JPH02243533A - Production of raw material of fluoride optical fiber and production unit therefor - Google Patents

Production of raw material of fluoride optical fiber and production unit therefor

Info

Publication number
JPH02243533A
JPH02243533A JP6396989A JP6396989A JPH02243533A JP H02243533 A JPH02243533 A JP H02243533A JP 6396989 A JP6396989 A JP 6396989A JP 6396989 A JP6396989 A JP 6396989A JP H02243533 A JPH02243533 A JP H02243533A
Authority
JP
Japan
Prior art keywords
raw material
fluoride
gas
optical fiber
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6396989A
Other languages
Japanese (ja)
Other versions
JP2670136B2 (en
Inventor
Yasutake Oishi
泰丈 大石
Kenji Kobayashi
健二 小林
Kazuo Fujiura
和夫 藤浦
Shiro Takahashi
志郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1063969A priority Critical patent/JP2670136B2/en
Publication of JPH02243533A publication Critical patent/JPH02243533A/en
Application granted granted Critical
Publication of JP2670136B2 publication Critical patent/JP2670136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/022Purification of silica sand or other minerals

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the subject glass raw material of a fluoride glass of high purity capable of production of a fluoride optical fiber having a reduced extrinsic scattering loss due to oxide scatters caused by hydroxides, oxides, etc., by treating a powdery fluoride raw material synthesized using a wet process with a fluorine-containing gas. CONSTITUTION:A powdery fluoride raw material 4 synthesized by a wet method, e.g. powdery BaF2 prepared by adding an aqueous HF solution to an aqueous Ba(NO3)2 solution is charged into an Al-made treatment vessel 2 having a gas- dispersing plate 3. An F2-containing gas is then introduced thereinto through a gas-supply nozzle 1 followed by treatment at room temperatures-600 deg.C so that moisture contained in the raw material can be reacted with F2 gas and removed, thus obtaining the objective raw material of a fluoride glass of high purity.

Description

【発明の詳細な説明】 (産業上の利用分野) 零発朋は外的散乱損失のない低損失なフッ化物光ファイ
バ用原料の製造方法およびその製造装置に関するもので
ある。詳しくは水酸基または酸化物を含まないフッ化物
光ファイバ用原料を製造する方法およびその製造装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) Zero Hatsuho relates to a method for producing a low-loss raw material for fluoride optical fiber without external scattering loss, and an apparatus for producing the same. More specifically, the present invention relates to a method for producing a raw material for a fluoride optical fiber that does not contain hydroxyl groups or oxides, and an apparatus for producing the same.

(従来の技術) フッ化物ガラスを素材とする光ファイバは、石英系光フ
ァイバを凌ぐ10−” dB/km  以下の伝送損失
をもつことが期待されており、特にフッ化物ガラスのう
ちで、ZrFaを主成分とするフッ化物ガラスは、光フ
ァイバ素材として最も有望視されている。
(Prior art) Optical fibers made of fluoride glass are expected to have a transmission loss of 10-" dB/km or less, which exceeds that of silica-based optical fibers. Fluoride glass, whose main component is fluoride, is considered the most promising material for optical fibers.

ZrF4系フッ化物ガラスは、通常、白金製または金製
のるつぼを用いて原料バッチを溶融した後、急冷する、
いわゆる溶融法によって合成されている。原料バッチに
用いられるBaF2.  LaF++等の金属フッ化物
は、一般に硝酸塩等をフッ化水素溶液中でフッ素化した
後、加熱脱水して得られている。このときの反応式は、 La(NOz)z+ 3HF  −+ LaF3+ 3
11NOz    (1)で示される。
ZrF4-based fluoride glass is usually produced by melting a raw material batch using a platinum or gold crucible and then rapidly cooling it.
It is synthesized by the so-called melting method. BaF2. used in the raw material batch. Metal fluorides such as LaF++ are generally obtained by fluorinating nitrates and the like in a hydrogen fluoride solution, followed by heating and dehydration. The reaction formula at this time is: La(NOz)z+ 3HF −+ LaF3+ 3
11NOz (1).

