JPS60225464A - Image sensor and manufacture thereof - Google Patents

Image sensor and manufacture thereof

Info

Publication number
JPS60225464A
JPS60225464A JP59081120A JP8112084A JPS60225464A JP S60225464 A JPS60225464 A JP S60225464A JP 59081120 A JP59081120 A JP 59081120A JP 8112084 A JP8112084 A JP 8112084A JP S60225464 A JPS60225464 A JP S60225464A
Authority
JP
Japan
Prior art keywords
film
image sensor
metal
wiring
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59081120A
Other languages
Japanese (ja)
Inventor
Eiji Matsuzaki
永二 松崎
Yoshifumi Yoritomi
頼富 美文
Akihiro Kenmochi
釼持 秋広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59081120A priority Critical patent/JPS60225464A/en
Priority to EP85104850A priority patent/EP0162307A3/en
Publication of JPS60225464A publication Critical patent/JPS60225464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic System

Abstract

PURPOSE:To contrive the formation of the titled device of equimultiple type made continuous with good yield, by a method wherein the number of elements of sandwiched structure is reduced, and the construction of the photosensor part and the formation of a dielectric film are devised. CONSTITUTION:A tantalum film is formed on a glass substrate 21, and a protection layer 22 of tantalum pentoxide is formed by thermal oxidation. A tantalum nitride film is produced thereon by sputtering, and a tantalum nitride film wiring 23 of electrode and wiring pattern is formed by photoetching. Next, it is patterned with a photo resist and changed into the dielectric film 24 of a charge accumulation capacitor by partly oxidizing the electrode pattarn on anodic oxidation. Further, the mixed gas of SiH4, H2, and PH3 is decomposed into an N type amorphous Si film; the mixed gas of SiH4 and H2 into an amorphous Si film; and the mixed gas of SiH4, H2, B2H6 into a P type amorphous Si film, which are then successively deposited. Then, a pattern is formed by photo process and dry etching into a PIN diode 25. Therefore, making this device continuous is enabled by improving the yield of each element of the image sensor.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はファクシミリやレーザ記録装置等の文字、画像
入力装置に適用されるイメージセンサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an image sensor applied to character and image input devices such as facsimiles and laser recording devices.

[発明の背景〕 従来から原稿の画像を読み取るイメージセンサとして、
CCD型イメージセンサやMO8型イメージセンサが使
用されている。これらはいずれもLSI技術を用いてシ
リコンチップ上に形成されるために、素子自体が大変小
型である。このため、原稿の読み取りには、光学系の組
み合わせとそれに伴う高度な調整が必要となっている。
[Background of the Invention] Conventionally, image sensors for reading images of original documents have been used.
CCD type image sensors and MO8 type image sensors are used. Since these are all formed on a silicon chip using LSI technology, the elements themselves are very small. For this reason, reading a document requires a combination of optical systems and sophisticated adjustments.

それ故、画像が歪んだり、装置が大型化してしまうとい
う欠点があった。そこで、これらの欠点をなくすため、
薄膜感光素子を同−基板−ヒに複数個配列した等倍型イ
メージセンサが考え出された。しかし、このイメージセ
ンサは、蓄積モード動作でなかったため実効感度が低く
、高速読み取りができなかった。
Therefore, there are disadvantages in that the image is distorted and the device becomes larger. Therefore, in order to eliminate these drawbacks,
A 1-magnification image sensor was devised in which a plurality of thin film photosensitive elements were arranged on the same substrate. However, since this image sensor did not operate in an accumulation mode, its effective sensitivity was low and high-speed reading was not possible.

そこで、薄膜ホトダイオードと薄膜ブロッキングダイオ
ードが互いに逆極性となるように直列接続した素子を複
数個配列して蓄積モード動作を行わせるようにした等倍
型イメージセンサが考え出された。さらに、各素子とシ
フトレジスタ等の駆動回路との接続をマトリクス配線で
行い、入力端子、出力端子の数を減らし、搭載される専
用ICやシフトレジスタの数も減らせるようになった。
Therefore, a 1-magnification image sensor was devised in which a plurality of thin-film photodiodes and thin-film blocking diodes are connected in series so that the polarities are opposite to each other, and the sensor is arranged to operate in an accumulation mode. Furthermore, each element is connected to drive circuits such as shift registers using matrix wiring, reducing the number of input terminals and output terminals, and the number of dedicated ICs and shift registers to be mounted.

