JPS5931866B2 - Method for manufacturing Schottky barrier semiconductor device - Google Patents

Method for manufacturing Schottky barrier semiconductor device

Info

Publication number
JPS5931866B2
JPS5931866B2 JP14165876A JP14165876A JPS5931866B2 JP S5931866 B2 JPS5931866 B2 JP S5931866B2 JP 14165876 A JP14165876 A JP 14165876A JP 14165876 A JP14165876 A JP 14165876A JP S5931866 B2 JPS5931866 B2 JP S5931866B2
Authority
JP
Japan
Prior art keywords
semiconductor region
semiconductor
barrier metal
schottky barrier
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14165876A
Other languages
Japanese (ja)
Other versions
JPS5365671A (en
Inventor
愛一郎 奈良
久雄 近藤
政夫 住吉
秀彰 池川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14165876A priority Critical patent/JPS5931866B2/en
Publication of JPS5365671A publication Critical patent/JPS5365671A/en
Publication of JPS5931866B2 publication Critical patent/JPS5931866B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 この発明&L逆方向リーク電流が小さく、しかも製造容
易なショットキバリヤ半導体装置の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention &L relates to a method of manufacturing a Schottky barrier semiconductor device which has a small reverse leakage current and is easy to manufacture.

ショットキバリヤダイオード(以下S、B、D)といラ
)は一般に第1図に示すように・半導体基板1の上主表
面に酸化シリコンなどの表面保護膜2を設け、この表面
保護膜2の開口からバリヤ金属3を半導体基板1の濃度
の小さい半導体領域12に接合し、ショットキバリヤを
形成したものである。
Schottky barrier diodes (hereinafter referred to as S, B, and D) generally have a surface protective film 2 made of silicon oxide or the like on the upper main surface of a semiconductor substrate 1, and an opening in this surface protective film 2, as shown in FIG. A Schottky barrier is formed by bonding a barrier metal 3 to a low concentration semiconductor region 12 of a semiconductor substrate 1.

なお通常半導体基板1は濃度の大きい半導体領域11の
上に、濃度の小さい半導体領域12を有するエピタキシ
ャル基板が用いられる。しかし、この構造において第1
図のバリヤ金属3の半導体領域12との接合部の周縁部
分Aに電界が集中し易いため、逆方向リーク電流が大き
く、理想的な降伏電圧を有するS、B、Dを製造するこ
とは困難であつた。そこで、最近逆方向リーク電流を小
さくする工夫がいろいろ提案されている。
Note that the semiconductor substrate 1 is usually an epitaxial substrate having a semiconductor region 12 with a low concentration on a semiconductor region 11 with a high concentration. However, in this structure, the first
Since the electric field tends to concentrate in the peripheral part A of the junction between the barrier metal 3 and the semiconductor region 12 in the figure, the reverse leakage current is large, making it difficult to manufacture S, B, and D with ideal breakdown voltages. It was hot. Therefore, various methods have been recently proposed to reduce the reverse leakage current.

例えば第2図aのように、第1図の周縁部分Aに相当す
る個所にp+ガードリング4を設けるもの、あるいはプ
レーナ構造そのものに変形を加える手段、例えば最も実
用的なものとして第2図bのように、半導体基板1を1
μm以上深くエッチングして電極周縁部分に曲率部をも
たせる方法などが開発されている。第2図aに示したガ
ードリング構造によれば確かに逆方向耐圧の向上は得ら
れるが、一方p+ガードリング4とn型半導体との間に
p+n接合ができるため、ここから少数キヤリヤの注人
がおこつて高周波特性を悪くする。
For example, as shown in Fig. 2a, a p+ guard ring 4 is provided at a location corresponding to the peripheral edge portion A in Fig. 1, or a means of deforming the planar structure itself, for example, the most practical method is shown in Fig. 2b. As shown, the semiconductor substrate 1 is
A method has been developed in which the electrode is etched to a depth of .mu.m or more to create a curved portion at the peripheral edge of the electrode. The guard ring structure shown in FIG. 2a certainly improves the reverse breakdown voltage, but on the other hand, a p+n junction is formed between the p+ guard ring 4 and the n-type semiconductor, which causes minority carrier People get angry and make the high frequency characteristics worse.

