JPS593032A - Manufacture of base material for optical fiber - Google Patents

Manufacture of base material for optical fiber

Info

Publication number
JPS593032A
JPS593032A JP10902482A JP10902482A JPS593032A JP S593032 A JPS593032 A JP S593032A JP 10902482 A JP10902482 A JP 10902482A JP 10902482 A JP10902482 A JP 10902482A JP S593032 A JPS593032 A JP S593032A
Authority
JP
Japan
Prior art keywords
base material
optical fiber
fed
gaseous
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10902482A
Other languages
Japanese (ja)
Other versions
JPS6243933B2 (en
Inventor
Tsutomu Yabuki
矢吹 勉
Junkichi Nakagawa
中川 順吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10902482A priority Critical patent/JPS593032A/en
Publication of JPS593032A publication Critical patent/JPS593032A/en
Publication of JPS6243933B2 publication Critical patent/JPS6243933B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To economically manufacture a base material for an optical fiber having a low concn. of OH groups and causing little transmission loss with superior productivity when a base material for an optical fiber is manufactured by hydrolyzing gaseous starting materials, by removing OH groups from a base material by means of only halogen contained in the material. CONSTITUTION:Gaseous SiCl4, GeCl4 and POCl3 as starting materials, together with Ar as a carrier gas, are fed to the central part of a burner 1 having a quadruple structure in a gas chamber 6, Ar, H2 and O2 are successively fed to the outer parts of the burner 1, and a porous base material 7 is deposited by a hydrolysis reaction. Gaseous N2 is then fed to the outside of the carbon core tube 22 of a furnace, gaseous He is fed to the inside to make the internal pressure of the tube 22 higher than the external pressure, and the base material 7 is slowly pulled up in the He atmosphere while being rotated. The residual OH groups in the material 7 are removed by means of only Cl2 contained in the material 7, and a base material for an optical fiber causing little optical transmission loss is obtd.

Description

【発明の詳細な説明】 本発明は、特に気相軸付法による光フアイバ母材の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method of manufacturing an optical fiber preform by a vapor phase axial method.

気相軸付法での多孔質母材は、原料を加水分解反応を利
用して堆積したものであるため、その中にOH基を数十
ppm含んでおシ、そのt″!焼結ガラス化すると伝送
損失を増大させることにな゛る。
The porous base material used in the vapor phase deposition method is deposited using a hydrolysis reaction of raw materials, so it contains several tens of ppm of OH groups. This will increase transmission loss.

そのため、一般的には、at 2J3oct 、などの
ハロゲン剤雰囲気中でOH基をハロゲン化して除いてい
る。しかし、この方法では、焼結ガラス化前に前記処理
を行なう必要がある。また、OH基の除去効果が、かさ
密度、処理温度、・・ロゲン剤流量、・・ロゲン剤純度
などに左右され、その最適範囲が狭く、OH基除去効果
があったにもかかわらず、伝送損失が大きくなる場合も
しばしば見受けられる。
Therefore, the OH group is generally removed by halogenation in an atmosphere of a halogen agent such as at 2J3oct . However, in this method, it is necessary to perform the above-mentioned treatment before sintering and vitrification. Furthermore, the effectiveness of removing OH groups depends on the bulk density, processing temperature, flow rate of the rogens agent, purity of the rogens agent, etc., and the optimum range is narrow. We often see cases where losses become large.

本発明は上記の状況に鑑みなされたものであり、ハロゲ
ン剤雰囲気中でのOH基除去処理を行なうことな(OH
基濃度が低下された光フアイバ母材の製造方法を提供す
ることを目的としたものである。
The present invention was made in view of the above-mentioned situation, and eliminates the need to perform OH group removal treatment in a halogen agent atmosphere (OH
The object of the present invention is to provide a method for producing an optical fiber preform with a reduced group concentration.

本発明の光フアイバ母材の製造方法は、バーナー火炎中
に原料を送り込み上記バーナー上方の棒状体の石英ター
ゲット先端に吹き付けて酸化物微粉体からなる多孔質母
材を成長させ、その後不活性ガス雰囲気中で焼結ガラス
化し光フアイバ母材を製造する際、上記多孔質母材のか
さ密度を0.03〜0.159/crl  としてOH
基濃度を低下させ、上記焼結ガラス化の際の不活性ガス
雰囲気圧力を周辺圧力より高圧にして行う方法である。
In the method for producing an optical fiber base material of the present invention, a raw material is fed into a burner flame and is blown onto the tip of a quartz target of a rod-like body above the burner to grow a porous base material made of fine oxide powder, and then an inert gas When producing an optical fiber base material by sintering and vitrifying in an atmosphere, the bulk density of the porous base material is set to 0.03 to 0.159/crl and OH
This is a method in which the group concentration is lowered and the inert gas atmosphere pressure during the sintering and vitrification is made higher than the ambient pressure.

