JPS5931584B2 - Cemented carbide for glass cutting - Google Patents

Cemented carbide for glass cutting

Info

Publication number
JPS5931584B2
JPS5931584B2 JP890579A JP890579A JPS5931584B2 JP S5931584 B2 JPS5931584 B2 JP S5931584B2 JP 890579 A JP890579 A JP 890579A JP 890579 A JP890579 A JP 890579A JP S5931584 B2 JPS5931584 B2 JP S5931584B2
Authority
JP
Japan
Prior art keywords
carbide
cutting
hard phase
tic
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP890579A
Other languages
Japanese (ja)
Other versions
JPS55100957A (en
Inventor
巌 森
俊一 村井
亨 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP890579A priority Critical patent/JPS5931584B2/en
Publication of JPS55100957A publication Critical patent/JPS55100957A/en
Publication of JPS5931584B2 publication Critical patent/JPS5931584B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、安価にして、すぐれた切断特性を有し、特
にガラスの切断に使用するのに適した超硬合金に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cemented carbide that is inexpensive, has excellent cutting properties, and is particularly suitable for use in cutting glass.

従来、ガラスの切断には、ダイヤモンド粒を骨間して鋭
利な刃先をもった五角錐に形成し、これを金属棒などに
固着したものからなるダイヤモンド工具が使用されてい
る。
Conventionally, diamond tools have been used to cut glass, which are made by forming diamond grains into a pentagonal pyramid with a sharp cutting edge, which is fixed to a metal rod or the like.

しかし、よく知られるように、ダイヤモンド工具は高価
であるために、その使用分野が大きく制限されるのが実
情である。
However, as is well known, diamond tools are expensive, so the field of use for them is severely limited.

そこで、安価なガラス切断工具として、ダイヤモンドに
代って工具鋼を使用したものが提案され、一部で使用さ
れているが、この工具は前記のように刃先が工具鋼で構
成されているために刃先摩耗が著しく、ダイヤモンドに
比してガラス切断特性が著しく劣るという問題点がある
Therefore, an inexpensive glass cutting tool that uses tool steel instead of diamond has been proposed and is used in some cases, but as mentioned above, the cutting edge of this tool is made of tool steel. However, there is a problem that the cutting edge wear is significant and the glass cutting properties are significantly inferior to diamond.

本発明者等は、上述のような観点から、ガラスの切断に
適した材料をコスト安く得べく、特に従来より鉄鋼材料
などの切削に使用されている炭化チタン(以下TICで
示す)−窒化チタン(以下TiNで示す)基台硬合金、
すなわち、鉄族金属のうちの1種または2種以上を結合
相形成成分どして含有し、残りが実質的にTiCとTi
Nからなる超硬合金(以下従来Tic−TiN基超硬合
金という)に着目し研究を行なった結果、前記従来Ti
CTiN基超基台硬合金硬質相形成成分として、炭化タ
ングステン(以下WCで示す)、炭化モリブデン(以下
MO2Cで示す)、炭化タンタル(以下TaCで示す)
、炭化ニオブ(以下NbCで示す)、および炭化バナジ
ウム(以下VCで示す)のうちの1種または2種以上を
10〜30重量係含重量せ、しかも上記結合相形成成分
の含有量を5〜30重量%とし、さらにTiCのT i
C+ T i Nに対する含有割合を55/1.00
〜90/l 00、すなわち0.55〜0.90とする
と共に、前記硬質相形成成分の平均粒径を0.3〜3.
0μmとすると、ダイヤモンドに比して一段とすぐれた
ガラス切断特性をもつようになるという知見を得たので
ある。
From the above-mentioned point of view, the present inventors aimed to obtain a material suitable for cutting glass at a low cost, in particular titanium carbide (hereinafter referred to as TIC) - titanium nitride, which has been conventionally used for cutting steel materials, etc. (hereinafter referred to as TiN) base hard alloy,
That is, it contains one or more iron group metals as a binder phase forming component, and the rest is substantially TiC and Ti.
As a result of research focusing on cemented carbide made of N (hereinafter referred to as conventional Tic-TiN based cemented carbide), it was found that
CTiN-based super-base hard alloy hard phase forming components include tungsten carbide (hereinafter referred to as WC), molybdenum carbide (hereinafter referred to as MO2C), and tantalum carbide (hereinafter referred to as TaC).
, niobium carbide (hereinafter referred to as NbC), and vanadium carbide (hereinafter referred to as VC). 30% by weight, and further TiC Ti
Content ratio to C+ T i N is 55/1.00
90/l 00, that is, 0.55 to 0.90, and the average particle size of the hard phase forming component to 0.3 to 3.
They found that when the diameter is 0 μm, the glass cutting properties are even better than that of diamond.

