JPS5931239B2 - Method for manufacturing thin film circuit elements - Google Patents

Method for manufacturing thin film circuit elements

Info

Publication number
JPS5931239B2
JPS5931239B2 JP48131947A JP13194773A JPS5931239B2 JP S5931239 B2 JPS5931239 B2 JP S5931239B2 JP 48131947 A JP48131947 A JP 48131947A JP 13194773 A JP13194773 A JP 13194773A JP S5931239 B2 JPS5931239 B2 JP S5931239B2
Authority
JP
Japan
Prior art keywords
thin film
heat treatment
film
circuit elements
tantalum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48131947A
Other languages
Japanese (ja)
Other versions
JPS5080477A (en
Inventor
恵彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP48131947A priority Critical patent/JPS5931239B2/en
Publication of JPS5080477A publication Critical patent/JPS5080477A/ja
Publication of JPS5931239B2 publication Critical patent/JPS5931239B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】 本発明は薄膜回路素子の製造方法、特に金属薄膜抵抗器
及び薄膜コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing thin film circuit elements, and in particular to a method for manufacturing metal thin film resistors and thin film capacitors.

タンタル、チタン、ハフニウム等の陽極化成可能な金属
薄膜は陽極化成による酸化物を利用して抵抗やコンデン
サ等の電子回路素子を同一金属で形成できる利点を有し
、特にタンタル薄膜は経時的安定性や信頼性等に秀れて
いるために実用化が進んでいる。
Thin films of metals that can be anodized, such as tantalum, titanium, and hafnium, have the advantage that electronic circuit elements such as resistors and capacitors can be formed from the same metal by using the oxides produced by anodizing. Tantalum thin films are especially stable over time. It is being put into practical use because of its excellent performance and reliability.

例えば、抵抗器としては−90pμm/℃の抵抗温度係
数を有する窒化タンタル薄膜が広く用いられている。し
かしながら、抵抗値が温度に依存しない高精度の抵抗器
が回路に要求される場合、窒化タンタル薄膜抵抗器は真
空熱処理等の処理が施されていることによりその特性が
改善され、該要求を満足するものであるが、真空熱処理
を施された金属薄膜の陽極化成膜は、真空槽中の不純物
気体と金属薄膜との反応と考えられる影響のために、白
濁又は該金属薄膜からの剥離等の現象が観察され、従つ
てまた、その陽極化成膜の性質を制御することが困難で
あるとともに陽極化成膜の信頼度は低いものである。
For example, tantalum nitride thin films having a temperature coefficient of resistance of -90 p.mu.m/.degree. C. are widely used as resistors. However, if a circuit requires a high-precision resistor whose resistance value does not depend on temperature, tantalum nitride thin film resistors are subjected to treatments such as vacuum heat treatment, which improves their characteristics and satisfies the requirement. However, the anodization of a metal thin film that has been subjected to vacuum heat treatment may result in clouding or peeling from the metal thin film due to the effects that are thought to be caused by the reaction between impurity gases in the vacuum chamber and the metal thin film. Therefore, it is difficult to control the properties of the anodized film and the reliability of the anodized film is low.

真空熱処理を施された金属薄膜はこれ等の欠点を有する
ために、該薄膜の陽極化成膜を用いて薄膜コンデンサを
製造することが事実上不可能であり、また薄膜抵抗器を
製造しても、その陽極化成膜が剥離等の現象のために、
熱酸化等に対する十分な保護膜としての機能を有せず、
該抵抗器の経時的安定性は満足すべきものではない。本
発明の目的は、かかる従来の欠点を除去し。高精度で而
も経時的に安定な薄膜回路素子の製造方法を提供するこ
とにある。本発明の薄膜回路素子の製造方法は、回路素
子を形成すべき基板上の金属薄膜に誘電体薄膜を付着形
成し、この誘電体薄膜を外囲雰囲気に対する保護膜とし
て金属薄膜を高温熱処理する工程と、しかる後上記誘電
体薄膜を除去する工程とを含むことを特徴とする。
Because metal thin films subjected to vacuum heat treatment have these drawbacks, it is virtually impossible to manufacture thin film capacitors using anodization of the thin films, and it is difficult to manufacture thin film resistors. However, due to phenomena such as peeling of the anodized film,
It does not function as a sufficient protective film against thermal oxidation, etc.
The stability of the resistor over time is not satisfactory. The object of the present invention is to obviate such conventional drawbacks. It is an object of the present invention to provide a method for manufacturing a thin film circuit element with high precision and stability over time. The method for manufacturing a thin film circuit element of the present invention includes a step of depositing a dielectric thin film on a metal thin film on a substrate on which a circuit element is to be formed, and subjecting the metal thin film to high-temperature heat treatment using the dielectric thin film as a protective film against the surrounding atmosphere. and then removing the dielectric thin film.