しかし、湿式反応を利用する限り、生成物のLaFz 
 中には必ず水酸化物が残留し、ガラス溶融過程でガラ
スの主成分であるZF、と下記の(2)式、(3)式で
示すように直接反応したり、または酸化物となった後に
反応して、Zr0zを生成し、外的散乱損失を増大させ
る(例えば、Fuj 1uraetal ”Forn+
ation Reaction of ZrO25ca
tterersin ZrFi −Based Flu
oride Fibers ” J、 Amer。
However, as long as wet reaction is used, the product LaFz
Hydroxide always remains in the glass, and during the glass melting process, it directly reacts with ZF, the main component of glass, as shown in equations (2) and (3) below, or becomes an oxide. later reacts to produce Zr0z and increase external scattering losses (e.g., Fuji 1uraetal “Forn+
ation Reaction of ZrO25ca
tterersin ZrFi -Based Flu
oride Fibers” J, Amer.

Cera、 Soc、 Vol、71. pp、460
〜464 )。
Cera, Soc, Vol, 71. pp, 460
~464).

3ZrPa + 2La(OH)+ −3ZrOz+ 
2LaF、+6HF3ZrF4+  2Laz03  
−’p 3ZrO,+  4LaF。
3ZrPa + 2La(OH)+ -3ZrOz+
2LaF, +6HF3ZrF4+ 2Laz03
-'p3ZrO, +4LaF.

このためガラス溶融に際しては、原料中の水酸化物を除
くため、従来より原料バッチにN)I4F −HFをフ
ッ素化剤として添加し、フッ素化処理をした後、アルゴ
ンや窒素などの不活性ガス中で溶融されてきた。
For this reason, when melting glass, in order to remove hydroxides from the raw materials, N)I4F-HF is traditionally added to the raw material batch as a fluorinating agent, and after fluorination treatment, inert gas such as argon or nitrogen is added to the raw material batch. It has been melted inside.

しかしNH4・)IFを用いた場合、NH4”イオンの
還元効果により、ガラスの主成分ZrFaの還元が起こ
ってガラスが着色し、ファイバの吸収損失を増大させる
。これを除くために溶融雰囲気に酸素ガスを導入し、還
元Zrを酸化して除去し、吸収損失の低減を図っている
。しかし、この方法では酸化物が生成されてしまうので
、外的散乱損失が増大してしまうという欠点がある。
However, when using NH4. Gas is introduced to oxidize and remove the reduced Zr in an attempt to reduce absorption loss.However, this method produces oxides, which has the disadvantage of increasing external scattering loss. .

したがってNl(、F −)IP処理は、低損失のフッ
化物光ファイバの作製には不適当であり、他のフッ素化
処理法が望まれている。その一つとして、フッ化物ガラ
スの溶融雰囲気に、CCl4 、 CF4等の活性ガス
を供給してガラス溶液と反応させ、水酸基や酸素イオン
を除くことをねらったReactiveAtmosph
ere Processing  (Mat、 Res
、 Bull、 vol。
Therefore, the Nl(,F-) IP process is inappropriate for fabricating low-loss fluoride optical fibers, and other fluorination processing methods are desired. One of these is Reactive Atmosph, which aims to remove hydroxyl groups and oxygen ions by supplying active gases such as CCl4 and CF4 to the melting atmosphere of fluoride glass and reacting with the glass solution.
are Processing (Mat, Res
, Bull, vol.

15、ρp、735.1980)が提案されているが、
この手法も、カーボン等の反応または分解生成物のガラ
ス中への混入が起こり、低損失のフッ化物光ファイバ用
ガラス作製法として適しているとは言えない。
15, ρp, 735.1980) has been proposed;
This method also causes reaction or decomposition products such as carbon to be mixed into the glass, and cannot be said to be suitable as a method for producing glass for a low-loss fluoride optical fiber.

(発明が解決しようとする課題) 本発明は、水酸化物または酸化物に起因した酸化物散乱
体による外的散乱損失を低減したフッ化物光ファイバを
製造するために必要な高純度フッ化物ガラス原料を製造
する方法およびその製造装置を提供することにある。
(Problems to be Solved by the Invention) The present invention provides high-purity fluoride glass necessary for manufacturing a fluoride optical fiber that reduces external scattering loss due to oxide scatterers caused by hydroxides or oxides. An object of the present invention is to provide a method for producing raw materials and an apparatus for producing the same.

