JPS5930784B2 - roller chain pin - Google Patents

roller chain pin

Info

Publication number
JPS5930784B2
JPS5930784B2 JP14900479A JP14900479A JPS5930784B2 JP S5930784 B2 JPS5930784 B2 JP S5930784B2 JP 14900479 A JP14900479 A JP 14900479A JP 14900479 A JP14900479 A JP 14900479A JP S5930784 B2 JPS5930784 B2 JP S5930784B2
Authority
JP
Japan
Prior art keywords
roller chain
pin
steel
core
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14900479A
Other languages
Japanese (ja)
Other versions
JPS55113863A (en
Inventor
広 新家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Kogyo Co Ltd
Original Assignee
Daido Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Kogyo Co Ltd filed Critical Daido Kogyo Co Ltd
Priority to JP14900479A priority Critical patent/JPS5930784B2/en
Publication of JPS55113863A publication Critical patent/JPS55113863A/en
Publication of JPS5930784B2 publication Critical patent/JPS5930784B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 この発明は動力伝達に使用される際、優れた耐摩耗性を
もつたローラチェーンのピンに係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a roller chain pin that has excellent wear resistance when used for power transmission.

近年、動力伝達用としてのローラチェーン、ブシユドチ
エーン(以下チェーンという)に対し、次第に使用条件
が過酷となり、特に始動、停止、正・逆転および加・減
速等が煩繁に行われる機器にあつては衝撃的に発生する
チェーン張力(以下衝撃力という)は非常に大きく、之
によりチェーンが短時間の使用で切断することがしばし
ばある。
In recent years, the usage conditions for roller chains and bushed chains (hereinafter referred to as chains) for power transmission have become increasingly harsh, especially for equipment that requires complicated starting, stopping, forward/reverse, acceleration/deceleration, etc. The chain tension generated by an impact (hereinafter referred to as impact force) is very large, which often causes the chain to break after a short period of use.

このような場合、従来のチェーンにおいてはピンが曲げ
もしくはせん断により破損することが多く、衝撃力を受
けないで長時間に亘る使用伏態下においてリンクプレー
トが疲労・破壊する従来の破断とは全く様相を異にして
いる。チェーンのピンはブシユと共に軸受部を構成する
ので耐摩耗性を得るために表面硬度を高くする必要があ
り、このため従来は低炭素合金肌焼鋼を浸炭して使用し
ていた。
In such cases, in conventional chains, the pins often break due to bending or shearing, which is completely different from the conventional fracture in which the link plate fatigues and breaks after being used for a long time without being subjected to impact force. The situation is different. Since the pin of the chain constitutes the bearing part along with the bushing, it is necessary to increase the surface hardness in order to obtain wear resistance, and for this reason, conventionally, carburized low carbon alloy case hardened steel has been used.