以下、図面を参照して本発明の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1〜6図は本発明の実施例の各工程を示ノ す断面図
で清浄な表面を有するクレースト・セラミック、ガラス
、アルミナ等の基板1上に窒化タンタル薄膜2を活性ス
パッタ法により約1600Aの膜厚に付着形成させ、更
に窒化タンタル薄膜2上に高周波スパッタ法により 酸
化シリコン薄c 膜3を約1O、000Aの膜厚に付着
形成させた(第1図)。次に、該基板を600℃、55
0℃及び500℃の温度で約5時間熱処理することによ
り、窒化タンタル薄膜2の抵抗温度係数は−90ppm
/℃からそれぞれ凡そ+20ppm/℃,0ppm/℃
及び−20ppm/℃に変化した。しかる後、写真蝕刻
法により二酸化シリコン薄膜3及び窒化タンタル薄膜2
を所望の形状に形成し(第2図)、更に窒化タンタル薄
膜2上の不要な二酸化シリコン薄膜3を除去した(第3
図)。該基板を300℃の空気中で約7時間熱処理して
窒化タンタル薄膜2を熱的に安定化させ、しかる後、コ
ンデンサ部の窒化タンタル薄膜2を150Vで陽極化成
して酸化物薄膜4を形成させ(第4図)、二酸化シリコ
ン薄膜3を除去した(第5図)しかる後、抵抗となるべ
き窒化タンタル薄膜2を陽極化成し酸化膜4′を作り抵
抗値の調整を行つた。該基板上に金薄膜5を約3000
A蒸着法により付着させ、写真蝕刻法により所望の形状
に形成させ、薄膜回路素子を製造した(第6図)。この
回路の等価回路は第7図のように表される。本発明の薄
膜回路素子の製造方法を用いれば、窒化タンタル薄膜上
に二酸化シリコン薄膜を付着させて該基板を400℃以
上の空気中で高温熱処理することにより真空熱処理と同
等の処理をすることができ、また該高温熱処理の際に窒
化タンタル薄膜表面が二酸化シリコン薄膜によつて保護
されているために、本発明による薄膜回路素子の製造方
法を用いれば、真空熱処理の場合に問題となる真空中内
の不純物気体と窒化タンタル薄膜との反応も避けること
ができる。
1 to 6 are cross-sectional views showing each step of an embodiment of the present invention, in which a tantalum nitride thin film 2 is deposited at a thickness of about 1600 Å by an active sputtering method on a substrate 1 having a clean surface such as clasp ceramic, glass, alumina, etc. Further, a silicon oxide thin c film 3 was deposited on the tantalum nitride thin film 2 to a thickness of about 10,000 A by high-frequency sputtering (FIG. 1). Next, the substrate was heated to 600°C and 55°C.
By heat-treating at temperatures of 0°C and 500°C for about 5 hours, the temperature coefficient of resistance of the tantalum nitride thin film 2 is -90ppm.
/℃ to approximately +20ppm/℃, 0ppm/℃ respectively
and -20 ppm/°C. Thereafter, a silicon dioxide thin film 3 and a tantalum nitride thin film 2 are formed by photolithography.
was formed into a desired shape (Fig. 2), and unnecessary silicon dioxide thin film 3 on tantalum nitride thin film 2 was removed (Fig. 3).
figure). The substrate is heat-treated in air at 300° C. for about 7 hours to thermally stabilize the tantalum nitride thin film 2, and then the tantalum nitride thin film 2 in the capacitor portion is anodized at 150 V to form an oxide thin film 4. After removing the silicon dioxide thin film 3 (Fig. 5), the tantalum nitride thin film 2, which was to serve as a resistor, was anodized to form an oxide film 4' and the resistance value was adjusted. A thin gold film 5 of about 3,000 layers is deposited on the substrate.
It was deposited by the A vapor deposition method and formed into a desired shape by photolithography to produce a thin film circuit element (FIG. 6). The equivalent circuit of this circuit is shown in FIG. By using the method of manufacturing a thin film circuit element of the present invention, a silicon dioxide thin film is deposited on a tantalum nitride thin film, and the substrate is heat-treated at a high temperature of 400°C or higher in air, thereby performing a process equivalent to vacuum heat treatment. In addition, since the surface of the tantalum nitride thin film is protected by the silicon dioxide thin film during the high-temperature heat treatment, if the method for manufacturing thin film circuit elements according to the present invention is used, it is possible to avoid vacuum heat treatment, which is a problem in the case of vacuum heat treatment. Reaction between the impurity gas inside the tantalum nitride thin film and the tantalum nitride thin film can also be avoided.