(課題を解決するための手段) 本発明は、フッ化物光ファイバ用原料の製造方法におい
て、湿式法により合成されたフッ化物原料粉末を、フッ
素ガスを含有するガスで室温ないし600℃の温度にお
いて処理する。その製造装置はアルミニウム製の処理容
器からなり、該処理容器は、内部にガスを供給するため
のノズルおよび内部の雰囲気ガスを外部に排気するため
のノズルを有する容器、および該容器内でフッ化物原料
中にフッ素ガスを含有するガスを分散させるための分散
板とにより構成する。
(Means for Solving the Problems) The present invention provides a method for producing a raw material for a fluoride optical fiber, in which a fluoride raw material powder synthesized by a wet method is heated at a temperature of room temperature to 600°C with a gas containing fluorine gas. Process. The manufacturing equipment consists of a processing container made of aluminum. It consists of a dispersion plate for dispersing gas containing fluorine gas in the raw material.

従来は、湿式法で得られたフッ化物は、加熱して真空乾
燥するなどして、フッ化物中に含まれた水分を除去して
いたが、本発明では原料中に含まれ、水酸基が生成され
る原因となる水分の除去を単に物理的に行うのではなく
、F2ガスと水分との反応により取り除く。
Conventionally, fluoride obtained by a wet method was heated and vacuum-dried to remove the moisture contained in the fluoride, but in the present invention, the moisture contained in the fluoride is removed by removing the moisture contained in the raw material and generating hydroxyl groups. Rather than simply removing the moisture that causes the moisture, it is removed by a reaction between F2 gas and moisture.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

実施班上 第1図は、フッ化物原料をF2ガスで処理するための処
理容器の構成図であって、硝酸バリウム水溶液にフッ化
水素酸を加えて、得られたBaFz粉末にFtガスを供
給しているところを示している。
Figure 1 of the implementation team is a block diagram of a processing container for treating fluoride raw materials with F2 gas, in which hydrofluoric acid is added to a barium nitrate aqueous solution and Ft gas is supplied to the BaFz powder obtained. It shows what is being done.

すなわち靜ガスで10%に希釈したF2ガスを、ガス供
給ノズル1から処理容器本体2の中に供給し、分散板(
メザラ)3の上部に置かれたフッ化物原料粉末(BaF
z) 4の中に拡散させた。また、処理容器内の雰囲気
ガスは、排気ノズル6から外部に排気した。このときの
処理容器内の温度は20″Cであったe  F2ガスを
2時間流した後、F2ガスの供給を止め、乾燥性ガスを
処理容器内に供給し、処理容器の内部が250″Cにな
るように、処理容器を電気炉により、2時間加熱した後
、室温まで徐冷した。
That is, F2 gas diluted to 10% with quiet gas is supplied from the gas supply nozzle 1 into the processing container body 2, and the dispersion plate (
Fluoride raw material powder (BaF) placed on top of Mezzala) 3
z) Diffused into 4. Further, the atmospheric gas inside the processing container was exhausted to the outside from the exhaust nozzle 6. The temperature inside the processing container at this time was 20"C. After flowing F2 gas for 2 hours, the supply of F2 gas was stopped and drying gas was supplied into the processing container, so that the inside of the processing container reached 25"C. The processing container was heated in an electric furnace for 2 hours so that the temperature became C, and then slowly cooled to room temperature.

第2図には、上記プロセスにより得られたBaF。FIG. 2 shows BaF obtained by the above process.

原料のKBr法によって測定した赤外透過スペクトル(
a)と、F2処理をせずに計容囲気中で加熱焼成したB
aF、の赤外透過スペクトル(b)とを示す。
Infrared transmission spectrum measured by the KBr method of the raw material (
a) and B, which was heated and fired in the air without F2 treatment.
The infrared transmission spectrum (b) of aF is shown.

スペクトル(b)では25am〜30umの波長で透過
率が低下していることがわかる。これは、BaF、中に
酸素不純物が残存したために生ずるBa−〇結合の振動
吸収によるものである。
In the spectrum (b), it can be seen that the transmittance decreases at wavelengths of 25 am to 30 um. This is due to vibrational absorption of the Ba-- bond caused by residual oxygen impurities in BaF.

一方、スペクトル(a)ではBa −0の振動吸収によ
る透過率の低減は見られず、酸素不純物が除かれている
ことがわかる。
On the other hand, in spectrum (a), no reduction in transmittance due to vibrational absorption of Ba-0 is observed, indicating that oxygen impurities are removed.