この−例を第1図に示す(特開昭57−5371号公報
参照)。図において、1はセンサ基板、2は薄膜素子、
3はマトリクス配線、4はシフトレジスタ、5はMOS
スイッチ、6はブロッキングダイオード、7はホトダイ
オード、8は負荷抵抗を示している。この構成によって
、ある程度の特性が得られるようになった。しかし、等
倍型イメージセンサでは、センサアレイを長尺(A4判
では210mm)で実現しなければならず、その製造プ
ロセスは確立されてはいない。そのため、等倍型イメー
ジセンサを低価格で歩留り良く製造できないのが現状で
ある。
An example of this is shown in FIG. 1 (see Japanese Patent Laid-Open No. 57-5371). In the figure, 1 is a sensor substrate, 2 is a thin film element,
3 is matrix wiring, 4 is shift register, 5 is MOS
6 is a blocking diode, 7 is a photodiode, and 8 is a load resistance. With this configuration, certain characteristics can be obtained. However, in the case of a full-size image sensor, the sensor array must be made long (210 mm for A4 size), and the manufacturing process for this has not been established. Therefore, the current situation is that it is not possible to manufacture a same-size image sensor at a low cost and with a high yield.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、歩
留り良く長尺化した等倍型イメージセンサを形成するた
めのイメージセンサの構成と、その製造プロセスを提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an image sensor configuration and a manufacturing process thereof for forming a long, same-size image sensor with good yield.

〔発明の概要〕[Summary of the invention]

電荷蓄積モード動作をするイメージセンサの基本素子と
なる薄膜ホトダイオードや薄膜ブロッキングダイオード
あるいは電荷蓄積用コンデンサは、2つの電極で挟まれ
たサンドインチ構造を基本としている。この構造のため
、各素子を無欠陥で大面積上に歩留り良く形成すること
は困難である。
Thin film photodiodes, thin film blocking diodes, or charge storage capacitors, which are the basic elements of image sensors operating in charge storage mode, are basically sandwiched between two electrodes and have a sandwich structure. Because of this structure, it is difficult to form each element defect-free over a large area with a high yield.

本発明は、イメージセンサの長尺化を妨げている原因と
して上記の点に着目してなされたものである。すなわち
、本発明は、Taに代表される弁金属やその窒化物を酸
化すると、原理上ピンホールのない酸化膜の得られるこ
とに基づいて、電極配線用材料として弁金属あるいはそ
の窒化物を用い、その一部を酸化して電荷蓄積用コンデ
ンサの誘電体膜とし、さらにその上に薄膜ホトダイオー
ドを形成するもので、サンドインチ構造の素子の数を半
減することによって製造歩留りを上げ、イメージセンサ
の長尺化を達成しようとするものである。
The present invention has been made by focusing on the above-mentioned points that are hindering the increase in the length of image sensors. That is, the present invention uses a valve metal or its nitride as an electrode wiring material based on the fact that an oxide film without pinholes can be obtained in principle by oxidizing a valve metal represented by Ta or its nitride. , a part of it is oxidized to form the dielectric film of the charge storage capacitor, and then a thin film photodiode is formed on top of it.By halving the number of elements in the sandwich structure, manufacturing yields can be increased and image sensors can be manufactured. The aim is to achieve longer lengths.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に従って詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明を実施したイメージセンサの構成例を第2図、第
3図および第4図に示す。各回において、21は基板(
例えばコーニング7059やテンパックスガラス基板)
、22はガラス基板の保護層(例えばタンタル熱酸化膜
)、23は窒化タンター)I4配線、24は窒化タンタ
ルを酸化して得られたタンタル酸化膜である誘電体膜、
25は非晶質シリコン膜から形成したPINホトダイオ
ード、26はシリコン酸化膜である眉間絶縁膜、27は
透明導電膜(例えばITO膜、■n−8n合金の酸化膜
)、28はM等により構成した金属配線、29は保護膜
(例えばシリコン窒化膜) 、 101はホトセンサ部
;、、102はマトリクス配線部を示している。また、
第3図の31はCr膜のような金属膜、第4図の41は
下部配線の低抵抗化をねらって挿入された高導電率金属
(例えばAflやCr)膜である。
Examples of the configuration of an image sensor embodying the present invention are shown in FIGS. 2, 3, and 4. In each round, 21 is the substrate (
For example, Corning 7059 or Tempax glass substrate)
, 22 is a protective layer of the glass substrate (for example, tantalum thermal oxide film), 23 is tantalum nitride) I4 wiring, 24 is a dielectric film that is a tantalum oxide film obtained by oxidizing tantalum nitride,
25 is a PIN photodiode formed from an amorphous silicon film, 26 is a glabella insulating film that is a silicon oxide film, 27 is a transparent conductive film (for example, ITO film, n-8n alloy oxide film), and 28 is composed of M, etc. 29 is a protective film (for example, a silicon nitride film); 101 is a photosensor portion; , 102 is a matrix wiring portion. Also,
31 in FIG. 3 is a metal film such as a Cr film, and 41 in FIG. 4 is a high conductivity metal film (for example, Afl or Cr) inserted with the aim of lowering the resistance of the lower wiring.