したがって、この発明は、上記知見にもとづいてなされ
たものであって、 硬質相形成成分としてのWC、MO2C、T aC。
Therefore, this invention was made based on the above findings, and includes WC, MO2C, and TaC as hard phase forming components.

NbC,およびVCのうちの1種または2種以上:10
〜300〜30 重量%形成成分としての鉄族金属のうちの1種または2
種以上:5〜30重量%、 同じく硬質相形成成分としてのTiN+TiC。
One or more of NbC and VC: 10
~300~30% by weight of one or two of the iron group metals as a forming component
More than species: 5 to 30% by weight, also TiN+TiC as hard phase forming components.

および不可避不純物:65〜855〜85重量%ると共
に、Tic/TiN+TiC=55/100〜90/1
00を満足する組成を有し、かつ前記硬質相形成成分の
平均粒径が0.3〜3.0μmであるガラス切断特性に
すぐれた超硬合金に特徴を有するものであり、従来上と
して鋼や鋳物などの金属の切削工具として用いられてい
たTiC−TiN基超基台硬合金く新しい用途を見出し
たものである。
and inevitable impurities: 65-855-85% by weight, and Tic/TiN+TiC=55/100-90/1
The cemented carbide has a composition satisfying 0.00 and the average particle size of the hard phase-forming component is 0.3 to 3.0 μm, and is characterized by excellent glass cutting properties. This new application has been discovered for the TiC-TiN-based super-base hard alloy, which has been used as a cutting tool for metals such as metals and castings.

ついで、この発明の超硬合金において、成分組成範囲お
よび平均粒径を上記の通り限定した理由を説明する。
Next, the reason why the composition range and average grain size of the cemented carbide of the present invention are limited as described above will be explained.

(a) 鉄族金属 結合相形成成分としての鉄族金属の含有量が5%未満で
は、ガラス切断に際して不可欠の靭性を確保することが
できず、この結果ガラス切断時に刃先にチッピングが生
じ易くなるので、5%以上の含有が必要であるが、30
%を超えて含有させると、相対的に硬質相形成成分が7
0多以下と少なくなり過ぎて耐摩耗性の著しい劣化をき
たすようになることから、30係を越えて含有させては
ならない。
(a) If the content of iron group metal as a component forming the iron group metal bonding phase is less than 5%, it will not be possible to ensure the toughness essential for cutting glass, and as a result, chipping will easily occur on the cutting edge when cutting glass. Therefore, it is necessary to contain 5% or more, but 30
If the content exceeds 7%, the hard phase forming component will be relatively
The content should not exceed 30, because if it becomes too low (below 0), the wear resistance will deteriorate significantly.