また、これらとあわぜて、ガードリング構造にはガード
リングの深さだけシリコンの厚さを厚くしなければなら
ないことと、拡散などの熱処理により不純物濃度分布が
変化することなどから、順方向電圧降下が大となるばか
りか、素子の設計が難しくなる欠点がある。また、拡散
工程が増すのでそれだけ製作が複雑となつてコスト高と
なる欠点がある。また、第2図bに示した半導体表面を
深くエツチングする方法は電極周縁の電界集中を弱め、
逆方向リーク電流を少なくし、逆方向耐圧を理論値近く
にまで向上できることが、p−n接合によるプレーナ型
の素子により理論的にも実験的にも確認され公知の事実
となつている。
In addition, because the guard ring structure requires the thickness of the silicon to be thickened by the depth of the guard ring, and because the impurity concentration distribution changes due to heat treatment such as diffusion, the forward voltage This has the disadvantage that not only the drop becomes large, but also the design of the element becomes difficult. Furthermore, since the number of diffusion steps is increased, the manufacturing process becomes more complicated and the cost becomes higher. In addition, the method of deeply etching the semiconductor surface shown in Figure 2b weakens the electric field concentration around the electrode,
It has been theoretically and experimentally confirmed that the reverse leakage current can be reduced and the reverse breakdown voltage can be improved to near the theoretical value using a planar type element using a pn junction, and it has become a well-known fact.

しかし、この構造では製造工程上、半導体基板のみを選
択的に化学エツチングするため、バリヤ金属を形成して
も第2図bのように表面保護膜のひさし部5が残り、ボ
ード6が形成され易いため、実際上従来のプレーナ型の
ものと同程度の逆方向耐圧しか得られないのが現状であ
る。その原因は、ボード6部分において、表面保護膜の
ひさし部5直下の半導体領域12上にバリヤ金属が付着
しないためであることが判明した。そこで我々は先にひ
さし部直下にもバリヤ金属を付着させる構造のS.B.
Dを提案した。
However, in this structure, only the semiconductor substrate is selectively chemically etched during the manufacturing process, so even if the barrier metal is formed, the eaves 5 of the surface protection film remain as shown in FIG. 2b, and the board 6 is not formed. Because of its ease of use, the current situation is that it is actually only possible to obtain a reverse breakdown voltage comparable to that of the conventional planar type. It has been found that the reason for this is that the barrier metal does not adhere to the semiconductor region 12 directly under the eaves portion 5 of the surface protection film in the board 6 portion. Therefore, we first developed an S. B.
I suggested D.

(特願昭50−130269号)この構造の特徴はバリ
ヤ金属をメツキ法によつて形成することである。第2図
Cに示したものが、この方法によつて製造したS.B.
Dの断面図である。このものは製造方法が簡単で、極め
て高性能な即ち逆方向リーク電流が小さいS.B.Dを
提供する。しかし、製造ロッドによつては逆方向リーク
電流が大きく期待される降伏電圧が得られない場合があ
る。そこで、その原因を調べた結果、リーク電流は半導
体領域12と表面保護膜2及びバリヤ金属3の界面Bか
ら生じていることがわかつた。この界面Bは表面保混膜
2の形成方法によつては、不純物やある種の電荷がたま
り易く、また、歪などの機械的なストレス等が発生し易
い個所である。この発明は、メツキ法によつてこの様な
界面Bにバリヤ金属を付着させ.ない構造を有するS.
B.Dの製造方法を提案し、上記の欠点をなくす様にし
たものである。
(Japanese Patent Application No. 50-130269) A feature of this structure is that the barrier metal is formed by a plating method. The one shown in FIG. 2C is the S. B.
It is a sectional view of D. This product is easy to manufacture and has extremely high performance, ie, a small reverse leakage current. B. Provide D. However, depending on the manufactured rod, the reverse leakage current may be large and the expected breakdown voltage may not be obtained. As a result of investigating the cause, it was found that the leakage current was generated from the interface B between the semiconductor region 12, the surface protection film 2, and the barrier metal 3. This interface B is a location where impurities and certain kinds of charges are likely to accumulate, and where mechanical stress such as distortion is likely to occur, depending on the method of forming the surface mixing film 2. In this invention, a barrier metal is attached to such an interface B by a plating method. S. has no structure.
B. This paper proposes a manufacturing method for D, which eliminates the above-mentioned drawbacks.

この発明により製造したSBDの一実施例の説明を第3
図を用いて行なう。
An explanation of one embodiment of the SBD manufactured according to the present invention is given in the third section.
Do this using diagrams.