上記3図のうち、第2図が基本形である。また、電荷蓄
積用コンデンサ電極膜固定と、タンタル酸化膜と非晶質
シリコン膜との接着性を高めるためにCr膜のような金
属膜31を挿入した構成例が第3図である。さらに、タ
ンタル窒化膜は200μΩ国と抵抗率が高いので、電極
や配線の低抵抗化のために約50μΩ■の抵抗率をもつ
Cr膜41のような高導電率金属膜41を挿入した構成
例が第4図である。第2図における符号23.24.2
5および27の各層の構成、第3図における符号23.
24.31.25および27の各層の構成、第4図にお
ける符号41.23.24.25および27の各層の構
成が、本発明を実施した特徴的な部分である。
Of the three figures above, Figure 2 is the basic form. FIG. 3 shows an example of a structure in which a metal film 31 such as a Cr film is inserted to fix the charge storage capacitor electrode film and to improve the adhesion between the tantalum oxide film and the amorphous silicon film. Furthermore, since the tantalum nitride film has a high resistivity of 200 μΩ, a configuration example in which a high conductivity metal film 41 such as a Cr film 41 having a resistivity of about 50 μΩ is inserted to lower the resistance of electrodes and wiring. is shown in Figure 4. Code 23.24.2 in Figure 2
The structure of each layer of 5 and 27, reference numeral 23 in FIG.
The configurations of the layers 24, 31, 25 and 27, and the configurations of the layers 41, 23, 24, 25 and 27 in FIG. 4 are characteristic parts of the present invention.

次に、本発明を実施したイメージセンサの動作について
説明する。第2図、第3図および第4図に示した実施例
の等価回路を第5図に示す。第5図において、201は
非晶質シリコン膜にて形成したPINホトダイオード2
5によって構成される薄膜ホトダイオード、202はタ
ンタル酸化膜にて構成した電荷蓄積用コンデンサ、20
3は読み出し用。
Next, the operation of the image sensor embodying the present invention will be described. FIG. 5 shows an equivalent circuit of the embodiment shown in FIGS. 2, 3, and 4. In FIG. 5, 201 is a PIN photodiode 2 formed of an amorphous silicon film.
5 is a thin film photodiode, 202 is a charge storage capacitor made of tantalum oxide film, 20
3 is for reading.