その成分はC<0.23%程度でその他の合金元素とし
てCr、Ni、Mo、Mn等が含有されており、これら
の低炭素合金肌焼鋼からなるピンはその表面が硬いが内
部は靭性に富むので、ある程度、衝撃力に対しても抵抗
力を有しているが、現今にあつてはなお衝撃力に対して
不充分である。之はピンの芯部における強度不足に起因
するものである故、この解決策の一つとして中高炭素強
靭鋼の使用が考えられるが、市販のこの種の素材に耐摩
耗性を付与すべく浸炭窒化を行うとき、チェーンの破断
荷重は合金肌焼鋼を使用したチェーンの夫れに比しかな
り低い値しか得れない。この理由の一つは合金肌焼鋼に
浸炭したものにあつては、表面と芯部とにおける炭素濃
度の差により焼きの入り方が異なり、表面に圧縮残留応
力が発生して脆い表面層に亀裂が発生するのを防止して
いるのに対し、中高炭素強靭鋼に浸炭したものでは表面
と芯部の焼きの入り方にさしたる差異がなく、圧縮残留
応力もないから曲げ作用により表面層に亀裂が発生し、
この亀裂が直ちに芯部に迄伝播するものと考えられてい
る。よつて前述のような理由から大きい衝撃にもよく耐
える強度を得る目的で強靭鋼からなるピンを使用するが
、このピンの使用に際しては耐摩耗性を無視するのが従
来の考え方であつた。そこでこの発明は前述のような欠
点を除去し、素材に浸炭しても耐衝撃強度が低下しない
中炭素強靭鋼製で浸炭窒化の後、焼入れ、焼戻しを行な
つたローラチェーンのピンを提供しようとするもので、
重量比でC0.35〜0.45%、5i0.15〜0.
50%、Mn0、35〜0.60%、Po、Os%以下
、50.03%以下、Ni3.0〜4.0%、Cr1.
0〜1.5(:F6を主成分とし、WO.3〜1.0%
およびVO.3〜0.6%,TiO,2〜0.6%の一
種または二種を含有し、残余はFeおよび不純物からな
る組成の鋼材の表面には、浸炭窒化層が、また芯部には
マルテンサイトが夫々形成されていることを特徴とする
ものである。まづこの発明に係るピン素材の要旨とする
組成は重量比でCO.35〜0.45%,SiO.l5
〜0.50%,MnO.35〜0.60%,PO,O3
%以下、SO,O3%以下、Ni3.O〜4.0%,C
rl.O〜1.5%の諸元素の外にWO.3〜1.0%
およびVO.3〜0.6%TiO.2〜0.6%の一種
または二種を含有し、残余はFeおよび不純物からなる
ものである。
Its composition is approximately C < 0.23%, and other alloying elements such as Cr, Ni, Mo, and Mn are included. Pins made of these low carbon alloy case hardened steels have a hard surface but a tough interior. Although it has a certain degree of resistance against impact forces, it is still insufficient to withstand impact forces at present. This is due to the lack of strength in the core of the pin, so one possible solution to this problem is the use of medium-high carbon strength steel, but carburizing is used to add wear resistance to commercially available materials of this type. When nitriding, the breaking load of the chain is much lower than that of chains made of case-hardened alloy steel. One of the reasons for this is that when case-hardened alloy steel is carburized, the degree of hardening differs due to the difference in carbon concentration between the surface and the core, which causes compressive residual stress to occur on the surface and weaken the brittle surface layer. On the other hand, when carburized medium-high carbon steel is used, there is no significant difference in the hardening of the surface and core, and there is no compressive residual stress, so the bending action prevents the surface layer from forming. Cracks occur,
It is believed that this crack immediately propagates to the core. Therefore, for the reasons mentioned above, pins made of strong steel are used in order to obtain strength that can withstand large impacts, but the conventional approach when using these pins has been to ignore wear resistance. Therefore, the present invention aims to eliminate the above-mentioned drawbacks and provide a roller chain pin that is made of medium-carbon strong steel and is carbonitrided, then quenched and tempered, so that the impact strength does not decrease even if the material is carburized. and
Weight ratio: C0.35-0.45%, 5i0.15-0.
50%, Mn0, 35-0.60%, Po, Os% or less, 50.03% or less, Ni3.0-4.0%, Cr1.
0 to 1.5 (: F6 is the main component, WO.3 to 1.0%
and V.O. The steel material has a composition of 3-0.6% TiO, 2-0.6% TiO, and 2-0.6%, with the remainder consisting of Fe and impurities.The surface of the steel material has a carbonitrided layer, and the core has a marten layer. The feature is that each site is formed individually. First of all, the main composition of the pin material according to this invention is CO. 35-0.45%, SiO. l5
~0.50%, MnO. 35-0.60%, PO, O3
% or less, SO, O3% or less, Ni3. O~4.0%,C
rl. In addition to O~1.5% of various elements, WO. 3-1.0%
and VO. 3-0.6% TiO. It contains 2 to 0.6% of one or two kinds, with the remainder consisting of Fe and impurities.