(b) WC、Mo2C、TaC、NbC,およびVに
れらの成分には、焼結性を改善すると共に、靭性を向上
させ、ガラス切断工具として使用した場合に刃先強度を
著しく高める均等的相剰的作用があるが、その含有量が
10%未満では、前記作用に所望の効果が得られず、一
方30%を越えて含有させると、T i N + T
i Cの含有量が相対的に少なくなり過ぎて、TiN+
TiCによってもたらされるすぐれた耐摩耗性を確保す
ることができなくなることから、その含有量を10〜3
0%と定めた。
(b) WC, Mo2C, TaC, NbC, and V have homogeneous phases that improve sinterability, improve toughness, and significantly increase edge strength when used as a glass cutting tool. There is a residual effect, but if its content is less than 10%, the desired effect cannot be obtained, while if it is contained in more than 30%, T i N + T
The content of iC becomes relatively too small and TiN+
Since it becomes impossible to secure the excellent wear resistance provided by TiC, the content should be reduced to 10-3
It was set as 0%.

(c)TiN+TiC TiNおよびTiCの総量が65%未満では、ガラス切
断に際して必要とされるすぐれた耐摩耗性を確保するこ
とができず、一方85%を越えて含有させると、硬質相
形成成分の総量が95%を越えて多くなり過ぎ、これに
反比例して結合相形成成分の含有量が5係未満と少なく
なり過ぎてしまい、靭性低下をきたすようになることか
ら、実質的に、その含有量を65〜85%と定めた。
(c) TiN+TiC If the total amount of TiN and TiC is less than 65%, it will not be possible to secure the excellent wear resistance required for glass cutting, while if it is contained in more than 85%, the hard phase forming components will be reduced. If the total amount becomes too large, exceeding 95%, and inversely proportional to this, the content of the binder phase-forming components becomes too small, less than 5%, resulting in a decrease in toughness. The amount was determined to be 65-85%.

(d)TiN+TiCに対するTiCの含有割合一般に
、いずれも常温で、TiCは硬さ:3200 K9/m
m v T iNは硬さ:1950へ7m4を有するよ
うに、TiCはTiNに比して高い硬さを有するもので
あるが、その割合が55/100未満では、TiCとT
iNの相対割合において、TiNの含有量が45係を越
えて多くなり、逆により硬さの高いTiCの含有量は5
5係未満と少なくなることから、Ticによってもたら
される耐摩耗性が損なわれるようになり、一方、その割
合が907100を越えると、逆に硬さの高いTiCの
相対含有量が90%を越えて多くなるので、すぐれた耐
摩耗性が確保されるものの、TiNの相対含有量が10
%未満となるので、TiNによってもたらされる靭性が
劣化するようになることから、その割合を55/100
〜90/100と定めた。
(d) Content ratio of TiC to TiN+TiC Generally, at room temperature, TiC has a hardness of 3200 K9/m
m v TiN has a hardness of 1950 to 7m4, so TiC has a higher hardness than TiN, but if the ratio is less than 55/100, TiC and T
Regarding the relative ratio of iN, the content of TiN increases beyond 45%, and conversely, the content of TiC, which has higher hardness, increases to 5%.
If the ratio is less than 5%, the wear resistance provided by Tic will be impaired, while if the ratio exceeds 907100, the relative content of TiC, which has high hardness, will exceed 90%. Although the relative content of TiN is 10%, the relative content of TiN is
%, the toughness provided by TiN will deteriorate, so the ratio is set to 55/100.
~90/100.

(e) 硬質相形成成分の平均粒径 一般に硬質相形成成分の粒径が小さくなればなるほど硬
質相の分布濃度は高くなり、これに伴って合金の靭性は
低下するようになる。
(e) Average particle size of hard phase-forming components In general, the smaller the particle size of the hard phase-forming components, the higher the distribution concentration of the hard phase, and the toughness of the alloy decreases accordingly.

したがって、その平均粒径が0.3μm未満では、硬質
相の分布濃度が高くなり過ぎ、ガラス切断に必要とされ
るすぐれた靭性の確保は困難となるのである。
Therefore, if the average particle size is less than 0.3 μm, the distribution concentration of the hard phase becomes too high, making it difficult to ensure the excellent toughness required for glass cutting.