の負荷抵抗である。まず、光を照射しないで薄膜ホトダ
イオード201に順方向電流を流し、電荷蓄積用コンデ
ンサ202を充電する。ついで、光を照射すると、ホト
ダイオードで発生した光電流のため、電荷蓄積用コンデ
ンサ202に蓄積されていた電荷が放電される。その後
、光照射をやめて再びホトダイオードに順方向の電流を
流し、電荷蓄積用コンデンサ202を再充電する。この
ときの充電電流を信号として読み取るのである。このよ
うに、イメージセンサは蓄積モード動作をしており、高
速読み出しが可能となっている。実際、このような素子
を複数個配列し、マトリクス配線したものでは、A4判
の原稿を8ドツト/mmの解像度で5ms/ライン以下
の時間で読み出すことができるここで1本発明によるイ
メージセンサの製造方法を説明する。−例として、第2
図に示すものの製造プロセスについて述べる。まず、ガ
ラス基板2I上にタンタル膜を形成し、熱酸化により五
酸化タンタル膜からなるガラス基板保護用の保護層22
を形成する。この上に、反応性スパッタリング法により
窒化タンタル膜を製膜し、ホトエツチングにより所定の
電極・配線パターンの窒化タンタル膜配線23を形成す
る。ついで、ホトレジスト等でパターン化し、1極酸化
により電極パターンの一部を酸化することによって電荷
蓄積用コンデンサの誘電体膜24とする。さらに、プラ
ズマCVD法を用いて、SiH4,N2、PH,の混合
気体を分解することによりn型非晶質シリコン膜を、S
 i H4とN2の混合気体を分解することにより非晶
質シリコン膜を、SiH,、N2、B2H,の混合気体
を分解することによりp型非晶質シリコン膜を、順次所
定の膜厚で堆積させる。次に、ホトプロセスとドライエ
ツチングで所定のパターンを形成し、PINホトダイオ
ード25とする。その上にスパッタリングにより所定の
パターンを形成して層間絶縁膜26とする。ついで、ス
パッタリングでITO膜を堆積させ、ホトエツチングに
より所定のパターンを形成して透明導電膜27とする。
is the load resistance. First, a forward current is passed through the thin film photodiode 201 without irradiating light to charge the charge storage capacitor 202. Then, when light is irradiated, the charge stored in the charge storage capacitor 202 is discharged due to the photocurrent generated in the photodiode. Thereafter, the light irradiation is stopped and a forward current is caused to flow through the photodiode again to recharge the charge storage capacitor 202. The charging current at this time is read as a signal. In this way, the image sensor operates in an accumulation mode, and high-speed readout is possible. In fact, with a plurality of such elements arranged and wired in a matrix, it is possible to read out an A4 size document at a resolution of 8 dots/mm in less than 5 ms/line. The manufacturing method will be explained. - As an example, the second
The manufacturing process of what is shown in the figure will be described. First, a tantalum film is formed on the glass substrate 2I, and a protective layer 22 for protecting the glass substrate made of tantalum pentoxide film is formed by thermal oxidation.
form. A tantalum nitride film is formed thereon by reactive sputtering, and tantalum nitride film wiring 23 having a predetermined electrode/wiring pattern is formed by photoetching. Next, it is patterned with photoresist or the like, and a part of the electrode pattern is oxidized by monopolar oxidation to form the dielectric film 24 of the charge storage capacitor. Furthermore, using the plasma CVD method, an n-type amorphous silicon film was formed by decomposing a mixed gas of SiH4, N2, and PH.
i Decompose an amorphous silicon film by decomposing a gas mixture of H4 and N2, and a p-type amorphous silicon film by decomposing a gas mixture of SiH, N2, and B2H to a predetermined thickness. let Next, a predetermined pattern is formed by photoprocessing and dry etching to form a PIN photodiode 25. A predetermined pattern is formed thereon by sputtering to form an interlayer insulating film 26. Next, an ITO film is deposited by sputtering, and a predetermined pattern is formed by photoetching to form a transparent conductive film 27.

次に、4党膜をスパッタリングにより製膜し、ホトエツ
チングによりパターン化し、金属配線28を形成する。
Next, a four-layer film is formed by sputtering and patterned by photoetching to form metal wiring 28.

さらに、プラズマCVD法を用いて、SiH,とNH,
、N2の混合気体を分解反応させることによりシリコン
窒化膜を堆積させ、保護膜29とする。
Furthermore, using plasma CVD method, SiH, NH,
, N2 is decomposed and reacted to deposit a silicon nitride film to form the protective film 29.