このうちCは熱処理後におけるピンの芯部の強度を与え
るために基本的に重要な元素であり、0.35%以下で
は低炭素肌焼鋼に比し、性能において差異がなく、また
0.45%以上では却て脆弱化の影響が大きく耐摩耗性
のローラチエーン用のピン素材としては不適当のため、
結局Cは0,35〜0.45f)が最適である。Sl,
Mnは鋼材における脱酸を充分に行ない、焼入性の向上
をはかるための元素であり、含有量が余りに多いときに
は焼入脆化を伴うので、Slが0.15〜0.501)
,Mnが0.35〜0.60%が適当である。
Among these, C is a fundamentally important element to provide strength to the core of the pin after heat treatment, and if it is 0.35% or less, there is no difference in performance compared to low carbon case hardening steel, and if it is 0.35% or less, there is no difference in performance compared to low carbon case hardened steel. If it exceeds 45%, the effect of weakening will be greater and it will not be suitable as a pin material for wear-resistant roller chains.
After all, C is optimally 0.35 to 0.45 f). Sl,
Mn is an element that sufficiently deoxidizes steel materials and improves hardenability.If the content is too high, quenching embrittlement occurs, so if Sl is 0.15-0.501)
, Mn is suitably 0.35 to 0.60%.

なおP,Sにおいて、いづれも0.03%以上含有する
と鋼を脆弱化しピン材として不適となるのでいづれも0
.03%以下となし、またNiを3.0〜4.0%,C
rを1.0〜1.5%同時に含むことによりNi,Cr
の夫々を単独で含有する場合に比して鋼の焼入性を著し
く増加し、硬化深度を大きくすると共に、鋼の質量効果
を減少させる一方、表面硬度、強度を増大させ、かつ芯
部での靭性を高める。またNiを3.0〜4.0%と普
通の鋼材より高くしたのは之によつて浸炭加熱中に起る
オーステナイト結晶粒の成長を抑制して焼入後の靭性を
増し、Cr含有に伴う靭性の低下を緩和するためである
。併し乍らCrをNlと共に含有させることは前述のよ
うな理由で必要なるも、Crの含有量が1,5%以上に
なると過浸炭を招き結晶粒界に顕著な鋼状セメンタイト
を生成して浸炭層を脆化するからCrは1.0〜1.5
(:Ft)とするのが適正かつ必要である。さらにこの
発明におけるCの量では浸炭焼入れのときに表面に圧縮
残留応力の効果を期待できず、浸炭層の靭性を特に高め
ておかないと耐摩耗性に富むローラチエーンのピン素材
としては不適当であるからである。W,V,Tlはいづ
れもCと結合して炭化物を生成し、耐摩耗性、焼戻抵抗
性を高めるが、その反面、母材中のCが減少するので、
その結果、焼入性を低下する故、WO.3〜1.0%,
VO.3〜0.6%,TiO.2〜0.6%が適当であ
る。そして浸炭窒化を施すことでV,Tiは極めて硬い
VN,TlNの微粒を生成して耐摩耗性を一層向上させ
、さらにW,VおよびTiは焼戻し軟化抵抗を高めるの
に有効であり、ローラチエーンの使用中における温度上
昇に対して強度の低下阻止に役立つ。以上主としてロー
ラチエーンのピン材の浸炭による靭性低下を阻止するこ
とを主眼においてこの発明を述べたが、他方チエーンに
作用する衝撃はチエーンの弾性伸びが大きいと衝撃荷重
が緩和されることが判つており、このためこの発明に係
るローラチエーンのピン素材にC,Cr,W,V,Ti
はピンの弾性限界を増大させる機能を有し、すぐれた耐
摩耗性用ローラチエーンとしての性能を付与するもので
ある。
In addition, if P and S contain more than 0.03%, the steel will become brittle and become unsuitable as a pin material.
.. 03% or less, and 3.0 to 4.0% Ni, C
By simultaneously containing 1.0 to 1.5% r, Ni, Cr
It significantly increases the hardenability of the steel, increases the hardening depth, and reduces the mass effect of the steel, while increasing the surface hardness and strength, and Increases toughness. In addition, the reason why the Ni content is 3.0 to 4.0%, higher than that of ordinary steel materials, is to suppress the growth of austenite grains that occur during carburizing heating, increase toughness after quenching, and reduce the Cr content. This is to alleviate the accompanying decrease in toughness. However, although it is necessary to contain Cr together with Nl for the reasons mentioned above, if the Cr content exceeds 1.5%, excessive carburization will occur, forming noticeable steel-like cementite at grain boundaries, resulting in a carburized layer. Cr is 1.0 to 1.5 because it embrittles
(:Ft) is appropriate and necessary. Furthermore, with the amount of C in this invention, it is not possible to expect the effect of compressive residual stress on the surface during carburizing and quenching, and unless the toughness of the carburized layer is particularly increased, it will not be suitable as a pin material for a roller chain with high wear resistance. This is because. W, V, and Tl all combine with C to form carbides, increasing wear resistance and tempering resistance, but on the other hand, C in the base metal decreases.
As a result, the hardenability decreases, so WO. 3-1.0%,
VO. 3-0.6%, TiO. 2 to 0.6% is appropriate. By carbonitriding, V and Ti produce extremely hard particles of VN and TlN, further improving wear resistance. Furthermore, W, V and Ti are effective in increasing resistance to temper softening, and are effective for improving roller chain Helps prevent strength loss due to temperature rise during use. This invention has been described above mainly with the aim of preventing a decrease in toughness due to carburization of the pin material of a roller chain, but on the other hand, it has been found that the impact load acting on the chain is alleviated when the elastic elongation of the chain is large. Therefore, C, Cr, W, V, Ti is used as the pin material of the roller chain according to the present invention.
This has the function of increasing the elastic limit of the pin, and provides excellent performance as a wear-resistant roller chain.

