JPS593039A - Manufacture of fluoride glass for optical fiber - Google Patents

Manufacture of fluoride glass for optical fiber

Info

Publication number
JPS593039A
JPS593039A JP57108376A JP10837682A JPS593039A JP S593039 A JPS593039 A JP S593039A JP 57108376 A JP57108376 A JP 57108376A JP 10837682 A JP10837682 A JP 10837682A JP S593039 A JPS593039 A JP S593039A
Authority
JP
Japan
Prior art keywords
crucible
glass
platinum
electric furnace
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57108376A
Other languages
Japanese (ja)
Other versions
JPH034491B2 (en
Inventor
Yasutake Oishi
泰丈 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57108376A priority Critical patent/JPS593039A/en
Publication of JPS593039A publication Critical patent/JPS593039A/en
Publication of JPH034491B2 publication Critical patent/JPH034491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • C03B37/01268Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To manufacture the titled glass having a very low concn. of OH groups, by pretreating finely powdered starting materials for fluoride glass with HF, F3, BF3, CF4, Cl2, CCl4 or SOCl2 and by melting the pretreated materials with an electric furnace. CONSTITUTION:Finely powdered starting materials 10 for fluoride glass are charged into a platinum crucible 2, and the crucible 2 is mounted on a stage 8. A cover 3 is put on the crucible 2, and a pipe attached to the cover 3 is connected to an exhaust system. A platinum crucible 6 is mounted on a crucible stand 7 below an electric furnace 1, and the stand 7 is moved upward to insert the crucible 6 into the crucible 2. After heating the materials 10 with the furnace 1, a gas for an OH group removing reaction is introduced from a pipe 4 to cause said reaction. HF, F2, BF3, CF4, Cl2, CCl4 or SOCl2 is used as the gas. After finishing the reaction, the materials 10 freed of OH groups are melted by heating with the furnace 1 and allowed to flow in the crucible 6 through holes 11. The resulting molten glass is cast in a casting mold, annealed in the mold, and slowly cooled to manufacture a fluoride glass preform.

Description

【発明の詳細な説明】 本発明は、赤外線透過フッ化物光ファイバの作製に用い
る、不純物吸収損失要因となるOH基濃度を低減したフ
ッ化物光フアイバ用ガラスを作製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a glass for a fluoride optical fiber, which is used for producing an infrared-transmitting fluoride optical fiber, and has a reduced concentration of OH groups, which are a factor of impurity absorption loss.

従来のフッ化物光フアイバ用ガラスは、所定量混合した
フッ化物原料に、適当量のNH4F−HF を混ぜあわ
せて、単にその混合物を不活性ガス雰囲気中において、
白金るつぼもしくは金るつは中で溶融するか、またはH
FやCal、などの活性ガス雰1囲気中で焼結および溶
融した後、融液を鋳型にキャスティングし作製されてい
た。混合されたNH,F・1(Fの量が限られており、
またガラス原料の焼結をNl(、F −)IFの沸点で
ある2 89.5°C以上で行うため゛その飛散が速い
ので、脱OH系効果は小さく、原料中のOH基は極く一
部が除去されるだけである。
Conventional fluoride optical fiber glass is produced by simply mixing a predetermined amount of fluoride raw materials with an appropriate amount of NH4F-HF, and then simply placing the mixture in an inert gas atmosphere.
A platinum crucible or metal crucible is melted in or H
After sintering and melting in an active gas atmosphere such as F or Cal, the melt was cast into a mold. Mixed NH, F・1 (the amount of F is limited,
In addition, since the glass raw material is sintered at a temperature above 289.5°C, which is the boiling point of Nl(,F -) IF, its scattering is rapid, so the OH removal effect is small, and the OH groups in the raw material are extremely small. Only some of them are removed.