一方、硬質相の粒径が大きくなればなるほど、逆に硬質
相の分布濃度は低くなり、これに伴って合金の耐摩耗性
が低下するようになる。
On the other hand, as the particle size of the hard phase increases, the distribution concentration of the hard phase decreases, and the wear resistance of the alloy decreases accordingly.

したがって、3.0μmを越えた平均粒径では、同様に
ガラス切断に際して不可欠のすぐれた耐摩耗性を確保す
ることができない。
Therefore, if the average particle size exceeds 3.0 μm, it is also impossible to ensure excellent wear resistance, which is essential for cutting glass.

このように、すぐれたガラス切断特性を確保するために
は、すぐれた靭性および耐摩耗性を合せもつことが不可
欠であり、このような理由から、硬質相形成成分の平均
粒径を0.3〜3.0μmと定めた。
In this way, in order to ensure excellent glass cutting properties, it is essential to have both excellent toughness and wear resistance, and for this reason, the average particle size of the hard phase forming component was set to 0.3. It was determined to be ~3.0 μm.

ついで、この発明の超硬合金を実施例により説明する。Next, the cemented carbide of the present invention will be explained with reference to Examples.

出発原料粉末として、第1表に示される組成および平均
粒径をもった各種の粉末を用意し、これらの原料粉末を
第2表に示される最終成分組成をもつように配合した後
、ボールミル中で超硬ボルルを用いて48時間、粉砕・
混合し、乾燥し、ついでこの結果得られた混合粉末を1
5Ky/rmAの単位圧で所定の形状にプレスし、引続
いて真空雰囲気中、温度1400℃に1時間保持して焼
結し、さらに研削加工を施して所定形状に仕上げられた
本発明超硬合金製切断刃1〜3(以下本発明切断刃1〜
3という)および比較超硬合金製切断刃l。
Various powders having the composition and average particle size shown in Table 1 are prepared as starting raw material powders, and after blending these raw material powders to have the final component composition shown in Table 2, they are mixed in a ball mill. Grinding and grinding for 48 hours using a carbide ball
Mix, dry, and then add the resulting mixed powder to 1
The cemented carbide of the present invention is pressed into a predetermined shape at a unit pressure of 5 Ky/rmA, then sintered by holding it at a temperature of 1400°C for 1 hour in a vacuum atmosphere, and then ground into a predetermined shape. Alloy cutting blades 1 to 3 (hereinafter referred to as cutting blades 1 to 3 of the present invention)
3) and a comparative cemented carbide cutting blade l.

2(以下比較切断刃1.2c!=いう)をそれぞれ製造
した。
2 (hereinafter referred to as comparative cutting blade 1.2c!) were manufactured.

なお、比較切断刃lは、従来より鉄鋼材料などの切削に
切削刃として使用されているTiC−TiN基超基台硬
合金当する成分組成をもつものであり、また比較切断刃
2は、本発明超硬合金に相当する、すなわち、本発明切
断刃3と実質的に同一の成分組成をもつが、硬質相形成
成分の平均粒径が本発明範囲から大きい方に外れたもの
である。
Comparative cutting blade 1 has a composition that corresponds to TiC-TiN-based super-based hard alloy, which has been conventionally used as a cutting blade for cutting steel materials, etc. Comparative cutting blade 2 It corresponds to the invention cemented carbide, that is, it has substantially the same composition as the cutting blade 3 of the invention, but the average particle size of the hard phase forming component is larger than the range of the invention.

つぎに、この結果得られた本発明切断刃1〜3および比
較切断刃1,2における硬質相形成成分の平均粒径、抗
折力、およびロックウェル硬さくAスケール)を測定す
ると共に、これらの切断刃を連続式ガラス切断機に装着
し、ソーダ石灰ガラス板の切断に供し、その切断寿命時
間を測定した。
Next, the average particle diameter, transverse rupture strength, and Rockwell hardness A scale of the hard phase forming components of the cutting blades 1 to 3 of the present invention and comparative cutting blades 1 and 2 obtained as a result were measured. The cutting blade was attached to a continuous glass cutting machine and used to cut a soda lime glass plate, and its cutting life time was measured.