図において、1〜3は第1図、第2図に示したものと同
じで、7はバリヤ金属3の上に形成した電極、8は半導
体基体1の下主面に設けたオーミツク電極、21は表面
保護膜の開口である。ここで、半導体基板1としては、
n+−nの従来構造の上へさらにn一層半導体領域13
をエピタキシヤル成長したものを用いる。ここで、キヤ
リヤ濃度はNn+(n+半導体領域11)〉Nn(n層
半導体領域12)〉〉Nn−(n一半導体領域13)の
関係にする。この構造の半導体領域13表面を酸化シリ
コン等の表面保護膜2で覆い、バリヤ金属形成用の開口
21を通常の写真製版技術を用いてあける。さらに、露
出した半導体表面を深くエツチングする。この深さdは
1〜10μm程度である。そして、dはn層の厚みTm
及びn一層の厚みTn−の関係において、が成立する様
にする。
In the figure, 1 to 3 are the same as those shown in FIGS. 1 and 2, 7 is an electrode formed on the barrier metal 3, 8 is an ohmic electrode provided on the lower main surface of the semiconductor substrate 1, and 21 is an opening in the surface protective film. Here, as the semiconductor substrate 1,
On top of the n+-n conventional structure, an n-layer semiconductor region 13 is added.
The one grown epitaxially is used. Here, the carrier concentration is in the relationship Nn+ (n+ semiconductor region 11)>Nn (n layer semiconductor region 12)>>Nn- (n- semiconductor region 13). The surface of the semiconductor region 13 of this structure is covered with a surface protective film 2 made of silicon oxide or the like, and an opening 21 for forming a barrier metal is opened using a normal photolithography technique. Furthermore, the exposed semiconductor surface is deeply etched. This depth d is about 1 to 10 μm. And d is the thickness Tm of the n layer
and n is the thickness of one layer Tn-, so that the following holds true.

Tn−は0.5〜1.0μmで十分であるが、あまり薄
いと表面保護膜との界面の影響が出やすくなる。また、
Tn−キdの場合、バリヤ金属3とn−n一層境界線の
なす角θが180Cに近くなり、再びこの点に電界の集
中が起こり、半導体基板1を深くエツチングして曲率を
つけた効果が無くなつてしまう。だからn一層の厚みは
Dl7)0.1〜0.5倍程度が適当である。次に、深
くエツチングした半導体基体にバリヤ金属として、Nl
,Pt,Au等の金属又はNiPd等の合金を電気メツ
キする。電気メツキの場合、析出速度は電気量に比例す
る。
It is sufficient for Tn- to be 0.5 to 1.0 μm, but if it is too thin, the interface with the surface protective film tends to be affected. Also,
In the case of Tn-kid, the angle θ between the barrier metal 3 and the n-n layer boundary line approaches 180C, and the electric field is again concentrated at this point, resulting in the effect of deeply etching the semiconductor substrate 1 and creating a curvature. will disappear. Therefore, the appropriate thickness of the n layer is about 0.1 to 0.5 times Dl7). Next, Nl was applied as a barrier metal to the deeply etched semiconductor substrate.
, Pt, Au, or alloys such as NiPd. In the case of electroplating, the deposition rate is proportional to the amount of electricity.

そこで、n一層の比抵抗をn層のそれに比べて十分に大
きくしてやると、電流は大部分n層を流れ、n一層は流
れないことは容易に理解できるであろう。このためバリ
ヤ電極はn層が露出している部分のみ選択的に形成され
る。その周縁の曲率が大きいため電界の集中はほとんど
起こらず、しかも、従来の様に表面保護膜の影響も受け
難い。以上の説明でわかる様に、逆方向リーク電流の小
さなS.B.Dが簡単な方法で得られ、実用的価値は非
常に高い。次に本発明による製造方法の一実施例につい
て説明する。
Therefore, it is easy to understand that if the specific resistance of the n-layer is made sufficiently larger than that of the n-layer, most of the current will flow through the n-layer and not through the n-layer. Therefore, the barrier electrode is selectively formed only in the exposed portion of the n-layer. Because the curvature of its periphery is large, concentration of electric field hardly occurs, and it is not easily affected by the surface protective film as in the conventional case. As can be seen from the above explanation, S. B. D can be obtained by a simple method and has very high practical value. Next, an embodiment of the manufacturing method according to the present invention will be described.