また単に活性ガス中で溶融する方法では、原料を加熱す
ると原料の気化が激しいので、雰囲気ガスの原料中への
浸透が円滑に起こらず、脱OH効果′□゛が上がらない
。また原料が融解した後では、雰囲気ガスとOH基との
反応は、融液表面でのみ起こるだけであり、脱OH系効
率は極めて低い。このため、ガラス融液中のOH基の残
留社は多いので、得られたフッ化物光フアイバ用ガラス
をアニール゛して作製したプリフォームを線引きして作
製された光ファイバのOH基による不純物吸収損失量は
高くなり、その伝送損失特性は著しく悪いものになって
いる。
Furthermore, in the method of simply melting in an active gas, heating the raw material causes intense vaporization of the raw material, so that the atmospheric gas does not penetrate smoothly into the raw material, and the OH removal effect cannot be improved. Further, after the raw material is melted, the reaction between the atmospheric gas and the OH groups occurs only on the surface of the melt, and the efficiency of the OH removal system is extremely low. For this reason, there are many OH groups remaining in the glass melt, so impurities are absorbed by the OH groups in the optical fiber produced by drawing the preform produced by annealing the obtained fluoride optical fiber glass. The amount of loss has increased, and the transmission loss characteristics have become significantly worse.

本発明は、フッ化物光フアイバ用ガラスの作製□′、に
おいて、OH基不純物を除去するために、フッ化物原料
に対してHF # F、 、 OF、 、 HF8. 
Ol、 。
In the present invention, HF#F, , OF, , HF8.
Ol, .

OOl  または5oozsを反応させて脱OH基を図
る番 ことを特徴とし、その目的は極低OH基濃度を有するフ
ッ化物光フアイバ用ガラスを作製することにある。
The method is characterized by removing OH groups by reacting OOl or 5 ozs, and its purpose is to produce a fluoride optical fiber glass having an extremely low OH group concentration.

本発明で使用されるガラス原料は、Li、Na。The glass raw materials used in the present invention include Li and Na.

Be 、 Mg 、 Oa 、 Sr 、 Ba 、 
AI 、 Sn 、 Pb 、 Sb 。
Be, Mg, Oa, Sr, Ba,
AI, Sn, Pb, Sb.

Bi 、 Zn 、 Y 、 Ga 、 La 、 G
a 、 Lu 、 Th 、 Zr 、 Hf等のフッ
化物である。
Bi, Zn, Y, Ga, La, G
These are fluorides such as a, Lu, Th, Zr, and Hf.

スで希釈した混合ガスがある。またガラス化反応に用い
るるつぼは、白金または金製であり、るつぼ底部の一部
または全面に孔および前記気体を原料まで導くパイプを
有する原料前処理用るつぼと、同じく白金または金製の
、前記前処理用るつぼの底部の孔から流れ落ちたガラス
融液を回収する溶融るつぼからなる。ガラス化反応およ
び光フアイバ用プリフォームを作製するための鋳型への
キャ・スティングは、フッ素樹脂等のフッ素に対し侵さ
れにくい材料で内壁が保護された窒素等で置換されたド
ライボックス中で行い、水や酸素の反応系への混入を防
止しながら行われることが望ましい。
There is a mixed gas diluted with a gas. The crucible used for the vitrification reaction is made of platinum or gold, and the crucible for raw material pretreatment has holes on a part or the entire bottom of the crucible and a pipe for guiding the gas to the raw material, and the crucible is made of platinum or gold. It consists of a melting crucible that collects the glass melt that flows down from the hole at the bottom of the pretreatment crucible. The vitrification reaction and casting into a mold for producing optical fiber preforms are carried out in a dry box purged with nitrogen, etc. and whose inner wall is protected by a material that is not easily attacked by fluorine, such as fluororesin. It is desirable that the reaction be carried out while preventing water and oxygen from entering the reaction system.

本発明による製造方法では、フッ化物ガラス原料を前処
理用るつぼに入れ、それを溶融用るつぼの上に載せて電
気炉中に置き、800℃〜550℃で0.6時間〜5時
間HF等ガスを前処理用るつぼに設置されたパイプで導
き、前処理用るつぼ底部下に噴出させ、るつぼ底部にあ
けた孔を通してガラス原料中に拡散させることにより、
ガラス原料中のOH基とIF等ガスの反応を促進し、そ
の後、電気炉の温度を800°C−1000°Cに昇温
すると、ガラス原料は融解し始めて、るつぼ底部の孔か
ら前処理用るつぼの下に置かれた溶融用るつぼ中に落下
し貯められ、1時間〜8時間前記温度で溶融した後、光
フアイバ用プリフォームを作製するため、同じ乾燥雰囲
気中で200°c−800℃の温度で予加熱された鋳型
の中にキャスティングし、室温まで徐冷してプリフォー
ムを形成する。
In the production method according to the present invention, a fluoride glass raw material is placed in a pretreatment crucible, placed on a melting crucible, placed in an electric furnace, and heated with HF, etc. at 800°C to 550°C for 0.6 to 5 hours. By guiding the gas through a pipe installed in the pretreatment crucible, ejecting it below the bottom of the pretreatment crucible, and diffusing it into the glass raw material through a hole drilled in the bottom of the crucible,
When the reaction between the OH groups in the glass raw material and gases such as IF is promoted, and then the temperature of the electric furnace is raised to 800°C-1000°C, the glass raw material begins to melt and is released from the hole at the bottom of the crucible for pretreatment. It is dropped into a melting crucible placed under the crucible and stored, and after being melted at the above temperature for 1 to 8 hours, it is heated at 200°C to 800°C in the same dry atmosphere to prepare an optical fiber preform. The preform is cast into a mold that has been preheated to a temperature of 100 mL, and then slowly cooled to room temperature to form a preform.