次にこの発明の実施例を挙げてその効果を説明する。Next, examples of the present invention will be given to explain its effects.

化学分析結果が重量比でCO.42(Ff),SiO,
22%,MnO。4O(f),PO.Ol8(!),S
O.O23%,Ni3.33%,Crl.3O%,WO
.33%,VO,36%その他はFeおよび不純物から
なる鋼材を、JIS5Oローラチエーンのピン素材とし
て採用し、之を直径5.08mm1長さ220Ttmに
成形した後、ガス浸炭窒化により850℃のもとで30
分間加熱し、約0.2mmの浸炭窒化層を表面に形成し
、直ちに之を油焼入れし、ついで低温で焼戻し処理を行
い、ローラチエーンのピンとする。
The chemical analysis results are CO. by weight. 42(Ff), SiO,
22%, MnO. 4O(f), PO. Ol8(!),S
O. O23%, Ni3.33%, Crl. 30%, WO
.. A steel material consisting of 33%, VO, and 36% Fe and impurities was used as the pin material for a JIS5O roller chain, and after forming it into a diameter of 5.08 mm and a length of 220 Ttm, it was carbonitrided with gas at 850°C. 30 at
The material is heated for 1 minute to form a carbonitrided layer of about 0.2 mm on the surface, immediately quenched in oil, and then tempered at a low temperature to form pins for roller chains.

このピンの表面硬度はビツカース硬度Hv(200g)
で730〜780芯部硬度はビツカース硬度Hv(20
0g)で540〜600である。また、この発明におい
て化学分析結果が重量比でCO.42%,SiO.22
%,MnO,4%,PO.Ol8%,SO.O23%,
Ni3.33%,Crl.3O%,WO.33%,Ti
O,35(Ff)その他はFeおよび不純物からなる鋼
材を、JIS5OOローラチエーンのピン素材として採
用し、このピン素材を前述の場合におけると同様に直径
5.08m11、長さ20mmに成形した後、ガス浸炭
窒化により850℃のもとで30分間加熱して約0.2
mmの浸炭窒化層を表面に形成し、直ちに之を油焼入れ
し、ついで低温(180℃)で焼戻を行うとき、芯部に
はマルテンサイトの組織が形成されたローラチエーンの
ピンが得られ、しかして表面では荷重200gのもとで
ビツカース硬度Hv=1750,芯部では荷重200g
のもとでビツカース硬度H=550であり、TiはCと
結合してTiCとなり、そして表面には浸炭窒化を施す
ことで極めて硬いTiNの微粒の生成で従来のピンに比
し、さらに耐摩耗性に富むピンが得られる。
The surface hardness of this pin is Bitkers hardness Hv (200g)
The core hardness is 730 to 780, and the hardness is Vickers hardness Hv (20
0g) is 540-600. In addition, in this invention, the chemical analysis results are CO. 42%, SiO. 22
%, MnO, 4%, PO. Ol8%, SO. O23%,
Ni3.33%, Crl. 30%, WO. 33%, Ti
O, 35 (Ff) steel material other than Fe and impurities was adopted as the pin material of the JIS 5OO roller chain, and after forming this pin material into a diameter of 5.08 m11 and a length of 20 mm in the same way as in the previous case, Approximately 0.2
When a carbonitrided layer of mm thick is formed on the surface, immediately quenched in oil, and then tempered at a low temperature (180°C), a roller chain pin with a martensite structure formed in the core is obtained. , so the Vickers hardness Hv = 1750 at the surface under a load of 200g, and the load at the core is 200g.
The hardness of the pin is H = 550, Ti combines with C to form TiC, and the surface is carbonitrided to produce extremely hard TiN particles, making it even more wear resistant than conventional pins. You can get pins that are rich in sex.