このようにF2ガス処理を施した原料で酸素不純物が除
去されているのは、下記の(4) 、 (5)弐に示す
ように、フッ化水素酸との反応で生成されたBaF2粉
末中に含まれる水分や水酸基がF2ガスと反応して効率
良く除かれることにより、BaFzが加水分解されるこ
とを妨げ、また水酸化物から酸化物が生成されることを
妨げるためである。
Oxygen impurities are removed from the raw material treated with F2 gas in this way, as shown in (4) and (5) 2 below, in the BaF2 powder produced by the reaction with hydrofluoric acid. This is because moisture and hydroxyl groups contained in the F2 gas are efficiently removed by reacting with the F2 gas, thereby preventing BaFz from being hydrolyzed and preventing oxides from being generated from hydroxides.

HlO+  F2  → 2HF  + (h(4) 
、 (5)式の反応は室温でも十分に進行するが、加熱
することにより反応の進行を促進させることができる。
HlO+ F2 → 2HF + (h(4)
Although the reaction of formula (5) proceeds satisfactorily even at room temperature, the progress of the reaction can be accelerated by heating.

しかし、F2ガスを用いた場合に温度を上げ過ぎると、
処理容器がF2ガスと反応し始めてしまうので、処理温
度には上限がある。アルミニウム製の処理容器を用いた
場合、600℃程度の加熱処理に耐えられる。したがっ
て処理温度としては、室温から600’C程度まで採用
することができる。
However, if the temperature is raised too much when F2 gas is used,
There is an upper limit to the processing temperature since the processing container will begin to react with the F2 gas. When a processing container made of aluminum is used, it can withstand heat treatment at about 600°C. Therefore, the processing temperature can range from room temperature to about 600'C.

叉旌班I 硝酸ランタン水溶液にフッ化水素酸を加えて得られたL
aFzについても、実施例1と同様にF2ガス処理を施
した。
叉挌柜I L obtained by adding hydrofluoric acid to a lanthanum nitrate aqueous solution
AFz was also subjected to F2 gas treatment in the same manner as in Example 1.

第3図には、F2ガス処理を施したLa5tと未処理の
LaF、とを、それぞれAr雰囲気中で加熱焼成した後
の赤外透過スペクトルを示す。スペクトル(c)はF2
ガス処理を施したもの、スペクトル(d)は未処理のも
ののスペクトルである。
FIG. 3 shows the infrared transmission spectra of La5t treated with F2 gas and untreated LaF after being fired in an Ar atmosphere. Spectrum (c) is F2
Spectrum (d) is the spectrum of the gas-treated sample and the untreated sample.

スペクトル(d)では、20μmから28μmにかけて
透過特性がスペクトル(c)に比べて著しく低下してい
ることがわかる。このスペクトル(d)の透過特性の劣
化は、LaF3中に酸素不純物が残存しているために生
ずるり、−0結合の振動吸収によるものである。
It can be seen that in the spectrum (d), the transmission characteristics are significantly decreased from 20 μm to 28 μm compared to the spectrum (c). This deterioration in the transmission characteristics in spectrum (d) is caused by the presence of oxygen impurities remaining in LaF3, and is due to vibrational absorption of the -0 bond.

一方、スペクトル(c)では、L、−0の振動吸収によ
る透過率の低下は見られず、酸素不純物が除かれている
ことがわかる。
On the other hand, in spectrum (c), no decrease in transmittance due to vibration absorption of L and -0 is observed, indicating that oxygen impurities are removed.

これは、F2ガス処理を施すことにより、LaF3の合
成過程で、下記の(6)式に示すように、LaF j中
に残存した水酸基がF2ガスと反応して除かれるためで
ある。
This is because, by performing the F2 gas treatment, the hydroxyl groups remaining in LaF j are removed by reacting with the F2 gas during the synthesis process of LaF3, as shown in equation (6) below.