以下本発明を実施によって詳細に説明するが、本発明は
これによりなんら限定されるものではない。
The present invention will be explained in detail below based on implementation, but the present invention is not limited thereby.

実施例1 第1図は本発明の製造方法に使用する装置の一構成例を
示す模式図である。
Example 1 FIG. 1 is a schematic diagram showing an example of the configuration of an apparatus used in the manufacturing method of the present invention.

第1図において、1は白金電気炉、2は前処理用白金る
つぼ、8は前処理用白金るつぼの排気孔付きふた、4は
白金製パイプ、5は白金製パイプ4を押えるサポータ、
6は溶融用白金るつぼ、7は白金るつぼ6を載せる上下
可動なるつぼ台、8は白金るつぼ2を載せるステージ、
9は電気炉台、10は原料、11は白金るつぼ2の下部
にある孔を示す。第2図において12は石英ガラス製鋳
型アニール用筒、18は全面°゛金メッキ″を施した円
径9闘φ、内憂150鰭の黄銅製三つ割り鋳型、14は
アニール用電気炉を示す。
In FIG. 1, 1 is a platinum electric furnace, 2 is a platinum crucible for pretreatment, 8 is a lid with an exhaust hole for the platinum crucible for pretreatment, 4 is a platinum pipe, 5 is a supporter that holds down the platinum pipe 4,
6 is a platinum crucible for melting, 7 is a vertically movable crucible stand on which the platinum crucible 6 is placed, 8 is a stage on which the platinum crucible 2 is placed,
Reference numeral 9 indicates an electric furnace stand, 10 indicates a raw material, and 11 indicates a hole at the bottom of the platinum crucible 2. In FIG. 2, 12 is a quartz glass mold annealing cylinder, 18 is a three-split brass mold with a diameter of 9 mm and an inner diameter of 150 fins, and 14 is an electric furnace for annealing.

第1図および後述の第2図で示したガラス溶融炉および
鋳型アニール炉をグローブボックス中に設置し、グロー
ブボックス中を窒素置換し、乾燥雰囲気にする。フッ化
物ガラス原料ZrF、 、 BaF、 。
A glass melting furnace and a mold annealing furnace shown in FIG. 1 and FIG. 2 described later are installed in a glove box, and the inside of the glove box is replaced with nitrogen to create a dry atmosphere. Fluoride glass raw materials ZrF, , BaF, .

G、dF  、 AIF、を白金るつぼ2に入れ、2を
ステージ8の上に載せる。次にサポータ6でノずイブ4
を押えるとともに、ふた8を白金るつぼ2の上に載せ、
ふた8のパイプを排気系に接続する。電気炉下にさげた
るつぼ台7の上に白金るつぼ6を載せ、るつぼ台1を電
気炉内にもち上げ、白金るつぼ6を白金るつぼ2に挿入
する。そこで、白金電気炉1を450°Cに設定し、サ
ポータ4にHFガスを0.5//min流しながら、8
時間脱OH基処理を行った。8時間後、白金電気炉1を
900°Cに昇温して1時間溶融した。この間、原料は
白金るつぼ2の底部に開けた孔11からすべて白金るつ
ぼ6中に流れ出した。
Put G, dF, and AIF into platinum crucible 2, and place 2 on stage 8. Next, supporter 6 and Nozuib 4
While pressing down, place the lid 8 on top of the platinum crucible 2,
Connect the pipe of lid 8 to the exhaust system. Platinum crucible 6 is placed on crucible stand 7 lowered below the electric furnace, crucible stand 1 is lifted into the electric furnace, and platinum crucible 6 is inserted into platinum crucible 2. Therefore, the platinum electric furnace 1 was set at 450°C, and while flowing HF gas through the supporter 4 for 0.5//min,
A time-removal treatment of OH groups was performed. After 8 hours, the platinum electric furnace 1 was heated to 900°C and melted for 1 hour. During this time, all of the raw material flowed out into the platinum crucible 6 through the hole 11 made at the bottom of the platinum crucible 2.