上記した製造プロセスにおいて、誘電体膜24として、
高抵抗な非晶質シリコン膜を利用したり、シリコン酸化
膜やシリコン窒化膜、あるいは酸化チタン膜等を堆積さ
せて形成することも考えられる。しかし、非晶質シリコ
ン膜の場合には、それが絶縁体でないため漏れ電流が大
きく、誘電体膜を堆積させる場合には膜厚を大きくする
必要があり、歩留り良く形成することが困難である。サ
ンドイッチ構造の素子の欠陥を低減してイメージセンサ
の長尺化を可能にするという本発明の効果は、電極であ
る窒化タンタル膜の一部を陽極酸化を用いて酸化物に変
えて誘電体膜とする三とによって生じている。また、こ
のようにして得た誘電体膜は、誘電率と膜厚、電極面積
を変化させることができ、設計上の自由度も大きい。こ
のような効果を出すためには、電極材料として窒化タン
タル以外にこれと類似した性質のものを用いても良く、
Sb、Bi、Hf、Nb、Ti、W、Zrやこれらの窒
化物を用いても差し支えない。また、酸化する手段とし
ては、悪影響がなければ陽極酸化に限るものではなく、
プラズマ酸化や熱酸化等を用いても良い。
In the above manufacturing process, as the dielectric film 24,
It is also conceivable to use a high-resistance amorphous silicon film, or to deposit a silicon oxide film, a silicon nitride film, a titanium oxide film, or the like. However, in the case of an amorphous silicon film, since it is not an insulator, leakage current is large, and when depositing a dielectric film, it is necessary to increase the film thickness, making it difficult to form with a high yield. . The effect of the present invention, which is to reduce defects in the sandwich structure element and make it possible to lengthen the image sensor, is to convert a part of the tantalum nitride film that is the electrode into an oxide using anodic oxidation, thereby forming a dielectric film. This is caused by three things. Further, the dielectric film obtained in this way can have a large degree of freedom in design since the dielectric constant, film thickness, and electrode area can be changed. In order to produce such an effect, a material with similar properties other than tantalum nitride may be used as the electrode material.
Sb, Bi, Hf, Nb, Ti, W, Zr, or nitrides thereof may be used. In addition, the means of oxidation is not limited to anodic oxidation, as long as there are no negative effects.
Plasma oxidation, thermal oxidation, etc. may also be used.

薄膜ホトダイオードと薄膜ブロッキングダイオードとを
逆直列に接続した構造の場合、製造中、静電荷等で破壊
されることがある。また、薄膜ホトダイオードと電荷蓄
積用コンデンサとを分離して設置してプレーナ型にした
場合にも、ホトダイオードの静電破壊的なものの見られ
ることがある。
In the case of a structure in which a thin film photodiode and a thin film blocking diode are connected in anti-series, it may be destroyed by static charge or the like during manufacturing. Furthermore, even when a thin film photodiode and a charge storage capacitor are installed separately to form a planar type, electrostatic damage to the photodiode may occur.

このような静電破壊に対しても、本発明を実施した素子
の方がより強い耐力を有している。これは、本発明によ
る素子では静電荷による電圧が電荷蓄積用コンデンサで
分配されるためと思われる。
Even against such electrostatic damage, the element implementing the present invention has a stronger proof strength. This seems to be because in the device according to the present invention, voltage due to static charges is distributed by the charge storage capacitor.

また、本実施例では、薄膜ホトダイオードを非晶質シリ
コン膜で構成しているが、必ずしもこれに限るものでは
なく、Cd5−CdTe−Te、ZnS−ZnTe、C
d5−CdSe、Cd5e−CdTe、As−8e−T
e、5e−Te、Cd5−CdTe−As25ea等を
用いても良い。
Further, in this example, the thin film photodiode is made of an amorphous silicon film, but it is not necessarily limited to this.
d5-CdSe, Cd5e-CdTe, As-8e-T
e, 5e-Te, Cd5-CdTe-As25ea, etc. may also be used.

