JPS5930659B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method

Info

Publication number
JPS5930659B2
JPS5930659B2 JP8276780A JP8276780A JPS5930659B2 JP S5930659 B2 JPS5930659 B2 JP S5930659B2 JP 8276780 A JP8276780 A JP 8276780A JP 8276780 A JP8276780 A JP 8276780A JP S5930659 B2 JPS5930659 B2 JP S5930659B2
Authority
JP
Japan
Prior art keywords
optical fiber
glass
cladding
layer
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8276780A
Other languages
Japanese (ja)
Other versions
JPS5711836A (en
Inventor
文明 塙
基博 中原
正夫 河内
伸夫 稲垣
茂樹 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8276780A priority Critical patent/JPS5930659B2/en
Publication of JPS5711836A publication Critical patent/JPS5711836A/en
Publication of JPS5930659B2 publication Critical patent/JPS5930659B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は長期信頼性に優れた光ファイバの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing an optical fiber with excellent long-term reliability.

(従来技術) 従来、一般に光ファイバは材質的に非常に脆いので、表
面傷が発生し易く、これが応力集中源となり、容易に破
断する欠点があつた。
(Prior Art) Conventionally, since optical fibers are generally very brittle materials, they tend to have surface scratches, which become a stress concentration source and easily break.

これを解決するため、光ファイバの紡糸直後にプラスチ
ック被覆を施し、ファイバの表面を保護することにより
、初期強度の大きい光ファイバを製造する方法が提案さ
れている。通常、このプラスチック被覆は、1次被覆、
バッファ層および2次被覆の3層構造から成り、1次被
覆は光ファイバの表面保護およびクラッドモードの除去
、2次被覆はケーブル化時の作業性、バッファ層は2次
被覆およびケーブル化時の伝送損失の増加防止をそれぞ
れ目的としている。応力集中源が極めて少ない光ファイ
バに1次被覆を施した場合の引張り強度は、500kg
/一程度の非常に大きな強度が得られるが、一般に光フ
ァイバのクラッドガラスは、天然水晶から製造される高
純度石英ガラス管(市販品)が使用されているので、微
少気泡や表面傷が多く存在し、従つて現状において応力
集中源が存在しない光ファイバを得るのは不可能に近い
In order to solve this problem, a method has been proposed in which a plastic coating is applied immediately after spinning the optical fiber to protect the surface of the fiber, thereby manufacturing an optical fiber with high initial strength. Typically, this plastic coating consists of a primary coating,
It consists of a three-layer structure: a buffer layer and a secondary coating.The primary coating protects the surface of the optical fiber and removes cladding modes.The secondary coating protects the workability when forming cables.The buffer layer protects the secondary coating and removes cladding modes. The purpose of each is to prevent an increase in transmission loss. The tensile strength when primary coating is applied to an optical fiber with extremely few stress concentration sources is 500 kg.
However, since the clad glass for optical fibers is generally a high-purity quartz glass tube (commercially available) made from natural quartz, it has many microbubbles and surface scratches. Therefore, it is nearly impossible to obtain an optical fiber free of stress concentration sources at present.

このため1次被覆された光ファイバの初期強度は、10
0kg/一から500kg/一の範囲で変動する。
Therefore, the initial strength of the primary coated optical fiber is 10
It varies from 0 kg/1 to 500 kg/1.

また1次被覆材料のうち、ある種のプラスチックを被覆
した石英系光ファイバでは、水中または高温度雰囲気中
に放置しておくだけで、強度低下を生じることが知られ
ている。このように初期強度の6バラツキや強度低下を
生じる光フアイバを光伝送媒体に使用する場合、長期間
の実用に耐えない危険性がある。また光フアイバの接続
時においては、プラスチツク被覆を取り除いてから接続
を行うが、1次被覆を取り除く作業が容易でない欠点が
ある。(発明の目的) 本発明はこれらの欠点を解決するため、光フアイバ表面
にクラツドガラスより屈折率が大きく、かつクラツドガ
ラスより熱膨張係数が小さいガラス層を有することを特
徴とし、その目的は光フアイバの最低強度の向上、長期
信頼性の向上、さらにケーブル化や接続における作業性
を簡易化することにある。
Furthermore, it is known that silica-based optical fibers coated with certain types of plastic among the primary coating materials deteriorate in strength simply by being left in water or in a high-temperature atmosphere. When using an optical fiber that causes variations in initial strength or a decrease in strength as described above as an optical transmission medium, there is a risk that it will not be able to withstand long-term practical use. Furthermore, when connecting optical fibers, the plastic coating is removed before connection, but there is a drawback that it is not easy to remove the primary coating. (Object of the Invention) In order to solve these drawbacks, the present invention is characterized by having a glass layer on the surface of the optical fiber, which has a higher refractive index than the clad glass and a lower coefficient of thermal expansion than the clad glass. The aim is to improve minimum strength, improve long-term reliability, and simplify workability in cable formation and connection.