第2図は光フアイバ用プリフォームを作製するために用
いるアニール装置の一構成例を示す模式図であって、鋳
型アニール用筒12に鋳型13を入れ、O−61/ m
inの窒素を流しながらアニール用電気炉14を260
℃に設定し筒12を予加熱した。、2時間後、流してい
たHFを止め、るつぼ台7を下げて白金るつぼ6を取り
出し、予加熱した1鋳型18の中にガラス融液をキ・ヤ
スティングし、筒12内で260℃、20時間アニール
した後に、室温まで徐冷して、外径9龍φ×長さ140
酩のフッ化物ガラスプリフォームを得た。
FIG. 2 is a schematic diagram showing an example of the configuration of an annealing apparatus used for producing an optical fiber preform, in which a mold 13 is placed in a mold annealing tube 12 and an O-61/m
The annealing electric furnace 14 was heated at 260° C. while flowing nitrogen at
The tube 12 was preheated at a temperature of .degree. After 2 hours, the HF flow was stopped, the crucible stand 7 was lowered, the platinum crucible 6 was taken out, the glass melt was cast into a preheated mold 18, and the glass melt was heated at 260°C in the cylinder 12. After annealing for 20 hours, it was slowly cooled to room temperature, and the outer diameter was 9mm x length 14mm.
A fluoride glass preform was obtained.

応用例 実施例1で得られたプリフォームを第8図で示した方法
で線引きした。透明フッ化物光フアイバ用プリフォーム
15をフッ素樹脂チューブ16に挿入し、電気炉台17
に載せた小型電気炉18を0.1cm/minで上昇さ
せ、巻取りボビン19にフッ化物光7アイパ20を巻き
取った。実施例1の母材からフッ素樹脂コートグレーデ
ツトインデックス型の光ファイバ(外径500μ鴇、ク
ラツド径200μ扉)が得られた。この光ファイバは2
.5μ島帯で100 (iB/−以下の窓を有し、OH
基による吸収損失が2.9μm帯で800 (IB/−
以下に低減した赤外線伝送の可能な光ファイバであった
Application Example The preform obtained in Example 1 was drawn by the method shown in FIG. The transparent fluoride optical fiber preform 15 is inserted into the fluororesin tube 16, and the electric furnace stand 17 is
The small electric furnace 18 placed on the was raised at a rate of 0.1 cm/min, and the fluoride light 7 eyelid 20 was wound onto the winding bobbin 19. A fluororesin-coated graded index optical fiber (outer diameter 500 μm, cladding diameter 200 μm) was obtained from the base material of Example 1. This optical fiber is 2
.. 100 (iB/- or less window in 5μ island zone, OH
The absorption loss due to the group is 800 (IB/-
It was an optical fiber capable of transmitting infrared rays, which was reduced to below.

OH基による吸収損失は、従来法ではNo、000 d
BA以上残存していたが、本発明の手法により従来の1
0分の1以下に低減することができた。
The absorption loss due to OH group is No. 000 d in the conventional method.
However, by the method of the present invention, the conventional 1
We were able to reduce this to less than 1/0.

