JPH03247523A - Manufacture of silica glass and silica glass - Google Patents

Manufacture of silica glass and silica glass

Info

Publication number
JPH03247523A
JPH03247523A JP4247890A JP4247890A JPH03247523A JP H03247523 A JPH03247523 A JP H03247523A JP 4247890 A JP4247890 A JP 4247890A JP 4247890 A JP4247890 A JP 4247890A JP H03247523 A JPH03247523 A JP H03247523A
Authority
JP
Japan
Prior art keywords
glass
transparent
base metal
quartz glass
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4247890A
Other languages
Japanese (ja)
Inventor
Sadao Okado
貞男 岡戸
Katsunari Ochiai
落合 克成
Yukinori Ota
大田 幸則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4247890A priority Critical patent/JPH03247523A/en
Publication of JPH03247523A publication Critical patent/JPH03247523A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01466Means for changing or stabilising the diameter or form of tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To reduce the structural defects in silica glass, in the method for converting a porous glass base metal constituted of glass fine particles into a transparent one, by shrinking the base metal under heating at a specified temp. and thereafter converting it into a transparent one in an atmosphere with specified pressure or O2 partial pressure and temp. CONSTITUTION:A porous glass base metal 13 obtd. by depositing glass fine particles synthesized by a burner for synthesizing from SiCl4 is shrunken in an electric furnace 14 at a temp. lower than the one at which it is converted into transparent glass, i.e., 1200 to 1350 deg.C and is discharged as a shrunken base metal 12. Next, the obtd. shrunken base metal 12 is mounted on a stand 23 made of carbon in a carbon electric furnace 21 having a carbon heater 22, a rotary pump 25 and a vacuum pump 26. Then, the shrunken base metal 12 is converted into transparent glass in the furnace 21 in an atmosphere under <=30Torr pressure or <=1% O2 partial pressure at >=1350 deg.C. By this method, the silica glass having few structural defects and hardly emitting fluorescence even if irradiated with ultraviolet rays having short wave length can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は石英ガラスの製造法および石英ガラス、特に構
造欠陥の少ない石英ガラスおよびその製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing quartz glass and quartz glass, particularly quartz glass with few structural defects and a method for producing the same.

[従来の技術] 従来石英ガラスの代表的な製造方法として、酸水素バー
ナを用いた化学的気相法によってガラス微粒子を合成し
、該ガラス微粒子を出発部材上に堆積させて多孔質ガラ
ス母材を形成し、該多孔質ガラス母材を透明ガラス化す
る方法が知られている。
[Prior Art] Conventionally, as a typical manufacturing method for quartz glass, glass fine particles are synthesized by a chemical vapor phase method using an oxyhydrogen burner, and the glass fine particles are deposited on a starting member to form a porous glass base material. A method of forming a porous glass base material into transparent glass is known.

第4図は従来用いられている石英ガラスの製造方法の一
例を示し1は出発部材である石英ガラス製種棒、2は多
孔質ガラス母材の透明ガラス化された部分、3は多孔質
ガラス母材、4は電気炉、5は合成用バーナ、6はガラ
ス原料供結糸である。
Figure 4 shows an example of a conventional method for producing quartz glass. 1 is a quartz glass seed rod which is a starting member, 2 is a transparent vitrified portion of a porous glass base material, and 3 is a porous glass. A base material, 4 is an electric furnace, 5 is a synthesis burner, and 6 is a glass raw material binding thread.

通常多孔質ガラス母材3を常圧もしくは若干のプラス圧
下で昇温し透明ガラス化しているがこの時ガラス化速度
を早めるためにヘリウム雰囲気中で行なう事が多い。し
かし透明化用電気炉内のシールを完全に保つことは困難
であって雰囲気中に酸素が含まれることを免れ得す、酸
素を含んだ雰囲気でガラス化が行なわれることになり、
その結果ガラス中に構造欠陥が発生するという欠点があ
った。
Normally, the porous glass base material 3 is heated under normal pressure or slightly positive pressure to make it transparent vitrified, but this is often done in a helium atmosphere in order to speed up the vitrification rate. However, it is difficult to maintain a perfect seal in the electric furnace for transparentization, and vitrification is performed in an oxygen-containing atmosphere, which can avoid the inclusion of oxygen in the atmosphere.
As a result, there is a drawback that structural defects occur in the glass.

[発明の解決しようとする課題] 本発明の目的は従来技術が有していた石英ガラスに構造
欠陥が発生するという問題を解消しようとするものであ
る。
[Problems to be Solved by the Invention] An object of the present invention is to solve the problem of structural defects occurring in quartz glass, which the prior art had.