(発明の構成および作用) 本発明者らはこのような点に鑑み、まず石英フアイバと
コアおよびクラツドを有する石英系フアイバの強度を調
べた結果、強度はフアイバ中の応力に関係し、さらに詳
しくは、フアイバ表面における圧縮応力に依存し、強度
を増加させるには圧縮応力を大きくすればよいことを見
い出した。
(Structure and operation of the invention) In view of these points, the present inventors first investigated the strength of a quartz fiber, a quartz fiber having a core and a cladding, and found that the strength is related to the stress in the fiber. found that increasing the strength depends on the compressive stress at the fiber surface and that increasing the compressive stress can increase the strength.

しかしながら通常の石英系光フアイバでは、コアとクラ
ツドの屈折率差(熱膨張係数の差)およびクラツド層の
厚さが定められてしまうので、フアイバ表面の圧縮応力
は、ほぼ一定の応力しか得られない。本発明は、クラツ
ド層の表面にクラツドガラスより熱膨張係数が小さく、
かつクラツドガラスより屈折率が大きいSiO2−Ti
O2系ガラス層を形成して、光フアイバの表面に従来の
石英系光フアイバと比べて、より大きな圧縮応力を付与
させるものである。
However, in ordinary silica-based optical fibers, the refractive index difference (difference in thermal expansion coefficient) between the core and cladding and the thickness of the cladding layer are determined, so the compressive stress on the fiber surface is only approximately constant. do not have. In the present invention, the surface of the cladding layer has a thermal expansion coefficient smaller than that of cladding glass.
And SiO2-Ti has a higher refractive index than clad glass.
By forming an O2-based glass layer, a larger compressive stress is applied to the surface of the optical fiber compared to a conventional silica-based optical fiber.

本発明が実施された石英系光フアイバの構造の断面を第
1図に示す。
FIG. 1 shows a cross section of the structure of a silica-based optical fiber in which the present invention is implemented.

第1図においては1はコア部でこのガラスはSiO2−
GeO2、2はクラツド部でこのガラスはSiO2、3
は本発明によるガラス層でSiO2一TiO2ガラスで
ある。
In Figure 1, 1 is the core and this glass is SiO2-
GeO2,2 is the cladding part and this glass is SiO2,3
The glass layer according to the present invention is SiO2-TiO2 glass.

本発明による第3のガラス層の厚さは、製造条件によつ
て任意に変えることができるが、コア径50μmφ、ク
ラツド径125μmφの標準的な光フアイバにおいては
、3〜6μmの厚さが最適である。SiO2−TiO2
ガラス層をこれ以上厚くすると、圧縮応力がコア部にま
で伝わりその結果、光フアイバ損失特性を劣化させるこ
とになる。また厚さが3μm以下の場合には光フアイバ
の強度を増加させるのに充分な圧縮応力が付与されない
。第2図にTiO2ドープ量と膨張係数の関係を示す。
The thickness of the third glass layer according to the present invention can be arbitrarily changed depending on manufacturing conditions, but for a standard optical fiber with a core diameter of 50 μmφ and a cladding diameter of 125 μmφ, a thickness of 3 to 6 μm is optimal. It is. SiO2-TiO2
If the glass layer is made thicker than this, compressive stress will be transmitted to the core portion, resulting in deterioration of the optical fiber loss characteristics. Furthermore, if the thickness is less than 3 μm, sufficient compressive stress will not be applied to increase the strength of the optical fiber. FIG. 2 shows the relationship between TiO2 doping amount and expansion coefficient.