以下本発明の光フアイバ母材の製造方法の一実施例を第
1図により説明する。第1図は本発明の方法を実施する
装置の縦断面図であり、1は4重管バーナー、2はガス
導入ガラス管、6はチャンバ一台、4は差圧計、5はガ
ラス管、6は排気孔付ガラスチャンバー、7は多孔質母
材、8は仕切ガラス板、9はフランジ、1oは差圧計で
ある。
An embodiment of the method for manufacturing an optical fiber base material according to the present invention will be described below with reference to FIG. FIG. 1 is a longitudinal cross-sectional view of an apparatus for carrying out the method of the present invention, in which 1 is a quadruple tube burner, 2 is a gas introduction glass tube, 6 is one chamber, 4 is a differential pressure gauge, 5 is a glass tube, 6 1 is a glass chamber with an exhaust hole, 7 is a porous base material, 8 is a partition glass plate, 9 is a flange, and 1o is a differential pressure gauge.

tた、Ilはフランジ、12はカーボアヒーター 、1
6は炉体カバー、14はガラスカーテン、15は差圧計
、16はガラス庁、17はカーボンシートシーリング板
、18は焼結ガラス母材、19は石英ターゲット、20
はバーナー支持台、21は火炎、22はカーボン炉芯管
である。
t, Il is the flange, 12 is the carbore heater, 1
6 is a furnace body cover, 14 is a glass curtain, 15 is a differential pressure gauge, 16 is a glass chamber, 17 is a carbon sheet sealing plate, 18 is a sintered glass base material, 19 is a quartz target, 20
2 is a burner support stand, 21 is a flame, and 22 is a carbon furnace tube.

光フアイバ母材の製造の場合は、4重管バーナー1の中
心部に、5iCt4を1200mf/分、Ge0t4を
150 m t 7分、POO73を26t/分、Ar
キャリヤガスを800cc/分を流し、この外側に、順
にArをo、59z/分、N2を3t/分、o2を6t
/分流し加水分解反応により4重管バーナー1上方の石
英棒先端に堆積させる。このときの多孔質母材7のかさ
密度は0.59/caで外径60胴〆、長さ60胴であ
る。
In the case of manufacturing optical fiber base material, 5iCt4 at 1200mf/min, Ge0t4 at 150mt/min, POO73 at 26t/min, Ar
Carrier gas was flowed at 800 cc/min, and on the outside, Ar was supplied at o, 59 z/min, N2 was supplied at 3 t/min, and O2 was supplied at 6 t.
/It is deposited on the tip of the quartz rod above the quadruple tube burner 1 by a diversion hydrolysis reaction. The bulk density of the porous base material 7 at this time was 0.59/ca, the outer diameter was 60 mm, and the length was 60 mm.

次に、カーボン炉芯管22の外側にN2ガスを717分
流しその時の大気圧に対する差圧を十、0關水柱とし、
カーボン炉芯管22の内側には炉上方より下方へHeガ
スを20t/分流し大気圧に対する差圧を+2.0叫水
柱とし、このときのカーボン炉芯管22内外の圧力は内
側が高く、その差圧は1.ONn水柱である。この雰囲
気中に下方より多孔質母材7を2rpmで回転させなか
ら21シ分で引き上げ、カーボン炉芯管22内壁温度1
45゜〜1500℃でガラス化する。
Next, N2 gas was flowed for 717 minutes outside the carbon furnace core tube 22, and the differential pressure with respect to the atmospheric pressure at that time was set to 10.0 water column.
Inside the carbon furnace core tube 22, 20 t/minute of He gas is flowed downward from the top of the furnace to make the differential pressure with respect to atmospheric pressure +2.0 columns of water.At this time, the pressure inside and outside the carbon furnace core tube 22 is higher on the inside. The differential pressure is 1. ONn water column. In this atmosphere, the porous base material 7 is rotated from below at 2 rpm and pulled up for 21 minutes, and the inner wall temperature of the carbon furnace core tube 22 is 1.
Vitrify at 45° to 1500°C.