以上説明したように、本発明によれば、HFをフッ化物
ガラス原料中に効率良く拡散させることができ1また乾
燥雰囲気中ガラス溶融およびキャスティングを行うので
、OH基の混入の極めて少ないフッ化物光フアイバ用プ
リフォームを作製できる利点がある。
As explained above, according to the present invention, HF can be efficiently diffused into the fluoride glass raw material.1 Furthermore, since the glass melting and casting are performed in a dry atmosphere, fluoride light with very little contamination of OH groups is possible. It has the advantage of being able to produce fiber preforms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法に使用する装置の一構成例を
示す模式図、第2図は光フアイバ用プリフォームを作製
するために用いるアニール装置の一構成例を示す模式図
、第8図は本発明の実施例1で得られた母材の線引きの
模式図である。 1・・・白金電気炉    2・・・前処理用白金るつ
ぼ8・・・前処理用白金るつぼの排気用パイプ付きふた
4・・・白金製バイブ   5・・・サポータ6・・・
溶融用白金るつぼ 7・・・るつぼ台8・・・ステージ
     9・・・電気炉台10・・・原料     
 11・・・孔12・・・石英ガラス製鋳型アニール用
筒、18・・・黄銅製鋳型   14・・・アニール用
電気炉ll11・・・プリフォーム  16・・・フッ
素樹脂チューブ17・・・電気炉台    1B・・・
小型電気炉19・・・巻取リボビン  20・・・フッ
化物光ファイバ特許出願人   日本電信電話公社 第3図
FIG. 1 is a schematic diagram showing an example of the configuration of an apparatus used in the manufacturing method of the present invention, FIG. 2 is a schematic diagram showing an example of the configuration of an annealing apparatus used for manufacturing an optical fiber preform, The figure is a schematic drawing of the base material obtained in Example 1 of the present invention. 1... Platinum electric furnace 2... Platinum crucible for pretreatment 8... Lid with exhaust pipe for the platinum crucible for pretreatment 4... Platinum vibrator 5... Supporter 6...
Platinum crucible for melting 7... Crucible stand 8... Stage 9... Electric furnace stand 10... Raw material
11... Hole 12... Quartz glass mold annealing tube, 18... Brass mold 14... Electric furnace for annealing 11... Preform 16... Fluorine resin tube 17... Electricity Hearth stand 1B...
Small electric furnace 19... Winding ribbin 20... Fluoride optical fiber patent applicant Nippon Telegraph and Telephone Public Corporation Figure 3

Claims (1)

【特許請求の範囲】 L フッ化物ガラス原料を、焼結させることなく微粉末
状態で、HF 、 F、 、 HF8. OF、 、 
07. 。 001  または5ooz、にてあらかじめ処理をした
後、電気炉で融解して、ガラス融液を流し出し、OH基
の混入量が極めて少ないガラスを合成することを特徴と
するフッ化物光フアイバ用ガラスの作製方法。
[Claims] L A fluoride glass raw material is prepared in a fine powder state without sintering, as HF, F, , HF8. OF, ,
07. . 001 or 5 oz, and then melted in an electric furnace and the glass melt is poured out to synthesize a glass with an extremely small amount of OH groups mixed in. Fabrication method.
JP57108376A 1982-06-25 1982-06-25 Manufacture of fluoride glass for optical fiber Granted JPS593039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57108376A JPS593039A (en) 1982-06-25 1982-06-25 Manufacture of fluoride glass for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57108376A JPS593039A (en) 1982-06-25 1982-06-25 Manufacture of fluoride glass for optical fiber

Publications (2)

Publication Number Publication Date
JPS593039A true JPS593039A (en) 1984-01-09
JPH034491B2 JPH034491B2 (en) 1991-01-23

Family

ID=14483195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57108376A Granted JPS593039A (en) 1982-06-25 1982-06-25 Manufacture of fluoride glass for optical fiber

Country Status (1)

