JPS5931992B2 - semiconductor rectifier - Google Patents

semiconductor rectifier

Info

Publication number
JPS5931992B2
JPS5931992B2 JP15200276A JP15200276A JPS5931992B2 JP S5931992 B2 JPS5931992 B2 JP S5931992B2 JP 15200276 A JP15200276 A JP 15200276A JP 15200276 A JP15200276 A JP 15200276A JP S5931992 B2 JPS5931992 B2 JP S5931992B2
Authority
JP
Japan
Prior art keywords
single crystal
layer
crystal layer
type
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15200276A
Other languages
Japanese (ja)
Other versions
JPS5376760A (en
Inventor
均 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15200276A priority Critical patent/JPS5931992B2/en
Publication of JPS5376760A publication Critical patent/JPS5376760A/en
Publication of JPS5931992B2 publication Critical patent/JPS5931992B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は順方向電位降下が小さくかつ高速の新規なμm
接合ダイオードに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a new μm film with small forward potential drop and high speed.
Regarding junction diodes.

順方向電位降下(以下FVDと略称する。Forward potential drop (hereinafter abbreviated as FVD).

)の小さなダイオードは近年、低電圧大電流の整流回路
、例えばスイッチングレギュレータ等の発展に伴つて需
要が高まつている。従来、FVDの小さなダイオードと
しては金属と半導体の整流性接触を利用したショットキ
ーバリヤダイオードが知られている。
Demand for small diodes ( ) has increased in recent years with the development of low-voltage, large-current rectifier circuits, such as switching regulators. Conventionally, as a small FVD diode, a Schottky barrier diode that utilizes a rectifying contact between a metal and a semiconductor is known.

このショットキーバリヤダイオードはFVDが従来のP
N接合ダイオードと比べて小さいという利点を有する反
面、大電流を流し得るような大面積の整流性接触が均一
に再現性良く得ることが困難でありかつ高温における逆
方向もれ電流特性が従来のPN接合ダイオードと比べて
劣るという欠点を有しているため実用化には難点がある
。本発明者等はFVDを上記ショットキーバリヤダイオ
ードと同等以下にまで改良しかつ高周波特性のすぐれた
新規なPN接合ダイオードを先に提案した(特願昭50
−93109号)。
This Schottky barrier diode has a FVD of conventional P
Although it has the advantage of being smaller than an N-junction diode, it is difficult to obtain a large-area rectifying contact that can carry a large current uniformly and with good reproducibility, and its reverse leakage current characteristics at high temperatures are different from conventional ones. Since it has the disadvantage of being inferior to a PN junction diode, it is difficult to put it into practical use. The present inventors first proposed a new PN junction diode that improved the FVD to the same or lower level as the above-mentioned Schottky barrier diode and had excellent high frequency characteristics (Japanese Patent Application No. 1983
-93109).

第1図は本発明者等にとつては従来例であるダイオード
の構造である。
FIG. 1 shows the structure of a diode which is a conventional example for the present inventors.

図において、n+型半導体単結晶層11に隣接してn型
半導体単結晶層12が形成され、N型単結晶層12の表
面部の一部にp型単結晶層16が形成され、両者の界面
にはPn接合が形成されている。p型単結晶層16を囲
んでp型ガードリング13が形成されている。p型単結
晶層16及びp型ガードリング13の上部にはp型半導
体多結晶層15が形成されている。14は5102保護
層である。
In the figure, an n-type semiconductor single-crystal layer 12 is formed adjacent to an n+-type semiconductor single-crystal layer 11, a p-type single-crystal layer 16 is formed on a part of the surface of the N-type single-crystal layer 12, and both A Pn junction is formed at the interface. A p-type guard ring 13 is formed surrounding the p-type single crystal layer 16. A p-type semiconductor polycrystalline layer 15 is formed above the p-type single crystal layer 16 and the p-type guard ring 13. 14 is a 5102 protective layer.

n型半導体層12の表面上にp型多結晶層15を高温の
気相成長法で堆積する際、p型多結晶層15からの不純
物の拡散により極めて薄いp型シリコン単結層16が形
成される。この種のダイオードはFVDが低く、しかも
逆回復時間trrが小さいという特徴がある。以下にこ
の原理を説明する。Pnn+構造のダイオードのPn接
合においてp層の単位面積あたりの不純物総量Qを小さ
くすることにより、Pn接合ダイオードの順方向電位降
下VFを小さくできることを本発明者等は既に提案して
いる(上掲公報参照)。
When p-type polycrystalline layer 15 is deposited on the surface of n-type semiconductor layer 12 by high-temperature vapor phase growth, an extremely thin p-type silicon single layer 16 is formed by diffusion of impurities from p-type polycrystalline layer 15. be done. This type of diode is characterized by low FVD and short reverse recovery time trr. This principle will be explained below. The present inventors have already proposed that the forward potential drop VF of a Pn junction diode can be reduced by reducing the total amount of impurities per unit area of the p layer in the Pn junction of a Pnn+ structure diode (see above). (see official bulletin).