有機溶剤、例えばトリクレン等により洗浄処理したn−
Siウエハ一1の上主表面に熱酸化によつてSlO2膜
2を1.0μm成膜する。ここでn−Siウエハ一にお
いて各層のキヤリヤ濃度及び厚みは次の様にとる。この
あと写真製版技術を用いてバリヤ金属形成用の開口21
をあけて、この開口21からSi面を露出させる。
n- that has been washed with an organic solvent such as trichlene, etc.
A 1.0 μm thick SlO2 film 2 is formed on the upper main surface of the Si wafer 1 by thermal oxidation. Here, the carrier concentration and thickness of each layer in the n-Si wafer are determined as follows. After this, the opening 21 for barrier metal formation is formed using photolithography technology.
The opening 21 is opened to expose the Si surface.

露出したS1面を通常用いられる弗酸、硝酸からなるエ
ツチング液で化学エツチングし、深さd二4μmの凹部
を形成する。
The exposed S1 surface is chemically etched with a commonly used etching solution consisting of hydrofluoric acid and nitric acid to form a recess with a depth d24 μm.

そして、n−Siウエハ1を陰極にしてバリヤ金属3を
電気メツキする。その時の電流密度としては0.2A/
Cd以下で行なうと、n一層への析出はほとんど起こら
ない。メツキ液としてNiPd合金メツキ液を用いる。
メツキの膜厚は0.05〜0.5μmが望ましい。0.
05μmより薄いとピンホールができ易く、その上に成
膜する金属(例えば金)がSi中に拡散する。
Then, barrier metal 3 is electroplated using n-Si wafer 1 as a cathode. The current density at that time is 0.2A/
If the concentration is below Cd, precipitation into the n layer will hardly occur. A NiPd alloy plating solution is used as the plating solution.
The thickness of the plating is preferably 0.05 to 0.5 μm. 0.
If it is thinner than 0.5 μm, pinholes are likely to be formed, and the metal (for example, gold) formed thereon will diffuse into the Si.

逆に、0.5μmより厚くなるとメツキ膜の内部歪が大
きくなつて剥離し易くなる。
On the other hand, if it is thicker than 0.5 μm, the internal strain of the plating film becomes large and it becomes easy to peel off.

次にバリヤ金属3を保護するための電極7を形成する。
この電極7の形成はメツキ法によつて金が適当である。
この場合でも、n一層の上には形成されない。最後に半
導体基体1の下主面にニツケル等のオーミツク電極8を
形成すればS.B.Dは完成する。以上説明した様に、
表面保護膜を有する半導体基板を部分的にエツチングす
ると、必然的に半導体基板がアンダーカツトされて表面
保護膜のひさし部が生じる。従来のバリヤ金属形成法で
はひさし部の下の部分にはバリヤ金属が付着せず、逆方
向リーク電流が大きかつた。しかし、この発明を用いて
、ひさし部の下の部分にもバリヤ金属を成膜し、しかも
表面保護膜と接する部分には成膜しない電極構造にすれ
ば、逆方向リーク電流の小さい優れたS.B.Dを再現
性良く得ることができる。第4図には、上記実施例にお
いて面積約8.5dにおける逆方向電圧、電流特性の一
例を示した。第4図イは従来のものの特性で、リーク電
流が大きく耐圧も低い。第4図口は本発明による特性で
、リーク電流は非常に小さく耐圧も高い。また、n一層
の有無によるS.B.Dの耐圧歩止まりを第5図に示ず
。チツプ数を50個10ツトから任意に選び出し、耐圧
に対するチツプ数を示している。第5図ハはn一層の無
い場合で、表面保護膜の影響を受け易く、35V付近で
ピークを持つなだらかな曲線となつている。第5図二は
本発明によるn一層が有る場合で、40付近でするどい
ピークを持ち、耐圧の歩止まりが著しく改善されている
のがわかる。以上基板としてn−Siウエハ一を用いる
場合について説明したが、P−Siはいうまでもなく、
他の半導体例えば、Ge,GaAs及びへゼロエピタキ
シャル成長半導体にも同様の効果がある。
Next, an electrode 7 for protecting the barrier metal 3 is formed.
This electrode 7 is suitably formed using gold by a plating method.
Even in this case, it is not formed on the n layer. Finally, if an ohmic electrode 8 made of nickel or the like is formed on the lower main surface of the semiconductor substrate 1, the S.I. B. D is completed. As explained above,
When a semiconductor substrate having a surface protection film is partially etched, the semiconductor substrate is inevitably undercut, resulting in an overhang of the surface protection film. In the conventional barrier metal forming method, the barrier metal did not adhere to the lower part of the eaves, resulting in a large reverse leakage current. However, if this invention is used to create an electrode structure in which the barrier metal is deposited also on the lower part of the eaves, but not on the part in contact with the surface protective film, an excellent S with low reverse leakage current can be achieved. .. B. D can be obtained with good reproducibility. FIG. 4 shows an example of reverse voltage and current characteristics in an area of about 8.5 d in the above embodiment. Figure 4A shows the characteristics of the conventional device, which has a large leakage current and a low breakdown voltage. Figure 4 shows the characteristics according to the present invention, and the leakage current is very small and the withstand voltage is high. In addition, S. B. The pressure yield of D is not shown in Figure 5. The number of chips is arbitrarily selected from 50 pieces and 10 pieces, and the number of chips with respect to withstand voltage is shown. FIG. 5C shows the case without the n layer, which is easily influenced by the surface protective film and has a gentle curve with a peak around 35V. FIG. 5 2 shows the case where there is one layer of n according to the present invention, which has a sharp peak around 40, and it can be seen that the yield of withstand voltage is significantly improved. Although the case where an n-Si wafer is used as the substrate has been explained above, it goes without saying that P-Si can also be used as a substrate.
Other semiconductors such as Ge, GaAs, and epitaxially grown semiconductors have similar effects.