以上のように、本発明では、サンドイッチ構i素子数の
低減と、ホトセンサ部構成および誘電体膜の形成法を工
夫することとにより、各素子の製造歩留りを上げ、イメ
ージセンサの長尺化を可能にしている。
As described above, in the present invention, by reducing the number of elements in the sandwich structure and devising the structure of the photo sensor part and the method of forming the dielectric film, the manufacturing yield of each element can be increased and the length of the image sensor can be increased. It makes it possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、サンドインチ構造素子の欠陥も低減で
きるので、蓄積モード動作を行うイメージセンサの各素
子を歩留り良く形成でき、高速読み取りの等倍もしくは
縮小率の小さなイメージセンサの長尺化が可能になる。
According to the present invention, it is possible to reduce defects in the sand-inch structure element, so each element of an image sensor that operates in an accumulation mode can be formed with a high yield, and it is possible to increase the length of an image sensor for high-speed reading at the same magnification or with a small reduction ratio. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は等倍型イメージセンサの提案例を示す構成図、
第2図、第3図および第4.細は本発明によるイメージ
センサの実施例を示す縦断面図、第5図は該実施例の動
作を説明するための等価回路図である。 符号の説明 21・・・基板 22・・・保護層 23・・・窒化タンタル膜配線 24・・・誘電体膜 25・・・PINホトダイオード 26・・・層間絶縁膜 27・・・透明導電膜28・・
・金属配線 29・・・保護膜31・・・金属膜 41
・・・高導電率金属膜101・・・ホトセンサ部 10
2・・・マトリクス配線部201・・・薄膜ホトダイオ
ード 202・・・電荷蓄積用コンデンサ 203・・・負荷抵抗 代理人弁理士 中 村 純之助 才1 宮 t2図 101 裔3 吻 01 や4図 凰 先 5IP5図
Figure 1 is a configuration diagram showing a proposed example of a 1-magnification image sensor.
Figures 2, 3 and 4. The detail is a longitudinal sectional view showing an embodiment of the image sensor according to the present invention, and FIG. 5 is an equivalent circuit diagram for explaining the operation of the embodiment. Explanation of symbols 21... Substrate 22... Protective layer 23... Tantalum nitride film wiring 24... Dielectric film 25... PIN photodiode 26... Interlayer insulating film 27... Transparent conductive film 28・・・
・Metal wiring 29...Protective film 31...Metal film 41
... High conductivity metal film 101 ... Photosensor part 10
2...Matrix wiring section 201...Thin film photodiode 202...Charge storage capacitor 203...Load resistance Patent attorney Junnosuke Nakamura 1 Miya t2 Figure 101 Scion 3 Noboru 01 Ya4 Figure 5 IP5 figure

Claims (1)

【特許請求の範囲】 (1)基板上に設けられた金属膜配線上の一部に前記金
属の酸化膜を形成し、該金属酸化膜上に薄膜ホトダイオ
ードと透明導電膜を順次積層した構造を有することを特
徴とするイメージセンサ。 (2、特許請求の範囲第1項に記載のイメージセンサに
おいて、金属酸化膜上に金属膜を形成したのち、薄膜ホ
トダイオードと透明導電膜を順次積層した構造を有する
ことを特徴とするイメージセンサ。 (3)特許請求の範囲第1項または第2項に記載のイメ
ージセンサにおいて、金属酸化膜を電荷蓄積用コンデン
サの誘電体としたことを特徴とするイメージセンサ。 (4)特許請求の範囲第1項または第2項に記載のイメ
ージセンサにおいて、金属膜配線を、sb、Bi、Hf
、Ta、Ti、W、Zrの各金属およびこれらの窒化物
のうちの少なくとも1つによって構成された第1金属膜
と、これより導電率の高い第2金属膜とからなる多層膜
としたことを特徴とするイメージセンサ。 (5)特許請求の範囲第1項または第2項に記載のイメ
ージセンサにおいて、薄膜、ホトダイオードを非晶質シ
リコンをベースとした材料によって構成したことを特徴
とするイメージセンサ。 (6)基板上に金属膜配線を形成したのち、金属膜配線
の一部を酸化物に変化させて金属酸化膜を形成し、該金
属酸化膜上に薄膜ホトダイオードと透明導電膜を順次積
層することを特徴とするイメージセンサの製造方法。
[Claims] (1) A structure in which an oxide film of the metal is formed on a part of the metal film wiring provided on the substrate, and a thin film photodiode and a transparent conductive film are sequentially laminated on the metal oxide film. An image sensor comprising: (2. The image sensor according to claim 1, which has a structure in which a metal film is formed on a metal oxide film, and then a thin film photodiode and a transparent conductive film are sequentially laminated. (3) An image sensor according to claim 1 or 2, characterized in that a metal oxide film is used as a dielectric of a charge storage capacitor. (4) Claim 1 In the image sensor according to item 1 or 2, the metal film wiring is made of sb, Bi, Hf
, Ta, Ti, W, and Zr, and at least one of these nitrides, and a second metal film having a higher conductivity than the first metal film. An image sensor featuring: (5) An image sensor according to claim 1 or 2, characterized in that the thin film and the photodiode are made of an amorphous silicon-based material. (6) After forming a metal film wiring on the substrate, a part of the metal film wiring is changed to an oxide to form a metal oxide film, and a thin film photodiode and a transparent conductive film are successively laminated on the metal oxide film. A method for manufacturing an image sensor, characterized by:
JP59081120A 1984-04-24 1984-04-24 Image sensor and manufacture thereof Pending JPS60225464A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59081120A JPS60225464A (en) 1984-04-24 1984-04-24 Image sensor and manufacture thereof
EP85104850A EP0162307A3 (en) 1984-04-24 1985-04-22 Image sensor and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081120A JPS60225464A (en) 1984-04-24 1984-04-24 Image sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60225464A true JPS60225464A (en) 1985-11-09