同aに示したダイオードのFVD(5Qの関係を示した
図で図中DBはn型単結晶層12の厚さである。第2図
bにおける如くQを小さくすることによりFVDが減少
する効果はn型単結晶層12の厚さDBが小さいほど著
しい。この理由を第3図にて説明する。第3図aはDB
が比較的大きい時、bは比較的小さい時を示す。Pnn
+構造ダイオードのFVDは第2図aに示すように接合
での電位降下VJ<15n型単結晶層12での電位降下
VBの和で、即ちF−B+V,と表わされる。
In the figure showing the relationship between FVD (5Q) of the diode shown in Figure 2a, DB in the figure is the thickness of the n-type single crystal layer 12.The effect of reducing FVD by reducing Q as shown in Figure 2b. is more significant as the thickness DB of the n-type single crystal layer 12 becomes smaller.The reason for this will be explained with reference to FIG. 3.
When b is relatively large, b is relatively small. Pnn
As shown in FIG. 2a, the FVD of the + structure diode is expressed as the sum of the potential drop VJ at the junction <15 and the potential drop VB at the n-type single crystal layer 12, that is, F-B+V.

第3図に示す如くp型単結晶層16の不純物総量Qを小
さくすると接合での電位降下VJは低下する。これに対
しn型単結晶層12での電位降下Bは、この層12に注
入される少数キヤリヤが減るため伝導度変調に寄与する
キヤリヤが減少し、VBは増加する。このVBの増加の
度合は伝導度変調にも影響を与えるN型単結晶層12の
厚さDBに強く依存する。すなわちDBを小さくするこ
とは、単にn型単結晶層12の抵抗体としての厚さを薄
くするだけでなく、伝導度変調に寄与するキヤリヤの増
加を促進する効果をも持つため、二重の効果でBの増加
の度合を抑えることになる。このためDBを小さくして
おけばp型単結晶層16の不純物総量Qを小さくするこ
とによりダイオードのFVDを小さくすることができる
。このようにDBは小さければ小さいほど順方向電位降
下VFを小さくすることができるが、一方、所定の逆方
向耐圧を得るためにはDBはある一定値以上の厚さが必
要となるため、n型半導体層12の厚さDBは逆耐圧と
のかね合いから決められる。また、Qを小さくすること
によりFVDを下げることに加えて、n型半導体層12
に注入される少数キヤリヤがQを小さくすることにより
減少するため、逆回復時間Trrも同時に小さくするこ
とができる。
As shown in FIG. 3, when the total amount Q of impurities in the p-type single crystal layer 16 is reduced, the potential drop VJ at the junction is reduced. On the other hand, as for the potential drop B in the n-type single crystal layer 12, the number of minority carriers injected into this layer 12 decreases, so the carriers contributing to conductivity modulation decrease, and VB increases. The degree of increase in VB strongly depends on the thickness DB of the N-type single crystal layer 12, which also affects conductivity modulation. In other words, reducing DB not only reduces the thickness of the n-type single crystal layer 12 as a resistor, but also has the effect of promoting an increase in the number of carriers that contribute to conductivity modulation. The effect is to suppress the degree of increase in B. Therefore, if DB is made small, the FVD of the diode can be made small by making the total amount Q of impurities in the p-type single crystal layer 16 small. In this way, the smaller DB is, the smaller the forward potential drop VF can be, but on the other hand, in order to obtain a predetermined reverse breakdown voltage, DB needs to have a thickness of a certain value or more, so n The thickness DB of the type semiconductor layer 12 is determined in consideration of the reverse breakdown voltage. In addition to lowering FVD by reducing Q, the n-type semiconductor layer 12
Since the number of minority carriers injected into the signal is reduced by reducing Q, the reverse recovery time Trr can also be reduced at the same time.