このときのOHによる吸収損失は横軸に波長をとり縦軸
に伝送損失をとって示した第2図の曲線Aに示すような
分光特性を示し、伝送損失は1.6μmで0.43dB
、OH基濃度11 ppbである。
The absorption loss due to OH at this time has a spectral characteristic as shown in curve A in Figure 2, where the horizontal axis is the wavelength and the vertical axis is the transmission loss, and the transmission loss is 0.43 dB at 1.6 μm.
, the OH group concentration was 11 ppb.

同一条件で、焼結ガラス母材10木製作した結果でも1
.6μmでの伝送損失は、1dB/Km以下、OH基濃
度は2〜25ppbの範囲であった。
Even if the result of manufacturing 10 pieces of sintered glass base material under the same conditions is 1
.. The transmission loss at 6 μm was 1 dB/Km or less, and the OH group concentration was in the range of 2 to 25 ppb.

また、多孔質母材7のかさ密度がo、 11 y /c
aのものでも、多孔質母材7のガラス化時の移動方向を
上から下へ変えても同じ結果である。
In addition, the bulk density of the porous base material 7 is o, 11 y /c
In case a, the same result is obtained even if the moving direction of the porous base material 7 during vitrification is changed from top to bottom.

そして、多孔質母材7のかさ密度は、0.06〜0.1
5y/crAが好ましく、o、o3f/crl以下では
多孔質母材7が堆積中落下し、0.15 f /cd以
上では多孔質母材中のハロゲン剤の脱OH基効果が著し
く低下する。また、不活性ガス雰囲気は周辺雰囲気より
圧力を0.5 +ran水柱以上高くする。とのo、5
1Mn水柱以下では圧力変動等により周辺雰囲気から不
純物が入り伝送損失増大の原因となるので0.5叫水柱
以上が好ましい。
The bulk density of the porous base material 7 is 0.06 to 0.1
5y/crA is preferable; below o, o3f/crl, the porous base material 7 will fall during deposition, and above 0.15 f/cd, the OH group removal effect of the halogen agent in the porous base material will be significantly reduced. Further, the pressure of the inert gas atmosphere is made higher than the surrounding atmosphere by 0.5+ran water column or more. and o, 5
If it is less than 1 Mn water column, impurities may enter from the surrounding atmosphere due to pressure fluctuations, etc., causing an increase in transmission loss, so it is preferable that it is 0.5 Mn water column or more.

このように本実施例の光フアイバ母材の製造方法では、
ハロゲン剤雰囲気に入れずに所定のかさ密度を持つ多孔
質母材に含まれているハロゲン剤C4,2のみでOH基
線除去行ない、同時に焼結ガス化するときの不活性ガス
雰囲気を外部からの不純物混入を防止するために雰囲気
内の圧力を周辺圧力よシ高くする方法であり、生産性及
び経済性を向上しながらOH基濃度の少ない光フアイバ
母材を波造できる。
In this way, in the method for manufacturing the optical fiber base material of this example,
The OH baseline is removed only using the halogen agent C4,2 contained in the porous base material with a predetermined bulk density without entering the halogen agent atmosphere, and at the same time, the inert gas atmosphere during sintering and gasification is removed from the outside. This is a method in which the pressure in the atmosphere is made higher than the surrounding pressure in order to prevent contamination by impurities, and it is possible to wave an optical fiber base material with a low OH group concentration while improving productivity and economic efficiency.

また、多孔質母材を堆積させながら直ちにガラス化がで
き生産性、経済性を向上できる。
In addition, the porous base material can be immediately vitrified while being deposited, improving productivity and economic efficiency.

以上記述した如く本発明の光フアイバ母材の製造方法に
よれば、・・ロゲン剤雰囲気中でのOH基線除去処理行
うことなく、OH基濃度を低下でき生産性、経済性を向
上できる光フアイバ母材を製造できる効果を有するもの
である。
As described above, according to the method for manufacturing an optical fiber base material of the present invention, an optical fiber can be produced that can reduce the OH group concentration and improve productivity and economic efficiency without performing OH baseline removal treatment in a logogen atmosphere. This has the effect of making it possible to manufacture the base material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光フアイバ母材の製造方法を実施する
装置の断面図、第2図は第1図の装置により製造された
光フアイバ母材の伝送損失特性曲線図である。 1:4重管バーナー 7:多孔質母材 19:石英ターゲット。
FIG. 1 is a sectional view of an apparatus for carrying out the method of manufacturing an optical fiber preform of the present invention, and FIG. 2 is a transmission loss characteristic curve diagram of the optical fiber preform manufactured by the apparatus of FIG. 1: Quadruple tube burner 7: Porous base material 19: Quartz target.