Family

ID=13737519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081120A Pending JPS60225464A (en) 1984-04-24 1984-04-24 Image sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60225464A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080477A (en) * 1973-11-22 1975-06-30
JPS5271174A (en) * 1975-12-10 1977-06-14 Fujitsu Ltd Production of semiconductor device
JPS5730358A (en) * 1980-07-30 1982-02-18 Fujitsu Ltd Manufacture of semiconductor device
JPS5863164A (en) * 1981-10-13 1983-04-14 Fuji Xerox Co Ltd Optical read-out element
JPS5866354A (en) * 1981-10-16 1983-04-20 Hitachi Ltd Photo receiving element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080477A (en) * 1973-11-22 1975-06-30
JPS5271174A (en) * 1975-12-10 1977-06-14 Fujitsu Ltd Production of semiconductor device
JPS5730358A (en) * 1980-07-30 1982-02-18 Fujitsu Ltd Manufacture of semiconductor device
JPS5863164A (en) * 1981-10-13 1983-04-14 Fuji Xerox Co Ltd Optical read-out element
JPS5866354A (en) * 1981-10-16 1983-04-20 Hitachi Ltd Photo receiving element

Similar Documents

Publication Publication Date Title
US4862237A (en) Solid state image sensor
US4517733A (en) Process for fabricating thin film image pick-up element
US4461956A (en) Solid-state photoelectric converter
EP0060699B1 (en) Method of manufacturing photosensors
GB2188482A (en) Optical sensor
US4471371A (en) Thin film image pickup element
US5101255A (en) Amorphous photoelectric conversion device with avalanche
US5537146A (en) Solid state imaging device having a plurality of signal lines for shift-register section extending over photoelectric conversion section
JPH04299578A (en) Photoelectric transducer
JPH0456468B2 (en)
JPH0783098B2 (en) Optical image detector manufacturing method and two-dimensional matrix detector manufactured by the manufacturing method
JPS60225464A (en) Image sensor and manufacture thereof
JP3154850B2 (en) Photoelectric conversion device and method of manufacturing the same
JPH0522516A (en) Image sensor
JPH11261047A (en) Image sensor
US5308969A (en) Image sensor
JPH0548142A (en) Field effect phototransistor
JPS5879756A (en) Amorphous si image sensor
JPH05326912A (en) Image sensor
EP0162307A2 (en) Image sensor and method of manufacturing same
JPS6112061A (en) Image sensor and manufacture thereof
JPH06177417A (en) Phototransistor and line image sensor
JPH0337744B2 (en)
EP0607874A1 (en) Solid state image sensor
JP2993101B2 (en) Image sensor