第1図に示したダイオードに逆方向電圧を印加したとき
の空乏層の拡がりを示したのが第4図である。
FIG. 4 shows the expansion of the depletion layer when a reverse voltage is applied to the diode shown in FIG. 1.

素子の逆耐圧はガードリング部の曲率半径R,、および
n型半導体層12の厚さで決まるが、逆耐圧に寄与する
のは実際のn型半導体層12の厚さDBではなく、ガー
ドリングの深さD,を差し引いたDWである。一方FV
Dに寄与するn型単結晶層12の厚さはDBである。な
おここでp型単結晶層16の厚さは、Qを小さくするた
め極めて薄いので無視できるほど小さいものである。前
述したように、FVDを小さくするためにn型単結晶層
12の厚さはできるだけ小さくする必要があるが、本発
明者にとつては従来例である第1図に示したように、ダ
イオードの逆耐圧を向上するためにガードリングを用い
たものでは、FVDに寄与するn型半導体層12の厚さ
DBは、所定の逆方向耐圧を得るに必要な厚さDVより
も不必要に大きくなつてしまい、ダイオードの低損失化
を図るうえで不利である。しかもガードリングを形成す
ると順電流通電時にp型拡散層のガードリング13から
、n型半導体層12内にホールが注入されn型半導体層
12の少数キヤリヤが増大するため逆回復時間Trrを
増大させる原因になつていた。この様に本発明者にとつ
ては従来例であるガードリング付ダイオードでは、接合
端部での電界集中による逆洩れ電流の増大を防ぐための
ガードリングが、ダイオードの低損失、高速化の防げに
なつていた。
The reverse breakdown voltage of the device is determined by the radius of curvature R of the guard ring portion and the thickness of the n-type semiconductor layer 12, but it is not the actual thickness DB of the n-type semiconductor layer 12 that contributes to the reverse breakdown voltage, but the guard ring. DW is obtained by subtracting the depth D of . On the other hand, FV
The thickness of the n-type single crystal layer 12 contributing to D is DB. Note that the thickness of the p-type single crystal layer 16 is extremely thin in order to reduce Q, so it is so small that it can be ignored. As mentioned above, in order to reduce FVD, it is necessary to make the thickness of the n-type single crystal layer 12 as small as possible, but for the present inventor, as shown in FIG. In the case where a guard ring is used to improve the reverse breakdown voltage of This is disadvantageous in reducing the loss of the diode. Moreover, when a guard ring is formed, holes are injected into the n-type semiconductor layer 12 from the guard ring 13 of the p-type diffusion layer when forward current is applied, increasing the number of minority carriers in the n-type semiconductor layer 12, thereby increasing the reverse recovery time Trr. It was becoming the cause. In this way, the inventor believes that in the conventional example of a diode with a guard ring, the guard ring is used to prevent an increase in reverse leakage current due to electric field concentration at the junction end. I was getting used to it.

本発明の目的は上記の不都合を解決し順方向電位降下、
および逆回復時間の増大を招くことのないダイオードを
提供することにある。
The purpose of the present invention is to solve the above-mentioned disadvantages and to reduce the forward potential drop.
Another object of the present invention is to provide a diode that does not cause an increase in reverse recovery time.

本発明半導体整流装置の特徴とするところは、所定の厚
さを有し表面に凹部を設けた一方導電型の半導体単結晶
層の上記凹部表面に沿つて所定の不純物濃度の他方導電
型の半導体単結晶層を形成したところにある。
The semiconductor rectifying device of the present invention is characterized in that a semiconductor single crystal layer of one conductivity type having a predetermined thickness and a recess provided on its surface is formed with a semiconductor of the other conductivity type having a predetermined impurity concentration along the recess surface. This is where a single crystal layer is formed.

以下本発明の一実施例を図面を用いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

本実施例ダイオードを得るには、(a) n+型シリコ
ン単結晶層11の上にn型シリコン単結晶層12をエピ
タキシヤル形成したシリコン基板上に、(b) 110
0℃130分のスチーム酸化によりSiO2酸化膜14
を1μm形成し、ホトエツチング法によりn型単結晶層
12の一部を露出する。
To obtain the diode of this example, (a) a silicon substrate having an n type silicon single crystal layer 12 epitaxially formed on an n+ type silicon single crystal layer 11 and (b) 110
The SiO2 oxide film 14 was formed by steam oxidation at 0°C for 130 minutes.
is formed to a thickness of 1 μm, and a part of the n-type single crystal layer 12 is exposed by photoetching.

