出力を得ている。しかしながら、回転磁性
体の先端が所定の関数形状になるように加工することは
困難であり、軸径を太くしなければ関数形状の効果が得
られないし、また間隙に狭い部分と広い部分があると磁
束が狭い部分に集中し磁束密度の均一性が得られなく、
磁気抵抗素子の2乗特性を考慮すれば好ましくないもの
である。このため、近年になりポテンショメータは、こ
れらの問題を解決するため、実願昭48−83153号
「ポテンショメータ」に示されているように、回転磁性
体の先端の間隙を一定にすると共に、半円形の均一な磁
束密度の磁性片が回転軸の回りに回転するように構成さ
れている。
The magnetic circuit of a potentiometer is usually
Publication No. 4587 "Variable resistor using magnetoresistive element"
As shown in , it is configured as a closed magnetic path together with a bottomed cylindrical core, a rotating magnetic body, and a permanent magnet, and a magnetoresistive element is placed in a gap formed at the tip of the rotating magnetic body.
It is designed to generate output according to the rotation of the rotating magnetic body. Further, the potentiometer described above obtains a predetermined function output from the magnetoresistive element by changing the gap between the tips of the rotating magnetic body, in other words, by processing the tip of the rotating magnetic body with a predetermined function. However, it is difficult to process the tip of a rotating magnetic material so that it has a predetermined functional shape, and the effect of the functional shape cannot be obtained unless the shaft diameter is increased, and the gap has narrow parts and wide parts. The magnetic flux concentrates in a narrow area, making it impossible to obtain uniform magnetic flux density.
This is undesirable in consideration of the square-law characteristics of the magnetoresistive element. For this reason, in recent years, in order to solve these problems, potentiometers have been developed by making the gap between the tips of the rotating magnetic body constant, and semicircular. A magnetic piece with a uniform magnetic flux density is configured to rotate around a rotation axis.

しかしながら、第1図の実線で示す半円形の磁性片が磁
気抵抗素子に磁束B1を与えることになると、磁気抵抗
素子に作用する磁束密度Bは、第2図aで示すように分
散された分布特性を示す。
However, when the semicircular magnetic piece shown by the solid line in Fig. 1 gives magnetic flux B1 to the magnetoresistive element, the magnetic flux density B acting on the magnetoresistive element has a distributed distribution as shown in Fig. 2a. Show characteristics.

これは磁性片が回転したとき磁気抵抗素子に対する磁束
の変化が緩慢なこと、換言すれば磁束の切れが悪いこと
を意味する。従つて、このような磁性片に於ては、磁気
抵抗素子から得られる出力は、第3図aで示すように、
回転角θに対し正弦状の曲線になり直線性の悪いものに
なる。このため、正弦状の出力を要求する機器には有効
になり得るが、回転角を電気量で表示する最も基本的な
ものには直線性の劣性は障害となるものであつた。本発
明は上述のような欠点を解決するためなされたもので、
以下に添付図面を用いて詳細に説明する。第4図はポテ
ンショメータの断面図を示す。
This means that when the magnetic piece rotates, the magnetic flux to the magnetoresistive element changes slowly, or in other words, the magnetic flux is not easily cut. Therefore, in such a magnetic piece, the output obtained from the magnetoresistive element is as shown in FIG. 3a,
The curve becomes sinusoidal with respect to the rotation angle θ, resulting in poor linearity. For this reason, although it can be effective for equipment that requires a sinusoidal output, the inferior linearity has been an obstacle for the most basic equipment that displays the rotation angle as an electrical quantity. The present invention has been made to solve the above-mentioned drawbacks.
A detailed explanation will be given below using the accompanying drawings. FIG. 4 shows a cross-sectional view of the potentiometer.

有底円筒状の磁性体ケース10の底部には、円柱状磁石
11を埋設した非磁性基板12が設置されている。この
磁石11は基板12に穴を穿ちその中に嵌入して構成し
てもよく、また基板12の形成時に同時にインサート成
型してもよい。また、基板12には端子ピン13が磁石
同様に埋設され、一端はケース10の外に突出し、他端
はケース10の内側に突出して端子板14と係合し、且
つプリント配線に接続されている。磁石11の磁極面に
は磁気抵抗素子15が貼着され、その電極に接続したリ
ード線或はリードフレームは端子板14上のプリント配
線に接続されている。
A non-magnetic substrate 12 in which a cylindrical magnet 11 is embedded is installed at the bottom of the bottomed cylindrical magnetic case 10 . The magnet 11 may be constructed by drilling a hole in the substrate 12 and fitting into the hole, or may be insert-molded at the same time as the substrate 12 is formed. Further, a terminal pin 13 is embedded in the board 12 like a magnet, one end protrudes outside the case 10, the other end projects inside the case 10, engages with the terminal plate 14, and is connected to the printed wiring. There is. A magnetoresistive element 15 is attached to the magnetic pole surface of the magnet 11, and a lead wire or a lead frame connected to the electrode is connected to a printed wiring on a terminal board 14.