石英ガラスの膨張係数は5.5X10−7/℃であり、
TiO2をドープするに従つて膨張係数が少さくなり、
約5m01%のドープ量で膨張係数がマイナスとなるこ
とがわかる。TiO2ドープ量が約25m01(fl)
以上においては膨張係数が急激にプラス側に転じ、石英
ガラスの膨張係数より大きくなつてしまう。従つて本発
明におけるTiO2のドープ量は5〜20m01(:F
t)の範囲が好ましい。またTiO2のドープ量と屈折
率の関係は直線的な関係にあり、ドープ量の増加に伴つ
て屈折率も増加するので、本発明では膨張係数のみでT
iO2ドープ量を決定すればよい。次に本発明における
第3のガラス層を有する光フアイバ用母材の製造方法に
ついて述べる。
The expansion coefficient of quartz glass is 5.5X10-7/℃,
As TiO2 is doped, the expansion coefficient decreases,
It can be seen that the expansion coefficient becomes negative at a doping amount of about 5m01%. TiO2 doping amount is approximately 25m01 (fl)
In the above case, the expansion coefficient suddenly changes to the positive side and becomes larger than the expansion coefficient of quartz glass. Therefore, the doping amount of TiO2 in the present invention is 5 to 20 m01 (:F
A range of t) is preferred. Furthermore, the relationship between the doping amount of TiO2 and the refractive index is linear, and the refractive index increases as the doping amount increases, so in the present invention, T
What is necessary is to determine the amount of iO2 doping. Next, a method for manufacturing an optical fiber base material having a third glass layer according to the present invention will be described.

第3図はコア、クラツドおよび本発明による第3の層を
有する光フアイバ用母材の製造方法の概略を示した説明
図である。この方法は気相軸付け法(VAD法)と称さ
れている方法である。第3図において、21,22およ
び23は石英ガラス製バーナ、24,25および26は
合成されたガラス微粒子を含む酸水素炎、27,28お
よび29は形成された多孔質ガラス体である。気相軸付
け法とは、酸水素ガスおよびSiCl4,GeCl4、
などの蒸気ガラス原料を、コア用バーナ21およびクラ
ツド用バーナ22に導入し、火炎加水分解反応によつて
SiO2,GeO2のガラス微粒子を合成して、それら
を出発材料上に付着、堆積させて、SlO2とGeO2
からなるコア用多孔質ガラス体27およびSiO2から
なるクラツド用多孔質ガラス体28を形成し、その後、
多孔質ガラス体を加熱して、透明な光フアイバ用母材を
得る方法である。この製造方法でバーナ23を設置し、
形成されたクラツド用多孔質ガラス体28の表面にクラ
ツドよりも屈折率が大きく、さらに熱膨張係数が小さい
SlO2−TlO2の多孔質ガラス体を形成することに
より、第3の層を有する光フアイバ用母材を製造するこ
とができる。
FIG. 3 is an explanatory diagram schematically showing a method for manufacturing an optical fiber base material having a core, a cladding, and a third layer according to the present invention. This method is called the vapor phase axial method (VAD method). In FIG. 3, 21, 22 and 23 are quartz glass burners, 24, 25 and 26 are oxyhydrogen flames containing synthesized glass particles, and 27, 28 and 29 are formed porous glass bodies. The gas phase axial method uses oxyhydrogen gas and SiCl4, GeCl4,
A steam glass raw material such as the following is introduced into the core burner 21 and the cladding burner 22, and glass fine particles of SiO2 and GeO2 are synthesized by a flame hydrolysis reaction, and they are attached and deposited on the starting material. SlO2 and GeO2
A porous glass body 27 for the core made of and a porous glass body 28 for the cladding made of SiO2 are formed, and then,
This method heats a porous glass body to obtain a transparent base material for optical fiber. The burner 23 is installed using this manufacturing method,
By forming a porous glass body of SlO2-TlO2, which has a higher refractive index than the cladding and a smaller coefficient of thermal expansion, on the surface of the formed porous glass body 28 for the cladding, an optical fiber having a third layer can be formed. A base material can be manufactured.

以下にその実施例を示す。実施例 1 表−1に記したガラス原料供給条件で多孔質ガラス体を
製造した。
Examples are shown below. Example 1 A porous glass body was manufactured under the glass raw material supply conditions shown in Table-1.