(c)つぎにエピタキシヤル反応炉内で気相エツチング
によりn型単結晶層12の表面露出部分を3μM.の深
さでエツチングし、凹部を設ける。
(c) Next, the exposed surface portion of the n-type single crystal layer 12 is etched by 3 μM by vapor phase etching in an epitaxial reactor. Etch to a depth of 100 mL to create a recess.

(d)つづいてジボランを含むトリクロルシランを用い
たエピタキシヤル法により、900℃の温度で25分多
結晶シリコンを成長させ、p型多結晶シリコン層15を
201tmの厚さに成形する。この多結晶層形成の際、
p型多結晶シリコン層15からボロンが。型シリコン層
12に拡散して、厚さ0.05μと薄くてしかも低不純
物濃度のp型単結晶層21が同時に形成される。その後
p型多結晶層15及びn+型単結晶層11の表面に電極
を蒸着法で形成した後、りード端子をつけダイオードが
完成する。上記工程を経て得られた本実施例ダイオード
の働らきを以下に説明する。
(d) Subsequently, polycrystalline silicon is grown by an epitaxial method using trichlorosilane containing diborane at a temperature of 900° C. for 25 minutes to form a p-type polycrystalline silicon layer 15 to a thickness of 201 tm. During this polycrystalline layer formation,
Boron is released from the p-type polycrystalline silicon layer 15. The p-type single crystal layer 21 is simultaneously formed by diffusion into the type silicon layer 12, which is as thin as 0.05 μm and has a low impurity concentration. Thereafter, electrodes are formed on the surfaces of the p-type polycrystalline layer 15 and the n+-type single-crystalline layer 11 by vapor deposition, and then lead terminals are attached to complete the diode. The function of the diode of this example obtained through the above steps will be explained below.

p型単結晶シリコン層21とn型シリコン層12の境界
面はPn接合が形成され、第5図dのように断面でみる
と整流部分の端部がわん曲している。この部分が、整流
部分の端部における逆電圧印加時の電界集中を緩和させ
るガードリングの役目を果たしている。p型シリコン層
21の不純物濃度は6X1017at0ms/C!!l
であり、100Vの耐圧を得るに十分である。この構造
によればN型シリコン層12の整流部分直下の厚さが薄
くなつているため、従来のガードリング方式に比べ、順
方向電位降下VFを小さくすることができる。またp型
シリコン層21は厚さが0.05μmと非常に薄いため
、整流部の端部における不純物総量は周方向の単位長さ
あたり3×109at0ms/CT!Lである。
A Pn junction is formed at the interface between the p-type single crystal silicon layer 21 and the n-type silicon layer 12, and when viewed in cross section as shown in FIG. 5d, the end of the rectifying portion is curved. This portion serves as a guard ring that alleviates electric field concentration at the end of the rectifying portion when a reverse voltage is applied. The impurity concentration of the p-type silicon layer 21 is 6X1017at0ms/C! ! l
This is sufficient to obtain a withstand voltage of 100V. According to this structure, since the thickness of the N-type silicon layer 12 directly under the rectifying portion is thinner, the forward potential drop VF can be made smaller than in the conventional guard ring method. Furthermore, since the p-type silicon layer 21 has a very thin thickness of 0.05 μm, the total amount of impurities at the end of the rectifying section is 3×10 9 at0 ms/CT per unit length in the circumferential direction! It is L.