さらにこの発明において、化学分析結果が重量比でCO
.42f),SiO.22(f),MnO,4%,PO
.Ol8%,SO.O23%,Ni3.33%,Crl
.3O%,WO.33%,VO.32(11),TiO
.36%その他はFeおよび不純物からなる鋼材を、J
IS5Oローラチエーンのピン素材として採用し、この
ピン素材を前述におけると同様に直径5.08關、長さ
20mmに形成した後ガス浸炭窒化により850℃のも
とで30分間加熱して0.2mmの浸炭窒化層を表面に
形成し、直ちに之を油焼し、ついで低温(180℃)で
焼戻しを行うとき、芯部にはマルテンサイトの組織が形
成されたローラチエーンのピンが得られ、このとき表面
では荷重200gのもとでビツカース硬度Hv=770
、芯部では荷重200gのもとでビツカース硬度Hv=
580であり、そしてV(5Tiとの共存により表面に
は、極めて硬いVN,TiNの微粒をもつた浸炭窒化層
が形成され、ピンとしての耐摩耗性が従来のピンの夫れ
にし比して一層向上される。
Furthermore, in this invention, the chemical analysis results indicate that CO
.. 42f), SiO. 22(f), MnO, 4%, PO
.. Ol8%, SO. O23%, Ni3.33%, Crl
.. 30%, WO. 33%, VO. 32(11), TiO
.. 36% Others are steel materials consisting of Fe and impurities, J
This pin material was used as a pin material for an IS5O roller chain, and this pin material was formed into a diameter of 5.08 mm and a length of 20 mm in the same manner as described above, and then heated by gas carbonitriding at 850° C. for 30 minutes to a diameter of 0.2 mm. When a carbonitrided layer is formed on the surface, immediately sintered in oil, and then tempered at a low temperature (180°C), a roller chain pin with a martensite structure formed in the core is obtained. At the surface, under a load of 200g, the Vickers hardness Hv = 770
, At the core, under a load of 200g, the Bitkers hardness Hv=
580, and due to the coexistence with V(5Ti), a carbonitrided layer with extremely hard VN and TiN particles is formed on the surface, and the wear resistance of the pin is higher than that of conventional pins. It will be further improved.

次に第1図に示すような試験装置でこの発明に係る中炭
素強靭鋼と、従来例で述べたSNCM2および低炭素肌
焼鋼からなるピンを夫々同サイズのローラチエーンに組
込み、一連の長さを19リンクとして試験した。
Next, in a testing apparatus as shown in FIG. 1, the pins made of the medium-carbon strong steel according to the present invention and the SNCM2 and low-carbon case-hardened steel described in the conventional example were assembled into roller chains of the same size, and a series of long The test was conducted with 19 links.