磁性体ケース10の内側には、肉厚の円筒状非磁性構体
16が嵌挿され、構体16の貫通孔17にはベアリング
18,19に支持された非磁性材の回転シヤフト20が
回転自在に軸着されている。
A thick cylindrical non-magnetic structure 16 is fitted inside the magnetic case 10, and a rotating shaft 20 made of a non-magnetic material supported by bearings 18 and 19 is rotatably inserted into the through hole 17 of the structure 16. It is attached to the shaft.

シヤJャg20の先端には図のように軸方向に磁極配置さ
れた断面が平行四辺形の永久磁石21が固着され、シヤ
フト20の回転により磁気抵抗素子15に作用する磁束
密度を変化させる。蓋板22は磁性体ケース10或は非
磁性構体16に図示しないネジにより固定されている。
A permanent magnet 21 having a parallelogram cross section and having magnetic poles arranged in the axial direction is fixed to the tip of the shaft 20 as shown in the figure, and the rotation of the shaft 20 changes the magnetic flux density acting on the magnetoresistive element 15. The cover plate 22 is fixed to the magnetic case 10 or the non-magnetic structure 16 with screws (not shown).

蓋板22および磁性体ケース10は電磁シールドとして
働き、また磁石11および21の磁路としても作用する
。回転シヤフト20に対する磁石21の固定は、シヤフ
ト20の先端を第5図のように断面U形に削り取り、磁
石21をエボキシ等の接着剤で貼着している。
The cover plate 22 and the magnetic case 10 function as an electromagnetic shield and also function as a magnetic path for the magnets 11 and 21. The magnet 21 is fixed to the rotating shaft 20 by cutting off the tip of the shaft 20 into a U-shaped cross section as shown in FIG. 5, and pasting the magnet 21 with an adhesive such as epoxy.

このようにすると、接着面積が大きくなり且つ磁石21
を両側から抱込むように貼着するので堅固に固定される
。回転シヤフト20の回転軸と垂直な面に於ける磁石2
1の面積は、第6図に示すように、磁気抵抗素子15を
環状の3端子素子として構成した場合、感磁区分15a
,15bの一方、例えば15aより十分大きくなるよう
に選定されている。
In this way, the adhesive area becomes large and the magnet 21
Since it is pasted in such a way that it is hugged from both sides, it is firmly fixed. Magnet 2 in a plane perpendicular to the rotation axis of the rotating shaft 20
As shown in FIG. 6, when the magnetoresistive element 15 is configured as an annular three-terminal element, the area of
, 15b, for example, is selected to be sufficiently larger than 15a.

そして平行四辺形の磁石21の一辺は回転シヤフト20
の回転軸23を通るように位置決めされている。磁石2
1の最適設計は第1図の破線で示すように、一辺が半円
の直径2t,となり、他の辺が半円の半径T,となる長
方形の断面となれば良い。なお、磁気抵抗素子15に於
ける端子電極24,25の間だは電源が接続され、端子
電極26から出力が引出される。
One side of the parallelogram magnet 21 is the rotating shaft 20.
It is positioned so as to pass through the rotation axis 23 of. magnet 2
The optimal design for 1 should be a rectangular cross section with one side having a semicircle diameter 2t and the other side having a semicircle radius T, as shown by the broken line in FIG. Note that a power source is connected between the terminal electrodes 24 and 25 in the magnetoresistive element 15, and an output is drawn from the terminal electrode 26.

上述の構成に於て、回転シヤフト20を回転すると、磁
石21に於ける第1図の破線で示す長方形の磁極面が磁
束B2を磁気抵抗素子15に作用する。
In the above configuration, when the rotary shaft 20 is rotated, the rectangular magnetic pole surface of the magnet 21 shown by the broken line in FIG. 1 applies magnetic flux B2 to the magnetoresistive element 15.