これに対し従来の標準的なガードリングでは半径3μm
、不純物濃度が2×1018at001S/mlという
条件では不純物総量はガードリングの周方向の単位長さ
あたり3×1011at0ms/C!RLである。すな
わち本発明による方が、p型不純物総量は2桁小さい。
このため順方向通電時におけるn型シリコン層へのホー
ルの注入はごくわずかで、従来のようにガードリングが
あるために逆回復時間の増大を招くことはない。また、
本発明者等の実験によればDBが30μm以下の時にQ
の低減によつてFVDが低下するという効果が現れる。
また、実用上、Qの上限は1×1016at0ms/d
であり、下限は2×1011at0ms/Crlである
。Qが上記上限より大きな時はFVDが実用上低下しな
い。またQを上記下限より小さくするとp型単結晶層2
1の厚さを小さくしなけ孔ばならず実用上、ダイオード
に必要とされる逆耐圧が得られない。以上詳細に述べた
ように本発明によれば従来に比べより低損失、より高速
度のPn接合ダイオードを得ることができる。
In contrast, conventional standard guard rings have a radius of 3 μm.
, under the condition that the impurity concentration is 2×1018 at001 S/ml, the total amount of impurities is 3×1011 at0 ms/C per unit length in the circumferential direction of the guard ring! It is RL. That is, according to the present invention, the total amount of p-type impurities is two orders of magnitude smaller.
Therefore, the injection of holes into the n-type silicon layer during forward current conduction is very small, and the reverse recovery time does not increase due to the guard ring as in the conventional case. Also,
According to experiments by the inventors, when DB is 30 μm or less, Q
The effect is that the FVD is lowered by the reduction in the FVD.
In addition, in practice, the upper limit of Q is 1×1016at0ms/d
, and the lower limit is 2×10 11 at0 ms/Crl. When Q is larger than the above upper limit, FVD does not decrease in practical terms. Also, if Q is smaller than the above lower limit, the p-type single crystal layer 2
Unless the thickness of the diode is made small, holes will occur and it will not be possible to obtain the reverse breakdown voltage required for a diode in practical use. As described in detail above, according to the present invention, it is possible to obtain a Pn junction diode with lower loss and higher speed than the conventional one.

しかも本発明によれば従来のようにガードリングの拡散
工程が必要ないため、製造工程も従来に比べ短縮できる
利点がある。また前記実施例はn型シリコン層12表面
一部に凹部を形成するエツチングを気相エツチングを用
いて行なつたが、これを他のHF−HNO3系の酸によ
る化学エツチングで行なうこともできる。
Moreover, according to the present invention, there is no need for a guard ring diffusion process as in the conventional method, so there is an advantage that the manufacturing process can be shortened compared to the conventional method. Further, in the above embodiment, etching to form a recess on a part of the surface of the n-type silicon layer 12 was carried out using vapor phase etching, but this can also be carried out by other chemical etching using an HF-HNO3 type acid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明者等にとつては従来のガードリング付低
損失ダイオードの一例を示す図、第2図はp型単結晶層
単位面積あたりの不純物総量Qとダイオードの順方向電
位降下FVDとの関係を示す図、第3図はn型単結晶層
の厚さDBの比較的大きい時aと比較的小さい時のQと
ダイオード各部の電位降下の関係を示す図、第4図は本
発明者等にとつては従来のガードリング付低損失ダイオ
ードの、逆電圧印加時の空乏層ののびを示す図、第5図
は本発明の一実施例の主要製造工程を示した図である。 符号の説明、11・・・・・・n+型半導体単結晶層、
12・・・・・・n型半導体単結晶層、13・・・・・
・p型ガードリング、14・・・・・・SiO2膜、1
5・・・・・・p型半導体多結晶層、16,21・・・
・・・p型半導体単結晶層。
Figure 1 is a diagram showing an example of a conventional low-loss diode with a guard ring, and Figure 2 is a diagram showing the total amount of impurities per unit area of a p-type single crystal layer and the forward potential drop FVD of the diode. Figure 3 is a diagram showing the relationship between Q and potential drop at each part of the diode when the thickness DB of the n-type single crystal layer is relatively large and relatively small. For the inventors, this is a diagram showing the expansion of the depletion layer of a conventional low-loss diode with a guard ring when a reverse voltage is applied, and FIG. 5 is a diagram showing the main manufacturing process of an embodiment of the present invention. . Explanation of symbols, 11...n+ type semiconductor single crystal layer,
12...N-type semiconductor single crystal layer, 13...
・P-type guard ring, 14...SiO2 film, 1
5...p-type semiconductor polycrystalline layer, 16, 21...
...p-type semiconductor single crystal layer.