コア用ガラス原料にSiCl4,GeCl4を、クラツ
ド用ガラス原料にSiCl4を、第3の層用に 1S1
C14,TiC14を用い、それぞれを酸水素炎ととも
に、バーナ21.バーナ22、バーナ23に導入した。
SiCl4, GeCl4 as the glass raw material for the core, SiCl4 as the glass raw material for the cladding, 1S1 for the third layer.
C14 and TiC14 are used, each with an oxyhydrogen flame, and burner 21. It was introduced into burners 22 and 23.

まず回転上昇する出発材の端面に、バーナ21によつて
合成されたSiO2,GeO2の各ガラス微粒子を付着
、堆積させて、約30關φ 闘のコア用多孔質ガラス体
を形成した。次にこれと連続する工程において、バーナ
22によつて合成されたSiO2のガラス微粒子を、コ
ア用多孔質ガラス体の表面に付着、堆積させた。
First, fine glass particles of SiO2 and GeO2 synthesized by the burner 21 were attached and deposited on the end face of the rotating and rising starting material to form a porous glass body for a core having a diameter of about 30 mm. Next, in a subsequent step, SiO2 glass particles synthesized by the burner 22 were attached and deposited on the surface of the porous glass body for the core.

その後、さらにバーナ23によつて合成されたSiO2
−TiO2のガラス微粒子をクラツド用多孔質ガラス体
の表面に付着、堆積させた。このようにして径が75m
mφ、長さ30儂である3重構造の多孔質ガラス体を得
た。次にこの多孔質ガラス体を1500℃に昇温された
電気炉中において脱泡し、透明な光フアイバ用母材を得
た。
After that, SiO2 further synthesized by the burner 23
-TiO2 glass particles were attached and deposited on the surface of the porous glass body for cladding. In this way, the diameter is 75m.
A triple-structured porous glass body having a diameter of mφ and a length of 30 degrees was obtained. Next, this porous glass body was degassed in an electric furnace heated to 1500° C. to obtain a transparent optical fiber base material.

これを紡糸装置で外径を135μmに設定して紡糸し、
これと連続する工程で、シリコーン樹脂をバツフア層と
して被覆した。なお従来技術ではバツフア層を被覆する
前段で光フアイバの表面保護、すなわち応力集中源の発
生の抑制とクラツドモードの除去を目的とした1次被覆
が施されている。このようにして得られた光フアイバの
構造は、中心がコア、第2層がクラツド層、第3層が本
発明による圧縮応力層、第4層がバツフア層であり、そ
れぞれの径は、50μmφ、125μmφ、135μm
φ、335μmφであつた。
This was spun using a spinning device with the outer diameter set to 135 μm.
In a subsequent step, a silicone resin was coated as a buffer layer. In the prior art, a primary coating is applied prior to coating the buffer layer for the purpose of protecting the surface of the optical fiber, that is, suppressing the generation of stress concentration sources and eliminating cladding modes. The structure of the optical fiber thus obtained includes a core at the center, a cladding layer as a second layer, a compressive stress layer as a third layer according to the present invention, and a buffer layer as a fourth layer, each having a diameter of 50 μmφ. , 125μmφ, 135μm
The diameter was 335 μm.

また圧縮応力層のTiO2ドープ量は、干渉顕微鏡で測
定した屈折率値からの換算によれば8m01%であつた
。このフアイバの破断強度を10mの長さで25本測定
した結果を第4図に示す。第4図において、特性Aは本
発明が実施されたフアイバの破断強度特性を示し、特性
Bは従来技術で製造したフアイバの特性を示す。
Further, the amount of TiO2 doped in the compressive stress layer was 8m01% as calculated from the refractive index value measured with an interference microscope. FIG. 4 shows the results of measuring the breaking strength of 25 fibers with a length of 10 m. In FIG. 4, characteristic A shows the breaking strength characteristic of the fiber in which the present invention is implemented, and characteristic B shows the characteristic of the fiber manufactured by the prior art.