しかして前記SNCM2および低炭素肌焼鋼からなるピ
ンの(1)成分(拠理条件、表面層の深さおよび表面、
芯部夫々の硬さ(ビツカース硬度HVl荷重200g)
を表示すれば以下のようである。次にこの試験装置の概
要を第1図について述べるに、天井に固定・垂下せる支
持片1に軸架した支軸2に滑車3を回動自在に支持し、
該滑車3に掛架せるロープ4の一端で逆U字形の枠体5
の中央を懸垂する一方、ロープ4の他端を図示しないド
ラムに捲回すると共に、前記19リンクからなるローラ
チエーンYの上端を、枠体5の水平部5hの下面中央に
固定し、下端に22Kfの重錘Wを吊下げ、しかして枠
体5の下端がHの高さから床面Gに落下しても重錘Wの
下端は床面Gと接触せず、かつ枠体5が床面Gに接した
とき重錘Wの衝撃エネルギーを充分にローラチエーンY
に伝播させるようにしたもので、ロープ4で図示の位置
に懸垂・支持された枠体5を、ロープ4の弛緩で枠体5
を床面Gに落下させ、ローラチエーンYが落下時の衝撃
で破断するに至る迄の反覆落下回数Nを計測した結果を
第2図に示してある。
Therefore, the (1) components (grounding conditions, depth and surface of the surface layer,
Hardness of each core (Bitzkers hardness HVl load 200g)
If you display it, it will look like this: Next, the outline of this test device will be described with reference to FIG. 1. A pulley 3 is rotatably supported on a support shaft 2 that is mounted on a support piece 1 that can be fixed and suspended from the ceiling.
An inverted U-shaped frame body 5 is attached to one end of the rope 4 that is hung on the pulley 3.
While the center of the rope 4 is suspended, the other end of the rope 4 is wound around a drum (not shown), and the upper end of the roller chain Y consisting of the 19 links is fixed to the center of the lower surface of the horizontal part 5h of the frame 5, and the lower end Even if a 22Kf weight W is suspended and the lower end of the frame 5 falls from a height H to the floor G, the lower end of the weight W will not come into contact with the floor G, and the frame 5 will remain on the floor. Roller chain Y absorbs the impact energy of weight W when it comes into contact with surface G.
The frame body 5 is suspended and supported by the rope 4 at the position shown in the figure, and the frame body 5 is suspended and supported by the rope 4 at the position shown in the figure.
Figure 2 shows the results of dropping the roller chain Y onto the floor G and measuring the number N of repeated drops until the roller chain Y breaks due to the impact of the fall.

即ち第2図において枠体5の下端における床面Gからの
高さH(単位Cm)を縦軸に、反覆落下回数Nの対数を
横軸に夫々とり、この発明の中炭素強靭鋼からなるピン
を組込んだローラチエーンYa、従来例のSNCM2か
らなるピンを組込んだローラチエーンをYbl同じ低炭
素肌焼鋼からなるピンを組込んだローラチエーンをYc
として図示したが、この第2図からも明らかなように、
たとえば70鼎の高さから枠体5を落下させたとき、Y
bにあつては3〜4回で破断するのに対しYaにあつて
は40回以上の反覆落下で始めそ破断することが了解さ
れ、また、逆に40回の落下試験でYcにあつてはその
高さが31〜35cm,Ybにあつては47〜52?程
度の高さからの落下で破断するのに対し、Yaにあつて
は70〜74cm程度の高さで始めて破断することが了
解され、之によつてみるに、Yaは耐衝撃性に極めて優
れた効果を有していることが容易に理解される。
That is, in FIG. 2, the height H (unit: Cm) from the floor surface G at the lower end of the frame 5 is plotted on the vertical axis, and the logarithm of the number of repeated falls N is plotted on the horizontal axis. A roller chain with built-in pins Ya, a roller chain with built-in pins made from conventional SNCM2 called Ybl, and a roller chain with built-in pins made of the same low carbon case-hardened steel as Yc.
However, as is clear from this Figure 2,
For example, when the frame 5 is dropped from a height of 70 degrees,
It is understood that type b breaks after 3 to 4 times, while type Ya starts to break after being dropped 40 times or more, and conversely, type Yc breaks after 40 repeated drops. The height is 31~35cm, and the height of Yb is 47~52cm. It is understood that Ya will break when dropped from a height of about 70 to 74 cm, whereas Ya will break when dropped from a height of about 70 to 74 cm. Accordingly, Ya has extremely excellent impact resistance. It is easily understood that this method has a significant effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はローラチエーンの耐衝撃用の試験装置の概略図
、第2図は第1図の試験装置を使用したときの従来例お
よびこの発明に係る実施例による耐衝撃試験結果を示す
対数グラフである。
Fig. 1 is a schematic diagram of a testing device for impact resistance of roller chains, and Fig. 2 is a logarithmic graph showing impact resistance test results according to a conventional example and an example according to the present invention when using the testing device shown in Fig. 1. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比でC0.35〜0.45%、Si0.15〜
0.5%、Mn0.35〜0.60%、P0.03%以
下、S0.03%以下、Ni3.0〜4.0%、Cr1
.0〜1.5%を主成分とし、W0.3〜1.0%およ
びV0.0.3〜0.6%、Ti0.2〜0.6%の一
種または二種を含有し、残余はFeおよび不純物からな
る組成の鋼材の表面には、浸炭窒化層が、また芯部には
マルテンサイトが夫々形成されていることを特徴とする
ローラチェーンのピン。
1 C0.35-0.45%, Si0.15-0.15% by weight
0.5%, Mn 0.35-0.60%, P 0.03% or less, S 0.03% or less, Ni 3.0-4.0%, Cr1
.. The main component is 0 to 1.5%, and one or two of W0.3 to 1.0%, V0.0.3 to 0.6%, and Ti0.2 to 0.6%, and the remainder is A pin for a roller chain, characterized in that a carbonitrided layer is formed on the surface of a steel material having a composition consisting of Fe and impurities, and martensite is formed in the core.
JP14900479A 1979-11-19 1979-11-19 roller chain pin Expired JPS5930784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14900479A JPS5930784B2 (en) 1979-11-19 1979-11-19 roller chain pin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14900479A JPS5930784B2 (en) 1979-11-19 1979-11-19 roller chain pin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7076975A Division JPS51147422A (en) 1975-06-13 1975-06-13 Pin of roller chain