従つて、該高温熱処理により、信頼度が高く而も抵抗温
度係数が零の高精度の薄膜抵抗器を再現性よく得ること
が可能となつた。また、該高温熱処理を施された窒化タ
ンタル薄膜の陽極化成膜は極めて安定であり、従つて高
信頼度の薄膜コンデンサの製造が可能になると共に、薄
膜抵抗器に対しては抵抗値調整のために行なつた陽極化
成膜4′が安定な保護膜として機能し、高信頼度の薄膜
抵抗器を提供することが可能となつた。本発明の実施例
においては.金属薄膜2としてタンタルと窒素との組成
物である窒化タンタルを用いたが、無処理では極めて不
安定な高比抵抗を有する低密度タンタル薄膜を用いても
本発明により経時的に安定な薄膜回路素子を製造するこ
とができる。
Therefore, the high-temperature heat treatment makes it possible to obtain a highly reliable thin film resistor with a zero temperature coefficient of resistance with good reproducibility. In addition, the anodized tantalum nitride thin film that has been subjected to the high-temperature heat treatment is extremely stable, making it possible to manufacture highly reliable thin film capacitors, and making it possible to adjust the resistance value of thin film resistors. The anodized film 4' formed for this purpose functions as a stable protective film, making it possible to provide a highly reliable thin film resistor. In an embodiment of the present invention. Tantalum nitride, which is a composition of tantalum and nitrogen, was used as the metal thin film 2, but even if a low-density tantalum thin film with a high specific resistance, which is extremely unstable without treatment, is used, the present invention provides a thin film circuit that is stable over time. devices can be manufactured.

またタンタル、チタン、ハフニウム等の金属は難溶性金
属として類似の持性を有することから、これ等の金属又
は少なくとも該金属を含む、化合物を金属薄膜2として
用いても本発明は有幼であることは勿論である。また、
これ等の難溶性金属薄膜の膜厚は特に限定されるべきも
のではない。酸化膜3として本実施例では二酸比シリコ
ン薄膜を用いたが、アルミナ、窒化シリコン等の薄膜で
あつても良いが、実用上は高融点を有する酸化物を用い
る事が望ましい。また、その膜厚も特に限定されるもの
ではないが、実用上2000λ以上が望ましい。また、
高温熱処理温度は熱処理時間と密接な関係があり、製造
される薄膜回路素子の再現性等を考慮すると、熱処理温
度は400℃以上、熱処理時間は30分以上がよい。ま
た熱処理条件は金属薄膜2の膜厚にも関係し、膜厚が大
きい場合は更に長時間の熱処理が必要となつた。
Furthermore, since metals such as tantalum, titanium, and hafnium have similar properties as poorly soluble metals, the present invention is still applicable even if these metals or at least compounds containing these metals are used as the metal thin film 2. Of course. Also,
The thickness of these poorly soluble metal thin films is not particularly limited. As the oxide film 3 in this embodiment, a thin film of silicon with a dioxylic acid ratio is used, but it may be a thin film of alumina, silicon nitride, etc., but it is practically preferable to use an oxide having a high melting point. Further, the film thickness is not particularly limited, but it is practically desirable to have a thickness of 2000λ or more. Also,
The high-temperature heat treatment temperature is closely related to the heat treatment time, and in consideration of the reproducibility of manufactured thin film circuit elements, the heat treatment temperature is preferably 400° C. or higher and the heat treatment time is 30 minutes or longer. Furthermore, the heat treatment conditions are also related to the thickness of the metal thin film 2, and when the film thickness is large, a longer heat treatment is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の実施例の各工程を示す断面図
であり、第7図はその等価回路図である。
1 to 6 are sectional views showing each step of an embodiment of the present invention, and FIG. 7 is an equivalent circuit diagram thereof.