これらの測定結果を第2表に合せて示した。なお従来の
ダイヤモンド製切断刃(以下、従来切断刃という)につ
いても同条件でガラス切断試験を行なった。
These measurement results are also shown in Table 2. A glass cutting test was also conducted on a conventional diamond cutting blade (hereinafter referred to as the conventional cutting blade) under the same conditions.

第2表に示されるように、従来より鉄鋼材料などの切削
に使用されているTic TiN基超基台硬合金質的
に同じ成分組成を有する比較切断刃】。
As shown in Table 2, the comparative cutting blades have the same chemical composition as TiN-based super-based hard alloys, which have been conventionally used for cutting steel materials, etc.

は、硬質相の平均粒径が本発明範囲内の2.0μmをも
つにもかかわらず、5時間の短かい切断寿命しか示さず
、さらに本発明切断刃3と実質的に同じ成分組成をもつ
が、硬質相の平均粒径のみが3.5μmと本発明範囲か
ら外れた比較切断刃2は、わずか1時間の使用寿命しか
示さないものであった。
Although the average particle size of the hard phase was 2.0 μm, which is within the range of the present invention, the cutting blade exhibited a short cutting life of only 5 hours, and furthermore, it had substantially the same composition as the cutting blade 3 of the present invention. However, comparative cutting blade 2, in which only the average particle size of the hard phase was 3.5 μm, which was outside the range of the present invention, had a service life of only 1 hour.

なお、従来切断刃は、さすがダイヤモンド製であるため
、上記切断刃1および2よりすぐれた10時間の切断寿
命を示した。
In addition, since the conventional cutting blade was made of diamond, it exhibited a cutting life of 10 hours, which was superior to the cutting blades 1 and 2 described above.

これに対して、本発明切断刃は、比較切断刃1の4〜5
,4倍、従来切断刃の2.0〜2.7倍の切断寿命時間
を示し、すぐれた切断特性をもつことが明らかである。
On the other hand, the cutting blade of the present invention has 4 to 5 of the comparative cutting blade 1.
, 4 times longer, and 2.0 to 2.7 times longer than conventional cutting blades, and it is clear that the cutting blade has excellent cutting characteristics.

これらの結果から、成分組成および硬質相形成成分の平
均粒径が、この発明の範囲内にある超硬合金は、すぐれ
た靭性および耐摩耗性を有するので、ガラスの切断に使
用した場合にすぐれた切断特性を示すことが明白である
From these results, cemented carbide whose component composition and average particle size of hard phase-forming components are within the range of the present invention has excellent toughness and wear resistance, and therefore is excellent when used for cutting glass. It is clear that the material exhibits excellent cutting properties.

上述のように、この発明の超硬合金は、きわめてすぐれ
たガラス切断特性を有するほか、安価なTiC粉末およ
びTiN粉末を主要原料として使用し1通常の粉末冶金
法によってコスト安く、かつ形状選定自由に最適な方形
形状に製造できるものであり、しかも成分組成および粒
径をコントロールすることによって容易に切断せんとす
る各種のガラス材質に適合した最適なものとすることが
できるなどのきわめてすぐれた特性を有するのである。
As mentioned above, the cemented carbide of the present invention not only has extremely excellent glass cutting properties, but also uses inexpensive TiC powder and TiN powder as the main raw materials. It has extremely excellent properties such as being able to be manufactured into the optimal rectangular shape for cutting, and by controlling the component composition and particle size, it can be easily made into the optimal shape for the various glass materials to be cut. It has.