Publications (2)

Publication Number Publication Date
JPS55113863A JPS55113863A (en) 1980-09-02
JPS5930784B2 true JPS5930784B2 (en) 1984-07-28

Family

ID=15465550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14900479A Expired JPS5930784B2 (en) 1979-11-19 1979-11-19 roller chain pin

Country Status (1)

Country Link
JP (1) JPS5930784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135383U (en) * 1989-04-18 1990-11-09

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092463A (en) * 1983-10-26 1985-05-24 Koyo Seiko Co Ltd Heat treatment of rolling member
CN107699795B (en) * 2017-10-26 2019-04-02 江西省中蔚建设集团有限公司 A kind of processing method of high strength cast iron for building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135383U (en) * 1989-04-18 1990-11-09

Also Published As

Publication number Publication date
JPS55113863A (en) 1980-09-02

Similar Documents

Publication Publication Date Title
US5997662A (en) Surface-hardened chain link
EP2218799B1 (en) Carbonitrided induction-hardened steel part with excellent rolling contact fatigue strength at high temperature and process for producing the same
GB2200369A (en) Rolling bearing
JP4354277B2 (en) Method for manufacturing carburized and quenched members
JP5632454B2 (en) Spring steel and steel surface treatment method
JP5178104B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JPS61264170A (en) Pin for chain
US7384488B2 (en) Method for producing gears and/or shaft components with superior bending fatigue strength and pitting fatigue life from conventional alloy steels
US3830054A (en) Link chains for motor blocks
JPS5930784B2 (en) roller chain pin
JP4798963B2 (en) High strength gear and manufacturing method thereof
JPH07179985A (en) High strength suspension spring excellent in corrosion resistance and its production
US20050230008A1 (en) Plate-shaped element of belt for belt type continuously variable transmission
JPH07216497A (en) Steel sheet or steel sheet parts with high fatigue strength and their production
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JPH10196627A (en) Screw without head crack and its manufacture
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JPH04160135A (en) Steel for carburization
JP4041330B2 (en) Steel wire for hard springs and hard springs with excellent fatigue strength
JPH10204534A (en) Track bushing and its production
JPH07126803A (en) Steel for carburizing gear
JPS5933190B2 (en) Heat treatment method for low carbon boron steel
JP2005163148A (en) Case hardening steel for high strength gear
JPH0568526B2 (en)
JP3967503B2 (en) High strength gear