Claims (1)

【特許請求の範囲】[Claims] 1、 バーナー火炎中に原料を送り込み上記バーナー上
方の棒状石英ターゲット先端に吹き付けて酸化物微粉体
から趨る多孔質母材を成長させ、その後不活性ガス雰囲
気中で焼結ガラス化し光フアイバ母材を製造する方法に
おいて、上記多孔質母材の成長時かさ密度を0.06〜
0.15 f/c4としてOH基濃度を低下させ、上記
焼結ガラス化の際の不活性ガス雰囲気圧力を周辺圧力よ
り高圧にして行うことを特徴とする光フアイバ母材の製
造方法。
1. Raw materials are fed into the burner flame and blown onto the tip of the rod-shaped quartz target above the burner to grow a porous base material extending from the oxide fine powder, and then sintered and vitrified in an inert gas atmosphere to form an optical fiber base material. In the method for manufacturing, the bulk density of the porous base material during growth is 0.06 to 0.06.
A method for producing an optical fiber base material, characterized in that the OH group concentration is lowered to 0.15 f/c4, and the inert gas atmosphere pressure during the sintering and vitrification is made higher than the ambient pressure.
JP10902482A 1982-06-24 1982-06-24 Manufacture of base material for optical fiber Granted JPS593032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10902482A JPS593032A (en) 1982-06-24 1982-06-24 Manufacture of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10902482A JPS593032A (en) 1982-06-24 1982-06-24 Manufacture of base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS593032A true JPS593032A (en) 1984-01-09
JPS6243933B2 JPS6243933B2 (en) 1987-09-17

Family

ID=14499661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10902482A Granted JPS593032A (en) 1982-06-24 1982-06-24 Manufacture of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS593032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055944U (en) * 1991-07-10 1993-01-29 大和ハウス工業株式会社 Roof panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628852A (en) * 1979-08-17 1981-03-23 Toppan Printing Co Ltd Coloring multilayer molding
JPS5673636A (en) * 1979-11-14 1981-06-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber base material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628852A (en) * 1979-08-17 1981-03-23 Toppan Printing Co Ltd Coloring multilayer molding
JPS5673636A (en) * 1979-11-14 1981-06-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of optical fiber base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055944U (en) * 1991-07-10 1993-01-29 大和ハウス工業株式会社 Roof panel

Also Published As

Publication number Publication date
JPS6243933B2 (en) 1987-09-17

Similar Documents

Publication Publication Date Title
JPS61247633A (en) Production of glass base material for optical fiber
JPS5844619B2 (en) Manufacturing method of optical fiber base material
WO2016021576A1 (en) Optical fiber base material and method for producing optical fiber
EP0167054B1 (en) Method for producing glass preform for optical fiber
JPS593032A (en) Manufacture of base material for optical fiber
EP0232815A1 (en) Method and apparatus for producing glass preform for optical fiber
JPS63201025A (en) Production of high-purity transparent glass
JPS59174538A (en) Manufacture of base material for optical fiber
EP0156370A2 (en) Method for producing glass preform for optical fiber
JPH038737A (en) Production of preform for optical fiber
JPS6143290B2 (en)
JPS6289B2 (en)
KR850000289B1 (en) Method of fabrication single-mode optical fiber preforms
JPS6283323A (en) Production of glass
JP2002249342A (en) Glass body and method for manufacturing it
JPH02153828A (en) Production of silica cellular material
RU2061111C1 (en) Process for preparing synthetic quartz articles
JP2005298287A (en) Method of manufacturing glass preform
JP2938605B2 (en) Method of manufacturing preform for single mode optical fiber
JPS6278124A (en) Production of high-purity quartz pipe
JPS6410448B2 (en)
JPS63315531A (en) Production of optical fiber preform
JPS6355134A (en) Sintering of porous glass preform
JPS6311288B2 (en)
JPH03247523A (en) Manufacture of silica glass and silica glass