なお、実施例ではダイオードについて説明したが、この
発明がダイオード以外のシヨツトキバリャ電極を有する
半導体装置に適用できることはいうまでもない。以上説
明した如く、この発明によれば、電気メツキ法により所
定の第2の半導体領域にシヨツトキバリヤを形成し、さ
らに表面保護膜と半導体基板の境界での耐圧低下を防い
だもので、高耐圧で歩留りのよいシヨツトキバリヤ半導
体装置が得られる。
Although the embodiments have been described with respect to diodes, it goes without saying that the present invention can be applied to semiconductor devices having shot barrier electrodes other than diodes. As explained above, according to the present invention, a shot barrier is formed in a predetermined second semiconductor region by electroplating, and a drop in breakdown voltage at the boundary between the surface protective film and the semiconductor substrate is prevented, and a high breakdown voltage is achieved. A shot barrier semiconductor device with high yield can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般のS.B.Dを示す断面図、第2図a−c
は従来のS.B.Dの改良構造を示す断面図、第3図は
この発明を適用して製造したS.B.Dの断面図、第4
図はこの発明のS.B.Dの逆方向特性図、第5図はそ
の耐圧歩止まりを示した図である。 図中、1は半導体基板、2は表面保護膜、3はバリヤ金
属、5はひさし部、11は第1の半導体領域、12は第
2の半導体領域、13は第3の半導体領域である。
Figure 1 shows a general S. B. Cross-sectional view showing D, Figure 2 a-c
is the conventional S. B. FIG. 3 is a sectional view showing an improved structure of S.D. manufactured by applying this invention. B. Sectional view of D, 4th
The figure shows the S. B. The reverse characteristic diagram of D, FIG. 5, is a diagram showing the withstand voltage yield. In the figure, 1 is a semiconductor substrate, 2 is a surface protective film, 3 is a barrier metal, 5 is an eaves portion, 11 is a first semiconductor region, 12 is a second semiconductor region, and 13 is a third semiconductor region.

Claims (1)