La(OfOz  + 3Fz  →LaFz  + 
3HF +  −Oz   (6)実五〇生よ 昇華精製したZrF4+ A E F3  についても
F2ガス処理を施した後、実施例1、実施例2で得られ
たBaF 21  LaP 3  とともに原料として
、各原料を乾燥不活性ガス雰囲気中で所定の組成となる
ように秤量混合し、乾燥不活性ガス雰囲気中で850℃
で2時間溶融した後、金属モールドにキャスティングし
て母材を得た。この母材から線引きして得られた光ファ
イバにH,−N、レーザ光を入射したところ、ファイバ
中に散乱中心はほとんど観測されなかった。
La(OfOz + 3Fz →LaFz +
3HF + -Oz (6) ZrF4+ A E F3 purified by sublimation was also subjected to F2 gas treatment. were weighed and mixed in a dry inert gas atmosphere to give a predetermined composition, and heated at 850°C in a dry inert gas atmosphere.
After melting for 2 hours, it was cast into a metal mold to obtain a base material. When H, -N, and laser beams were incident on an optical fiber obtained by drawing from this base material, almost no scattering centers were observed in the fiber.

また散乱損失とその波長依存性を測定したところ、散乱
損失α(dB/km)と波長λ(μm)とは、α=1.
1 /λ’ +0.03 (dB/km)    (7
)の関係があった。これは上式の右辺第1項および第2
項の定数が、従来の作製法で得た原料を用いると、それ
ぞれ5〜15および0.1〜20であったことと比較す
ると、著しく小さくなっている。
Furthermore, when scattering loss and its wavelength dependence were measured, it was found that the scattering loss α (dB/km) and the wavelength λ (μm) were α=1.
1 /λ' +0.03 (dB/km) (7
). This is the first and second term on the right side of the above equation.
The constants of the term are significantly smaller than those of 5 to 15 and 0.1 to 20, respectively, when raw materials obtained by conventional production methods are used.

これは、例えばBaF、中に水酸化物が残留していると
、下記の(8)式に示すように、水酸化物が、ガラスの
主成分であるZrF4と反応し、ZrO2が生成され、
ガラス融液中に酸化物散乱体として残るが、F2ガス処
理を施して原料中に残留した水酸基を除いておけば、酸
化物散乱体が残らないためである。
This is because, for example, if hydroxide remains in BaF, the hydroxide reacts with ZrF4, which is the main component of glass, as shown in equation (8) below, and ZrO2 is generated.
This is because the oxide scatterers remain in the glass melt, but if the hydroxyl groups remaining in the raw materials are removed by F2 gas treatment, no oxide scatterers remain.

Ba(叶)z  + ZrFa → BaFz  + 
 Zr0z  +  2HF      (8)(発明
の効果) 以上説明したように、本発明のフッ化物光ファイバ用原
料の製造方法によれば、酸素不純物を含まないフッ化物
光ファイバ用原料を製造できるので、ひいては外的散乱
体のない低損失なフッ化物光ファイバを製造することに
寄与する利点がある。
Ba(leaf)z + ZrFa → BaFz +
Zr0z + 2HF (8) (Effects of the Invention) As explained above, according to the method for producing a raw material for a fluoride optical fiber of the present invention, a raw material for a fluoride optical fiber that does not contain oxygen impurities can be produced. This has the advantage of contributing to the production of low-loss fluoride optical fibers without external scatterers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いたフッ化物原料をF2
ガスで処理するための処理容器の構成図、第2図および
第3図は本発明の製造方法で得られたBaFz、  L
aF=の赤外透過スペクトルを示す図である。 1・・・ガス供給ノズル 2・・・処理容器本体 3・・・分散板(メザラ) 4・・・フッ化物原料粉末 5・・・フランジ 6・・・排気ノズル 7・・・ボルト 8・・・ナツト
Figure 1 shows the fluoride raw material used in one example of the present invention.
The block diagram of a processing container for processing with gas, FIGS. 2 and 3 show BaFz, L obtained by the manufacturing method of the present invention.
It is a figure which shows the infrared transmission spectrum of aF=. 1... Gas supply nozzle 2... Processing container body 3... Dispersion plate (mezara) 4... Fluoride raw material powder 5... Flange 6... Exhaust nozzle 7... Bolt 8...・Natsuto

Claims (1)