磁気抵抗素子15が受ける磁束密度Bは、第2図の曲線
bで示すように、磁極の縁の部位で立上りの鋭(・且つ
磁束密度が均一分布した特性になる。即ち、回転シヤフ
ト20を回転したとき、磁気抵抗素子15が受ける磁束
の移動は、磁束の切れが良いものとなり、換言すれば回
転シヤフト20の回転を忠実に再現するものになる。こ
のような形状の磁石21を用いると、磁気抵抗素子15
からは、第3図bで示すように、シヤフト20の回転角
θに対して直線性の極めて優れた出力が得られる。
As shown by curve b in FIG. When the magneto-resistance element 15 rotates, the movement of the magnetic flux that the magnetoresistive element 15 receives has good cutting of the magnetic flux, in other words, it faithfully reproduces the rotation of the rotary shaft 20. When the magnet 21 having such a shape is used, , magnetoresistive element 15
As shown in FIG. 3b, an output with extremely excellent linearity with respect to the rotation angle θ of the shaft 20 can be obtained.

上述の特性は基板12に設置した磁石11を磁性体片に
置換しても同様である。
The above characteristics are the same even if the magnet 11 installed on the substrate 12 is replaced with a magnetic piece.

また、第1図では磁石21と11は異磁性を向い合せて
吸引態様としているが、同磁極を対向させても良い。こ
の場合、磁気抵抗素子15には回転シヤフト20の回転
により移動する磁石21と基板12に固定された磁石1
1とが反発磁界を形成する部分で有効磁束の作用を受け
ず、それ以外の部分は磁石11から有効磁束の作用を受
けることになる。磁石11と21を上述のように吸引関
係に配置すると、磁石11は常時磁気抵抗素子15にバ
イアス磁界を与えることになるので、磁気抵抗素子の2
乗特性を考慮すると磁気抵抗変化の大きい部分を使用す
ることになり、効率の良い出力が得られる。
Further, in FIG. 1, the magnets 21 and 11 have different magnetic properties facing each other to form an attractive mode, but they may have the same magnetic poles facing each other. In this case, the magnetoresistive element 15 includes a magnet 21 that moves due to the rotation of the rotating shaft 20 and a magnet 1 that is fixed to the substrate 12.
The portion where magnet 11 forms a repulsion magnetic field is not affected by the effective magnetic flux, and the other portions are affected by the effective magnetic flux from the magnet 11. When the magnets 11 and 21 are arranged in an attractive relationship as described above, the magnet 11 always applies a bias magnetic field to the magnetoresistive element 15, so that two of the magnetoresistive elements
Considering the multiplication characteristic, a portion with a large change in magnetic resistance is used, resulting in a highly efficient output.

本発明は上述のように、回転シヤフトに磁石を取付けて
いるから、磁性片の場合のような磁気抵抗素子に作用す
る磁束の広がりが少なく、また磁気抵抗素子と向い合う
側の磁極を平行四辺形に構成しているため、磁気抵抗素
子に作用する磁束の磁極の縁に於ける立上りを鋭く出来
、且つ均一な磁束密度の磁界を磁気抵抗素子に与えるこ
とが出来るので、磁気抵抗素子から直線性の極めて良好
な出力を得ることが出来る。
As described above, in the present invention, since the magnet is attached to the rotating shaft, the spread of the magnetic flux acting on the magnetoresistive element is small, unlike in the case of a magnetic piece, and the magnetic pole on the side facing the magnetoresistive element is arranged on a parallelogram. Because it is configured in a shape, it is possible to make the rise of the magnetic flux acting on the magnetoresistive element sharp at the edge of the magnetic pole, and to apply a magnetic field with uniform magnetic flux density to the magnetoresistive element, so that it is possible to make a straight line from the magnetoresistive element. It is possible to obtain output with extremely good performance.