Country Link
JP (1) JPS593039A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202686A (en) * 1984-03-27 1985-10-14 シャープ株式会社 Thin film light emitting element
JPS61277194A (en) * 1985-05-31 1986-12-08 松下電器産業株式会社 Manufacture of thin film el element
US4652288A (en) * 1984-08-04 1987-03-24 Horiba, Ltd. Method of producing infrared image guide
JPS62135962U (en) * 1986-02-21 1987-08-27
US4923496A (en) * 1988-07-04 1990-05-08 Societa' Cavi Pierelli S.P.A. Method of fabricating fluoride-glass integrated optical waveguides
US4946490A (en) * 1988-04-04 1990-08-07 Gte Laboratories Incorporated Method for preparing fluoride glasses
JPH02243533A (en) * 1989-03-17 1990-09-27 Nippon Telegr & Teleph Corp <Ntt> Production of raw material of fluoride optical fiber and production unit therefor
US5015281A (en) * 1988-04-04 1991-05-14 Gte Laboratories Incorporated Method for preparing fluoride glasses
US5055120A (en) * 1987-12-15 1991-10-08 Infrared Fiber Systems, Inc. Fluoride glass fibers with reduced defects
US5201920A (en) * 1987-01-23 1993-04-13 Siemens Aktiengesellschaft Method for producing an optical fiber of halide glass, particularly an infrared permeable fiber of fluoride glass
US5256178A (en) * 1987-01-23 1993-10-26 Siemens Aktiengesellschaft Method for producing an optical fiber of halide glass, particularly an infrared permeable fiber of heavy metal fluoride glass
JPH0647462A (en) * 1992-08-04 1994-02-22 Amada Metrecs Co Ltd Metallic die attaching device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444144B (en) * 2023-06-16 2023-08-22 武汉长进光子技术股份有限公司 Bismuth-doped optical fiber for reducing hydroxyl content and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202686A (en) * 1984-03-27 1985-10-14 シャープ株式会社 Thin film light emitting element
JPS63916B2 (en) * 1984-03-27 1988-01-09 Sharp Kk
US4652288A (en) * 1984-08-04 1987-03-24 Horiba, Ltd. Method of producing infrared image guide
JPS61277194A (en) * 1985-05-31 1986-12-08 松下電器産業株式会社 Manufacture of thin film el element
JPH0126159B2 (en) * 1985-05-31 1989-05-22 Matsushita Electric Ind Co Ltd
JPS62135962U (en) * 1986-02-21 1987-08-27
US5256178A (en) * 1987-01-23 1993-10-26 Siemens Aktiengesellschaft Method for producing an optical fiber of halide glass, particularly an infrared permeable fiber of heavy metal fluoride glass
US5201920A (en) * 1987-01-23 1993-04-13 Siemens Aktiengesellschaft Method for producing an optical fiber of halide glass, particularly an infrared permeable fiber of fluoride glass
US5055120A (en) * 1987-12-15 1991-10-08 Infrared Fiber Systems, Inc. Fluoride glass fibers with reduced defects
US5015281A (en) * 1988-04-04 1991-05-14 Gte Laboratories Incorporated Method for preparing fluoride glasses
US4946490A (en) * 1988-04-04 1990-08-07 Gte Laboratories Incorporated Method for preparing fluoride glasses
US4923496A (en) * 1988-07-04 1990-05-08 Societa' Cavi Pierelli S.P.A. Method of fabricating fluoride-glass integrated optical waveguides
JPH02243533A (en) * 1989-03-17 1990-09-27 Nippon Telegr & Teleph Corp <Ntt> Production of raw material of fluoride optical fiber and production unit therefor
JPH0647462A (en) * 1992-08-04 1994-02-22 Amada Metrecs Co Ltd Metallic die attaching device

Also Published As

Publication number Publication date
JPH034491B2 (en) 1991-01-23

Similar Documents

Publication Publication Date Title
JPS593039A (en) Manufacture of fluoride glass for optical fiber
US4225330A (en) Process for producing glass member
JPS61247633A (en) Production of glass base material for optical fiber
EP0086132B1 (en) Method of making doped silica glass for processing a preform for an optical fibre
US3963468A (en) Light guide fabrication
US6128429A (en) Low phonon energy glass and fiber doped with a rare earth
JPH029727A (en) Production of optical fiber preform
JP2003512988A (en) Manufacturing method of nanocrystalline glass ceramic fiber
JPS62275035A (en) Production of base material for optical fiber
US4659352A (en) Reactive atmosphere processing of heavy-metal fluoride glasses
EP0629587A1 (en) Process and apparatus for producing fluoride glass
KR0163195B1 (en) Quartz glass doped with rare earth element and production thereof
JPS6351978B2 (en)
JPS60251142A (en) Manufacture of base material for optical fiber
JP2985966B2 (en) Equipment for producing raw materials for low loss fluoride optical fiber
JPS582170B2 (en) Method for manufacturing base material for optical functional elements
JPS6321232A (en) Production of perform for optical fiber
JPH089487B2 (en) Method for producing glass base material for optical fiber
JPH0425212B2 (en)
JPH0729812B2 (en) Fluoride glass manufacturing method
JPS63134530A (en) Production of halogen-containing glass
JPS62223034A (en) Production of preform for optical fiber
Fleming et al. GeO2-B2O3-SiO2 optical glass and lightguides
JP2019214509A (en) Production method of glass material, and glass material
JPS59232928A (en) Treatment of porous base material for optical fiber