【特許請求の範囲】 1、フッ化物光ファイバ用原料の製造方法において、湿
式法により合成されたフッ化物原料粉末を、フッ素ガス
を含有するガスで室温ないし600℃の温度において処
理することを特徴とする高純度フッ化物原料の製造方法
。 2、アルミニウム製の処理容器からなり、該処理容器は
、内部にガスを供給するためのノズルおよび内部の雰囲
気ガスを外部に排気するためのノズルを有する容器と、
該容器内でフッ化物原料中にフッ素ガスを含有するガス
を分散させるための分散板とから構成されていることを
特徴とするフッ化物光ファイバ用原料の製造装置。
[Claims] 1. A method for producing a fluoride optical fiber raw material, characterized in that a fluoride raw material powder synthesized by a wet method is treated with a gas containing fluorine gas at a temperature of room temperature to 600°C. A method for producing a high-purity fluoride raw material. 2. A processing container made of aluminum, the processing container having a nozzle for supplying gas to the inside and a nozzle for exhausting the internal atmospheric gas to the outside;
1. An apparatus for manufacturing a fluoride optical fiber raw material, comprising a dispersion plate for dispersing a gas containing fluorine gas in the fluoride raw material in the container.
JP1063969A 1989-03-17 1989-03-17 Fluoride optical fiber raw material manufacturing method and manufacturing apparatus therefor Expired - Lifetime JP2670136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1063969A JP2670136B2 (en) 1989-03-17 1989-03-17 Fluoride optical fiber raw material manufacturing method and manufacturing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1063969A JP2670136B2 (en) 1989-03-17 1989-03-17 Fluoride optical fiber raw material manufacturing method and manufacturing apparatus therefor

Publications (2)

Publication Number Publication Date
JPH02243533A true JPH02243533A (en) 1990-09-27
JP2670136B2 JP2670136B2 (en) 1997-10-29

Family

ID=13244631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1063969A Expired - Lifetime JP2670136B2 (en) 1989-03-17 1989-03-17 Fluoride optical fiber raw material manufacturing method and manufacturing apparatus therefor

Country Status (1)

Country Link
JP (1) JP2670136B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593039A (en) * 1982-06-25 1984-01-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of fluoride glass for optical fiber
JPS6163538A (en) * 1984-09-04 1986-04-01 Kokusai Denshin Denwa Co Ltd <Kdd> Purification of fluoride glass
JPS6469538A (en) * 1987-09-09 1989-03-15 Sumitomo Electric Industries Mixer for powdery raw material of fluoride glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593039A (en) * 1982-06-25 1984-01-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of fluoride glass for optical fiber
JPS6163538A (en) * 1984-09-04 1986-04-01 Kokusai Denshin Denwa Co Ltd <Kdd> Purification of fluoride glass
JPS6469538A (en) * 1987-09-09 1989-03-15 Sumitomo Electric Industries Mixer for powdery raw material of fluoride glass

Also Published As

Publication number Publication date
JP2670136B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
US6364946B2 (en) Methods for growing large-volume single crystals from calcium fluoride and their uses
JP6800816B2 (en) Rare earth metal-doped quartz glass and its manufacturing method
EP0360479A2 (en) Method of producing a glass body
EP0538345B1 (en) Method for the preparation of halide glass articles
US4597786A (en) Purifying process of fluoride glass
US4741752A (en) Treating glass compositions
Lezal et al. GeO2-PbO glassy system for infrared fibers for delivery of Er: YAG laser energy
JPH034491B2 (en)
JPS616144A (en) Sintering method of parent glass material for optical fiber
US4659352A (en) Reactive atmosphere processing of heavy-metal fluoride glasses
JPH02243533A (en) Production of raw material of fluoride optical fiber and production unit therefor
Mailhot et al. Reactive atmosphere synthesis of sol-gel heavy metal fluoride glasses
WO2022209515A1 (en) Fluorine-containing silica glass powder and method for producing fluorine-containing silica glass powder
EP0629587A1 (en) Process and apparatus for producing fluoride glass
Nakai et al. Dehydration of fluoride glasses by NF 3 processing
Dejneka et al. Sol‐Gel Synthesis of High‐Quality Heavy‐Metal Fluoride Glasses
JP2985966B2 (en) Equipment for producing raw materials for low loss fluoride optical fiber
US5256605A (en) Method of manufacturing a heavy metal fluoride glass composition
Atkins et al. Interaction of NF3 with melt confinement materials in fluoride glass processing
RU2263637C1 (en) Method of production of fluoride glass
JPS60251146A (en) Process and device for preparing fluoride glass
JPH0687617A (en) Method for synthesizing fluoride glass by sol-gel process and optical fiber produced from said fluoride glass obtained by said method
Robinson et al. Infrared Transparent Glasses Derived from Hafnium Fluoride
O'Donnell et al. Low loss infrared fluorotellurite optical fibre
JPS63156030A (en) Production of fluoride optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12