また表−2は第4図から得た破断強度の平均値、最大値
および最小値をまとめたものである。第4図および表−
2から明らかなように、クラツドの表面にSiO2−T
iO2ガラス層を形成したフアイバの破断強度は、最低
強度が向上され、高強度で1バラツキ”が非常に少ない
結果が得られた。
Further, Table 2 summarizes the average, maximum, and minimum values of the breaking strength obtained from FIG. 4. Figure 4 and table-
As is clear from 2, there is SiO2-T on the surface of the cladding.
Regarding the breaking strength of the fiber on which the iO2 glass layer was formed, the minimum strength was improved, and results were obtained with high strength and very little 1" variation.

またこのフアイバを接続して作業性を調べた結果、バツ
フア層であるシリコーンゴムを容易に取り除くことがで
き、しかも裸フアイバの強度が増加しているので、作業
が非常に容易となり、作業時間も短縮された。
Furthermore, as a result of connecting this fiber and examining workability, it was found that the silicone rubber buffer layer can be easily removed, and the strength of the bare fiber has increased, making the work extremely easy and reducing work time. Shortened.

次に気相軸付け法でコアとクラツドが一体化されたガラ
ス体を形成し、その後、本発明を用いた実施例について
述べる。
Next, a glass body in which the core and cladding are integrated is formed by a vapor phase axial method, and then examples using the present invention will be described.

実施例 2 気相軸付け法によつて、SiO2とGeO2からなるコ
ア用多孔質ガラス体およびSiO2からなるクラツド用
多孔質ガラス体を形成した後、これを約1500℃で加
熱して、外径21mmφ、長さ15儂の透明な光フアイ
バ用母材を得た。
Example 2 After forming a porous glass body for the core made of SiO2 and GeO2 and a porous glass body for the cladding made of SiO2 by the vapor phase axising method, they were heated at about 1500°C to reduce the outer diameter. A transparent optical fiber base material having a diameter of 21 mm and a length of 15 mm was obtained.

この母材の表面に、火炎加水分解反応によつて得たSi
O2一TiO2のガラス微粒子を付着、堆積させて、厚
さ0.8m7!L(7)SiO2−TiO2ガラス層を
形成した。これを実施例1で記した方法で紡糸し、得ら
れた光フアイバの強度等を調べた結果、実施例1と同様
な非常に良好な結果であつた。(発明の効果) 以上説明したように、本発明の光フアイバの製造方法に
よれば、光フアイバ用母材の表面にチタンを添加した石
英ガラス層を形成し、この母材を紡糸することにより、
光フアイバの最低強度を向上させることができ、その結
果、光フアイバの長期信頼性の向上を図ることができる
On the surface of this base material, Si obtained by flame hydrolysis reaction
Glass particles of O2-TiO2 are attached and deposited to a thickness of 0.8m7! A L(7) SiO2-TiO2 glass layer was formed. This was spun using the method described in Example 1, and the strength and other properties of the obtained optical fiber were examined. As a result, the results were very good, similar to those in Example 1. (Effects of the Invention) As explained above, according to the method for manufacturing an optical fiber of the present invention, a quartz glass layer doped with titanium is formed on the surface of an optical fiber base material, and this base material is spun. ,
The minimum strength of the optical fiber can be improved, and as a result, the long-term reliability of the optical fiber can be improved.

また本発明によるガラスの層は従来から実施されている
1次プラスチツク被覆の役割と同じ役割を果たすので、
本発明が実施された光フアイバを紡糸する工程において
は、1次被覆が不必要であり、紡糸装置の簡略化や、紡
糸作業の単純化を図ることができる。
Furthermore, since the glass layer according to the invention plays the same role as the primary plastic coating traditionally practiced,
In the process of spinning an optical fiber according to the present invention, a primary coating is unnecessary, and the spinning apparatus and spinning operation can be simplified.