また、本発明のポテンシヨメータでは、回転シヤフトに
固定する磁石を長方体形状のままで使用するから、大き
な磁石か切出した状態で使用出来るので、従来のように
半円形の磁石に加工する必要もないので材料の損失(半
円形加工のときは削つた他の半分は捨てる)が少く、価
格上の利点が増大する。
In addition, in the potentiometer of the present invention, since the magnet fixed to the rotating shaft is used as a rectangular parallelepiped, it can be used as a large cut-out magnet, instead of being processed into a semicircular magnet as in the conventional case. Since it is not necessary, there is less loss of material (when machining a semicircle, the other half of the cut is discarded), and the cost advantage increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転シヤフトに固定した磁石から得られる本発
明と従来例を比較した磁界形状図、第2図は第1図の磁
石の磁束密度の分布図、第3図は本発明例と従来例を比
較した回転シヤフトの回転角に対する出力電圧特性図、
第4図は本発明ポテンシヨメータの断面図、第5図は本
発明の回転シヤフトと磁石の関係を示す平面図、第6図
は磁気抵抗素子と磁石の磁極面の関係を示す概略図であ
る。 図中の10は磁性体ケース、11,21は磁石、12は
基板、15は磁気抵抗素子、20は回転シヤフトである
Figure 1 is a diagram of the shape of the magnetic field obtained from a magnet fixed to a rotating shaft, comparing the present invention and the conventional example, Figure 2 is a distribution diagram of the magnetic flux density of the magnet in Figure 1, and Figure 3 is the present invention example and the conventional example. Output voltage characteristic diagram against rotation angle of rotating shaft comparing examples,
FIG. 4 is a sectional view of the potentiometer of the present invention, FIG. 5 is a plan view showing the relationship between the rotating shaft and the magnet of the present invention, and FIG. 6 is a schematic diagram showing the relationship between the magnetic resistance element and the magnetic pole surface of the magnet. be. In the figure, 10 is a magnetic case, 11 and 21 are magnets, 12 is a substrate, 15 is a magnetic resistance element, and 20 is a rotating shaft.

Claims (1)

【特許請求の範囲】[Claims] 1 回転シャフトの先端に磁極板が平行四辺形に構成さ
れた永久磁石を固定し、前記シャフトを回転したとき前
記磁極面に近接して配置した磁気抵抗素子に磁束密度変
化の大きい磁界を作用する構成としたポテンショメータ
1. A permanent magnet with a parallelogram-shaped magnetic pole plate is fixed to the tip of a rotating shaft, and when the shaft is rotated, a magnetic field with a large change in magnetic flux density is applied to a magnetoresistive element placed close to the magnetic pole surface. Potentiometer configured.
JP51131383A 1976-11-01 1976-11-01 potentiometer Expired JPS5931879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51131383A JPS5931879B2 (en) 1976-11-01 1976-11-01 potentiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51131383A JPS5931879B2 (en) 1976-11-01 1976-11-01 potentiometer

Publications (2)

Publication Number Publication Date
JPS5355764A JPS5355764A (en) 1978-05-20
JPS5931879B2 true JPS5931879B2 (en) 1984-08-04

Family

ID=15056659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51131383A Expired JPS5931879B2 (en) 1976-11-01 1976-11-01 potentiometer

Country Status (1)

Country Link
JP (1) JPS5931879B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834141B2 (en) * 1987-02-02 1996-03-29 日本電装株式会社 Non-contact position sensor
JPH0785441B2 (en) * 1986-07-29 1995-09-13 日本電装株式会社 Rotation angle detector

Also Published As

Publication number Publication date
JPS5355764A (en) 1978-05-20

Similar Documents

Publication Publication Date Title
KR900007100B1 (en) Non-contact potentiometer
US4754221A (en) Position detecting apparatus for detecting a signal magnetic field indicative of a desired position
US4125821A (en) Potentiometer providing a non-linear output
JPH02291005A (en) Target value setting device for integrated circuit
JP2734759B2 (en) Rotation detection device
JPS5931879B2 (en) potentiometer
KR900005759B1 (en) Electrical motor with improved tachometer generator
JPH0720218A (en) Magnetic sensor
JP3061225B2 (en) Magneto-electric conversion type rotation angle sensor
JP3186258B2 (en) Non-contact potentiometer
JP3510075B2 (en) Method of magnetizing magnetic material and magnetic potentiometer using the magnetic material
JPH0777164B2 (en) Non-contact type potentiometer
JPH01110215A (en) Angle of rotation sensor
JPH0777165B2 (en) Non-contact type potentiometer
JPH08189932A (en) Pickup sensor, and speed sensor using it
JPS59142417A (en) Magnetism detecting device
JPS5818298Y2 (en) potentiometer
JPS6032997B2 (en) polyphase potentiometer
JPS63161861A (en) Moving-coil type motor
JPH077725B2 (en) Non-contact type potentiometer
JPH0396287A (en) Noncontact position sensor
JPS61186814A (en) Magneto-resistance effect type element
JPS6041476B2 (en) Contactless magnetic potentiometer
JPS54121911A (en) Rotary position signal generator
JPS6354782A (en) Noncontact type potentiometer