【特許請求の範囲】 1 不純物濃度の大きい第1の半導体領域上にこれと同
一導電型を有し、これより不純物濃度が小さい第2の半
導体領域を形成し、さらにこの第2の半導体領域上にこ
れと同一導電型を有し、これより不純物濃度が十分に小
さい第3の半導体領域を形成する工程、上記第3の半導
体領域上に表面保護膜を形成する工程、上記表面保護膜
の一部を写真製版工程により取り去り、上記第3の半導
体領域の表面を露出する工程、この露出した半導体表面
から、エアチングし、第3の半導体領域を越えて第2の
半導体領域内に達する凹部を形成する工程、上記凹部内
において上記第1の半導体領域を電極にして電気メッキ
法により上記第2の半導体領域の露出表面部上にバリヤ
金属層を形成する工程、上記バリヤ金属層上に電極を形
成する工程を含んだショットキバリヤ半導体装置の製造
方法。 2 各半導体領域はシリコンであつて熱酸化により表面
保護膜を形成することを特徴とする特許請求の範囲第1
項記載のショットキバリヤ半導体装置の製造方法。
[Claims] 1. A second semiconductor region having the same conductivity type as the first semiconductor region having a high impurity concentration and having a lower impurity concentration is formed, and further on the second semiconductor region. a step of forming a third semiconductor region having the same conductivity type as the third semiconductor region and having a sufficiently lower impurity concentration than the third semiconductor region; a step of forming a surface protection film on the third semiconductor region; a step of removing a portion by a photolithography process to expose the surface of the third semiconductor region, and performing air etching from the exposed semiconductor surface to form a recess extending beyond the third semiconductor region into the second semiconductor region. forming a barrier metal layer on the exposed surface of the second semiconductor region by electroplating using the first semiconductor region as an electrode in the recess; forming an electrode on the barrier metal layer; A method for manufacturing a Schottky barrier semiconductor device, including the step of: 2. Claim 1, wherein each semiconductor region is made of silicon and a surface protective film is formed by thermal oxidation.
A method for manufacturing a Schottky barrier semiconductor device as described in 1.
JP14165876A 1976-11-24 1976-11-24 Method for manufacturing Schottky barrier semiconductor device Expired JPS5931866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14165876A JPS5931866B2 (en) 1976-11-24 1976-11-24 Method for manufacturing Schottky barrier semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14165876A JPS5931866B2 (en) 1976-11-24 1976-11-24 Method for manufacturing Schottky barrier semiconductor device

Publications (2)

Publication Number Publication Date
JPS5365671A JPS5365671A (en) 1978-06-12
JPS5931866B2 true JPS5931866B2 (en) 1984-08-04

Family

ID=15297153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14165876A Expired JPS5931866B2 (en) 1976-11-24 1976-11-24 Method for manufacturing Schottky barrier semiconductor device

Country Status (1)

Country Link
JP (1) JPS5931866B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134780A (en) * 1980-03-26 1981-10-21 Sanyo Electric Co Ltd Manufacture of beam lead type schottky diode
US7692222B2 (en) * 2006-11-07 2010-04-06 Raytheon Company Atomic layer deposition in the formation of gate structures for III-V semiconductor

Also Published As

Publication number Publication date
JPS5365671A (en) 1978-06-12

Similar Documents

Publication Publication Date Title
US4206540A (en) Schottky device and method of manufacture using palladium and platinum intermetallic alloys and titanium barrier
US3550260A (en) Method for making a hot carrier pn-diode
US4899199A (en) Schottky diode with titanium or like layer contacting the dielectric layer
CN108682695A (en) A kind of high current low forward voltage drop SiC schottky diode chip and preparation method thereof
JPH0216591B2 (en)
US3913217A (en) Method of producing a semiconductor device
CN110600535A (en) Schottky diode chip and preparation method thereof
US4223327A (en) Nickel-palladium Schottky junction in a cavity
US3956527A (en) Dielectrically isolated Schottky Barrier structure and method of forming the same
JPS6235580A (en) Monolithic temperature compensation type voltage reference diode
JPS5931866B2 (en) Method for manufacturing Schottky barrier semiconductor device
CN208478345U (en) A kind of high current low forward voltage drop SiC schottky diode chip
JPH06268202A (en) High withstand voltage silicon carbide schottky diode
US4980749A (en) P-N junction semiconductor device and method of fabrication
CN210272370U (en) Schottky diode chip
JP3067034B2 (en) Schottky barrier semiconductor device
EP0093866A2 (en) Schottky diode
JP2542718B2 (en) Method for manufacturing DHD type diode
JP3466543B2 (en) Schottky barrier type semiconductor device and manufacturing method thereof
JPS5931992B2 (en) semiconductor rectifier
US3493442A (en) High voltage semiconductor device
JPH06224410A (en) Manufacture of schottky barrier diode
JP3620344B2 (en) Schottky barrier diode and manufacturing method thereof
JPS5826671B2 (en) Teiden Atsudaio - Donoseizouhouhou
JPS5938730B2 (en) Manufacturing method of semiconductor device