さらに光フアイバの接続時における作業時間が短縮され
、光フアイバの取り扱いが非常に容易となる利点がある
Furthermore, there is an advantage that the working time when connecting the optical fibers is shortened and the handling of the optical fibers is extremely easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が実施された石英系光フアイバの構造の
断面図、第2図はSiO2−TiO2ガラスの膨張係数
を示す図、第3図はコア、クラツドおよび本発明による
第3の層を有する光フアイバ母材の製造方法の概略説明
図、第4図はフアイバの破断強度を示す図である。 1・・・・・・SiO2−GeO2コアガラス、2・・
・・・・SlO2クラツドガラス、3・・・・・・Si
O2−TiO2ガラス、21,22,23・・・・・・
バーナ、24,2526・・・・・・ガラス微粒子を含
む酸水素炎、27・・・・・・コア用多孔質ガラス体、
28・・・・・・クラツド用多孔質ガラス体、29・・
・・・・本発明による多孔質ガラス体。
FIG. 1 is a cross-sectional view of the structure of a silica-based optical fiber in which the present invention is implemented, FIG. 2 is a diagram showing the expansion coefficient of SiO2-TiO2 glass, and FIG. 3 is a diagram showing the core, cladding, and third layer according to the present invention. FIG. 4 is a diagram showing the breaking strength of the fiber. 1...SiO2-GeO2 core glass, 2...
...SlO2 clad glass, 3...Si
O2-TiO2 glass, 21, 22, 23...
Burner, 24,2526...Oxyhydrogen flame containing glass particles, 27...Porous glass body for core,
28... Porous glass body for cladding, 29...
...Porous glass body according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 火災加水分解反応により得られるSiO_2、Ge
O_2のガラス微粒子を出発材上に順次堆積させてSi
O_2とGeO_2からなるコア層とSiO_2からな
るクラッド層を有する多孔質ガラス体を形成する工程と
、該多孔質ガラス体を透明ガラス化する工程を含む光フ
ァイバの製造方法において、多孔質ガラス体を形成する
工程に連続する工程、もしくは透明ガラス化工程後の工
程として、クラッド層の表面にSiO_2−TiO_2
系ガラス層を形成することを特徴とする光ファイバの製
造方法。
1 SiO_2, Ge obtained by fire hydrolysis reaction
O_2 glass particles are sequentially deposited on the starting material to form Si.
An optical fiber manufacturing method including a step of forming a porous glass body having a core layer made of O_2 and GeO_2 and a cladding layer made of SiO_2, and a step of converting the porous glass body into transparent glass. As a step following the forming step or a step after the transparent vitrification step, SiO_2-TiO_2 is added to the surface of the cladding layer.
1. A method for manufacturing an optical fiber, comprising forming a glass layer.
JP8276780A 1980-06-20 1980-06-20 Optical fiber manufacturing method Expired JPS5930659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8276780A JPS5930659B2 (en) 1980-06-20 1980-06-20 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8276780A JPS5930659B2 (en) 1980-06-20 1980-06-20 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS5711836A JPS5711836A (en) 1982-01-21
JPS5930659B2 true JPS5930659B2 (en) 1984-07-28

Family

ID=13783579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8276780A Expired JPS5930659B2 (en) 1980-06-20 1980-06-20 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPS5930659B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178764U (en) * 1986-04-30 1987-11-13

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227737A (en) * 1983-06-09 1984-12-21 Fujikura Ltd Optical fiber and its manufacture
US5180411A (en) * 1989-12-22 1993-01-19 Corning Incorporated Optical waveguide fiber with titania-silica outer cladding and method of manufacturing
KR100274807B1 (en) * 1998-06-24 2000-12-15 김효근 Optical fiber and bragg grating filter using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178764U (en) * 1986-04-30 1987-11-13

Also Published As

Publication number Publication date
JPS5711836A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
US4157906A (en) Method of drawing glass optical waveguides
US5482525A (en) Method of producing elliptic core type polarization-maintaining optical fiber
JP2959877B2 (en) Optical fiber manufacturing method
JPS6113203A (en) Single mode optical fiber
AU670505B2 (en) Optical fiber preform, optical fiber and their manufacturing methods
US4880452A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS5930659B2 (en) Optical fiber manufacturing method
JPH05155639A (en) Dispersion-shift fiber and its production
US4318726A (en) Process for producing optical fiber preform
JPS627130B2 (en)
DK167463B1 (en) PROCEDURE FOR PREPARING A PRIOR STAGE TO AN OPTICAL FIBER
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPS60122744A (en) Manufacture of simple-mode fiber
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPS62167235A (en) Production of base material for optical fiber
JP2898705B2 (en) Manufacturing method of optical fiber preform
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
JPS6228101B2 (en)
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JPH0327491B2 (en)
JPH03113404A (en) Optical fiber
JPH0557215B2 (en)
JPS59141438A (en) Manufacture of optical fiber preform
JPH05124831A (en) Production of optical fiber
JPH02267132A (en) Parent material for image fibers and their production