Claims (1)

【特許請求の範囲】 1 硬質相形成成分としての炭化タングステン、炭化モ
リブデン、炭化タンタル、炭化ニオブ、および炭化バナ
ジウムのうちの1種または2種以上:10〜30%、 結合相形成成分としての鉄族金属のうちの1種または2
種以上:5〜30多、 硬質相形成成分としての窒化チタンと炭化チタン、およ
び不可避不純物:65〜85%、(以上重量%)からな
ると共に、窒化チタンと炭化チタンの合計含有量に対す
る炭化チタン含有量の割合が55/100〜90/1.
00の範囲内にある組成を有し、かつ上記硬質相形成成
分は平均粒径:0.3〜3.0μmを有することを特徴
とするガラス切断用超硬合金。
[Claims] 1. One or more of tungsten carbide, molybdenum carbide, tantalum carbide, niobium carbide, and vanadium carbide as a hard phase forming component: 10 to 30%, iron as a binder phase forming component One or two of the group metals
Species: 5 to 30%, consisting of titanium nitride and titanium carbide as hard phase forming components, and inevitable impurities: 65 to 85% (or more by weight), and titanium carbide relative to the total content of titanium nitride and titanium carbide. The content ratio is 55/100 to 90/1.
A cemented carbide for glass cutting, characterized in that the hard phase forming component has an average particle size of 0.3 to 3.0 μm.
JP890579A 1979-01-29 1979-01-29 Cemented carbide for glass cutting Expired JPS5931584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP890579A JPS5931584B2 (en) 1979-01-29 1979-01-29 Cemented carbide for glass cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP890579A JPS5931584B2 (en) 1979-01-29 1979-01-29 Cemented carbide for glass cutting

Publications (2)

Publication Number Publication Date
JPS55100957A JPS55100957A (en) 1980-08-01
JPS5931584B2 true JPS5931584B2 (en) 1984-08-02

Family

ID=11705681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP890579A Expired JPS5931584B2 (en) 1979-01-29 1979-01-29 Cemented carbide for glass cutting

Country Status (1)

Country Link
JP (1) JPS5931584B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283263A (en) * 1985-10-07 1987-04-16 本田技研工業株式会社 Seat for motorcycle
JPH0261795U (en) * 1988-10-31 1990-05-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283263A (en) * 1985-10-07 1987-04-16 本田技研工業株式会社 Seat for motorcycle
JPH0261795U (en) * 1988-10-31 1990-05-08

Also Published As

Publication number Publication date
JPS55100957A (en) 1980-08-01

Similar Documents

Publication Publication Date Title
KR100436327B1 (en) Sintered hard alloy
JPH10219385A (en) Cutting tool made of composite cermet, excellent in wear resistance
US4342595A (en) Cubic boron nitride and metal carbide tool bit
JPS6256224B2 (en)
JP2580168B2 (en) Nitrogen-containing tungsten carbide based sintered alloy
JP2003013169A (en) WC-Co FINE-PARTICULATE CEMENTED CARBIDE SUPERIOR IN OXIDATION RESISTANCE
JPS5931584B2 (en) Cemented carbide for glass cutting
JPH0681072A (en) Tungsten carbide base sintered hard alloy
JP2757469B2 (en) Tungsten carbide based cemented carbide end mill
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP2668962B2 (en) End mill made of tungsten carbide based cemented carbide with excellent fracture resistance
JP3353522B2 (en) Cemented carbide for tools processing wood-based hard materials
JP2004131769A (en) Hyperfine-grained cemented carbide
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPS6256943B2 (en)
JP2502322B2 (en) High toughness cermet
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JP2796011B2 (en) Whisker reinforced cemented carbide
JP4540791B2 (en) Cermet for cutting tools
JPS6240340A (en) Diamond-type sintered material for cutting tool
JP2621301B2 (en) Tungsten carbide based cemented carbide cutting tool
JPS61201750A (en) Sintered hard alloy
JPS5929096B2 (en) Cemented carbide for glass cutting
JPS58136743A (en) Golden sintered alloy for decoration
JPH08127836A (en) Tool for glass cutting