Claims (1)

【特許請求の範囲】[Claims] 1 回路素子を形成すべき基板上のタンタル、チタン、
ハフニウム等の陽極化成可能な金属薄膜に二酸化シリコ
ン、アルミナ、窒化シリコン等の誘電体薄膜を被覆し、
誘電体薄膜を外気雰囲気に対する保護膜として前記金属
薄膜を空気中で熱処理する工程と、上記熱処理後、上記
誘電体薄膜を除去する工程とを含むことを特徴とする薄
膜回路素子の製造方法。
1 Tantalum, titanium, on the substrate on which the circuit elements are to be formed
A thin film of metal such as hafnium that can be anodized is coated with a thin film of dielectric material such as silicon dioxide, alumina, or silicon nitride.
A method for manufacturing a thin film circuit element, comprising the steps of heat-treating the metal thin film in air using the dielectric thin film as a protective film against the outside atmosphere, and removing the dielectric thin film after the heat treatment.
JP48131947A 1973-11-22 1973-11-22 Method for manufacturing thin film circuit elements Expired JPS5931239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48131947A JPS5931239B2 (en) 1973-11-22 1973-11-22 Method for manufacturing thin film circuit elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48131947A JPS5931239B2 (en) 1973-11-22 1973-11-22 Method for manufacturing thin film circuit elements

Publications (2)

Publication Number Publication Date
JPS5080477A JPS5080477A (en) 1975-06-30
JPS5931239B2 true JPS5931239B2 (en) 1984-07-31

Family

ID=15069916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48131947A Expired JPS5931239B2 (en) 1973-11-22 1973-11-22 Method for manufacturing thin film circuit elements

Country Status (1)

Country Link
JP (1) JPS5931239B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180014A (en) * 1982-04-16 1983-10-21 富士通株式会社 Thin film forming method
JPS60225464A (en) * 1984-04-24 1985-11-09 Hitachi Ltd Image sensor and manufacture thereof

Also Published As

Publication number Publication date
JPS5080477A (en) 1975-06-30

Similar Documents

Publication Publication Date Title
US6171922B1 (en) SiCr thin film resistors having improved temperature coefficients of resistance and sheet resistance
US4288776A (en) Passivated thin-film hybrid circuits
JPS6349907B2 (en)
EP0227183B1 (en) Thin film capacitors and method of making the same
JPS5815933B2 (en) Capacitive or resistive thin film passive device made of aluminum-tantalum alloy
JPS5931239B2 (en) Method for manufacturing thin film circuit elements
JPH06290989A (en) Chip shape circuit component
JPH055182B2 (en)
JPH11177048A (en) Semiconductor element and manufacture thereof
JPH0745475A (en) Thin film capacitor and fabrication thereof
US4385966A (en) Fabrication of thin film resistors and capacitors
JPS5911663A (en) Manufacture of capacitor for semiconductor device
JPH05326314A (en) Thin film capacitor
JP2942128B2 (en) Thin film capacitor and method of manufacturing the same
JPS5884405A (en) Method of producing thin film thermistor
JPS59188957A (en) Manufacture of capacitor for semiconductor device
JPS5984460A (en) Manufacture of capacitor for semiconductor device
JPS6313329B2 (en)
JPS5871603A (en) Method of producing thin film thermistor
JPH07245303A (en) Manufacture of metallic thin film resistor
JPH05267003A (en) Electrode of chip component and manufacture thereof
JPH06291253A (en) Formation of dielectric film of electric charge storage section of semiconductor element
JPS6242392B2 (en)
JPS5814560A (en) Manufacture of semiconductor device
JP2002115044A (en) Method for producing tantalum film, tantalum film and element using the same