Claims (1)

【特許請求の範囲】[Claims] 1 一方導電型の第1の半導体単結晶層と、第1の半導
体単結晶層に隣接して形成され、第1の半導体結晶層と
の反対面に凹部を有しかつ第1の半導体単結晶層よりも
低い不純物濃度を有しかつ上記凹部直下の厚さが30μ
m以下である一方導電型の第2の半導体単結晶層と、上
記凹部表面に隣接し凹部形状に沿つて上記第2の半導体
単結晶層との間にPn接合が形成されかつ不純物総量が
2×10^1^1〜10^1^6atoms/cm^2
、である他方導電型の第3の半導体単結晶層と、第3の
半導体単結晶層に隣接しこの層の導電型を決める不純物
の拡散によつて第3の半導体単結晶層の導電型を決める
他方導電型の半導体多結晶層と、上記第1の半導体単結
晶層及び半導体多結晶層にオーミック接触する一対の電
極とを少なくとも具備することを特徴とする半導体整流
装置。
1. A first semiconductor single crystal layer of one conductivity type, and a first semiconductor single crystal formed adjacent to the first semiconductor single crystal layer and having a recessed portion on the opposite surface to the first semiconductor crystal layer. The layer has an impurity concentration lower than that of the layer and has a thickness of 30μ directly below the recess.
A Pn junction is formed between the second semiconductor single crystal layer of one conductivity type having a conductivity of less than m and the second semiconductor single crystal layer adjacent to the recess surface and along the recess shape, and the total amount of impurities is 2. ×10^1^1~10^1^6atoms/cm^2
, and the conductivity type of the third semiconductor single crystal layer is changed by diffusion of an impurity that is adjacent to the third semiconductor single crystal layer and determines the conductivity type of this layer. A semiconductor rectifier comprising at least a semiconductor polycrystalline layer of the other conductivity type, and a pair of electrodes in ohmic contact with the first semiconductor single crystal layer and the semiconductor polycrystalline layer.
JP15200276A 1976-12-20 1976-12-20 semiconductor rectifier Expired JPS5931992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15200276A JPS5931992B2 (en) 1976-12-20 1976-12-20 semiconductor rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15200276A JPS5931992B2 (en) 1976-12-20 1976-12-20 semiconductor rectifier

Publications (2)

Publication Number Publication Date
JPS5376760A JPS5376760A (en) 1978-07-07
JPS5931992B2 true JPS5931992B2 (en) 1984-08-06

Family

ID=15530909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15200276A Expired JPS5931992B2 (en) 1976-12-20 1976-12-20 semiconductor rectifier

Country Status (1)

Country Link
JP (1) JPS5931992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102986U (en) * 1990-02-09 1991-10-25

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136270A (en) * 1983-12-24 1985-07-19 Toshiba Corp Manufacture of semiconductor device
JPH0642555B2 (en) * 1989-06-20 1994-06-01 株式会社東芝 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102986U (en) * 1990-02-09 1991-10-25

Also Published As

Publication number Publication date
JPS5376760A (en) 1978-07-07

Similar Documents

Publication Publication Date Title
EP0847598B1 (en) SiC SEMICONDUCTOR DEVICE COMPRISING A PN JUNCTION WITH A VOLTAGE ABSORBING EDGE
US5262669A (en) Semiconductor rectifier having high breakdown voltage and high speed operation
US4742377A (en) Schottky barrier device with doped composite guard ring
EP0965146A1 (en) JUNCTION TERMINATION FOR SiC SCHOTTKY DIODE
JPH02264475A (en) Silicon carbode schottkey diode and its manufacture
JPH0216591B2 (en)
JP2003318413A (en) High breakdown voltage silicon carbide diode and manufacturing method therefor
CN105405895A (en) Low-stored-charge high-recovery-speed diode chip
CN110600535A (en) Schottky diode chip and preparation method thereof
US20210098579A1 (en) Schottky diode with high breakdown voltage and surge current capability using double p-type epitaxial layers
CN106783964A (en) A kind of wide band gap semiconductor device and preparation method thereof
JP3072753B2 (en) Semiconductor device and manufacturing method
JPS5931992B2 (en) semiconductor rectifier
CN113555447B (en) 4H-SiC Schottky diode based on diamond terminal structure and manufacturing method
JPH10116999A (en) Constant voltage schottky diode and its manufacture
CN210272370U (en) Schottky diode chip
JPH08227897A (en) Semiconductor device and manufacture thereof
CN111261725A (en) Novel ultra-low voltage drop Schottky diode and preparation method thereof
CN106803515A (en) The terminal structure and its manufacture method of semiconductor power device
JP3067034B2 (en) Schottky barrier semiconductor device
JPH10117003A (en) Fixed voltage diode and its manufacture
JPH03185870A (en) Semiconductor device
JP3620344B2 (en) Schottky barrier diode and manufacturing method thereof
WO2023173425A1 (en) Structure of and preparation method for silicon carbide transistor
CN114284341A (en) SIC Schottky diode without injection terminal and preparation method thereof