[課題を解決するための手段] これに対して本発明は、ガラス原料用珪素塩化物と水素
ガス、酸素ガスおよび不活性ガスをバーナに供給し、火
炎加水分解反応によりガラス微粒子を生成し、これを出
発部材上に堆積させて多孔質ガラス母材を形成し、該多
孔質ガラス母材から透明な石英ガラスを製造する石英ガ
ラスの製造法において、該多孔質ガラス母材を透明ガラ
ス化温度より低い1200〜1350℃の範囲の温度で
加熱し収縮させた後、圧力が30Torr以下または酸
素分圧が1%以下の雰囲気中で1350°C以上の温度
で透明ガラス化し、構造欠陥の少ない石英ガラスを製造
することを特徴とする石英ガラスの製造法を提供するも
のである。
[Means for Solving the Problems] In contrast, the present invention supplies silicon chloride for glass raw materials, hydrogen gas, oxygen gas, and inert gas to a burner, generates glass fine particles by a flame hydrolysis reaction, In a method for producing quartz glass in which a porous glass base material is formed by depositing this on a starting member and transparent quartz glass is produced from the porous glass base material, the porous glass base material is heated to a transparent vitrification temperature. Quartz is heated and shrunk at a lower temperature in the range of 1200-1350°C, and then becomes transparent vitrified at a temperature of 1350°C or higher in an atmosphere with a pressure of 30 Torr or less or an oxygen partial pressure of 1% or less, and has few structural defects. The present invention provides a method for manufacturing quartz glass, which is characterized by manufacturing glass.

また本発明は、紫外線照射によって発する蛍光の強度が
極めて低いことを特徴とする石英ガラスを提供するもの
である。
The present invention also provides a quartz glass characterized in that the intensity of fluorescence emitted by ultraviolet irradiation is extremely low.

まず本発明における基本的概念を説明する。First, the basic concept of the present invention will be explained.

第3図に多孔質ガラス母材の透明ガラス化時の雰囲気中
の酸素分圧とガラス中の構造欠陥に起因する蛍光強度の
割合を示す(横軸は対数目盛)。これは多孔質ガラス母
材から切り出した試料を雰囲気中の酸素分圧を変化させ
て透明ガラス化させたものの蛍光強度を示したもので、
空気雰囲気でガラス化したものの蛍光強度を100とし
て示しである。ここで、試料を照射する紫外線の波長は
254 nmであり、蛍光の波長は約650nmである
FIG. 3 shows the ratio of fluorescence intensity caused by structural defects in the glass to the oxygen partial pressure in the atmosphere during transparent vitrification of the porous glass base material (the horizontal axis is on a logarithmic scale). This shows the fluorescence intensity of a sample cut from a porous glass base material and made into transparent glass by changing the oxygen partial pressure in the atmosphere.
The fluorescence intensity of the sample vitrified in an air atmosphere is shown as 100. Here, the wavelength of ultraviolet rays that irradiate the sample is 254 nm, and the wavelength of fluorescence is approximately 650 nm.

第3図かられかるように酸素分圧を下げると蛍光強度が
下がることがわかる。
As can be seen from Figure 3, lowering the oxygen partial pressure lowers the fluorescence intensity.

本発明においてガラス化時の酸素分圧を1%以下好まし
くは0.1%以下とすることが上記の理由で望ましいが
、そのために雰囲気を30Torr以下好ましくは3丁
orr以下でガラス化することが好ましい。
In the present invention, it is desirable that the oxygen partial pressure at the time of vitrification be 1% or less, preferably 0.1% or less, for the above reasons, but for this reason, it is preferable to vitrify the atmosphere at 30 Torr or less, preferably 3 Torr or less. preferable.

[作用] 本発明において、ガラス化時の酸素の作用は必ずしも明
確でないが、本発明の製造法により蛍光強度が下ってい
ることから、非架橋酸素ラジカルもしくは過酸化ラジカ
ルの欠陥が減じていることが考えられる。
[Effect] In the present invention, although the effect of oxygen during vitrification is not necessarily clear, since the fluorescence intensity is reduced by the production method of the present invention, defects of non-bridging oxygen radicals or peroxide radicals are reduced. is possible.

[実施例] 本実施例において使用した多孔質石英ガラス母材の作成
系を第1図に示す。11は石英ガラス製種棒、12は収
縮母材、13は多孔質ガラス母材、14は電気炉、15
は合成用バーナ、16はガラス原料併結系である。
[Example] FIG. 1 shows a production system for the porous quartz glass base material used in this example. 11 is a quartz glass seed rod, 12 is a contracted base material, 13 is a porous glass base material, 14 is an electric furnace, 15
1 is a synthesis burner, and 16 is a glass raw material combination system.

5iC1,から合成用バーナで合成されたガラス微粒子
を堆積させてできた多孔質ガラス母材13を1300℃
に保たれた電気炉内で収縮させ収縮母材12として取り
出した。
A porous glass base material 13 made by depositing glass fine particles synthesized from 5iC1 in a synthesis burner is heated at 1300°C.
The material was shrunk in an electric furnace maintained at a temperature of 100 m and was taken out as a shrunk base material 12.

次に第2図に示した作成系において21はカーボン製電
気炉、22は収縮母材、23はカーボン製台、24はカ
ーボンヒーター、25はロータリーポンプ、26は真空
ポンプである。
Next, in the production system shown in FIG. 2, 21 is a carbon electric furnace, 22 is a contracted base material, 23 is a carbon stand, 24 is a carbon heater, 25 is a rotary pump, and 26 is a vacuum pump.

多孔質ガラス母材13を第1図の作成系で加熱収縮させ
て得られた収縮母材22を取り出し、カーボン電気炉2
1内のカーボン製台23上に設置し、カーボン製電気炉
21の雰囲気をI Torrとし1200℃から150
0℃まで30℃/hrの昇温速度であげた後冷却して透
明な石英ガラス体が得られた。
The porous glass base material 13 is heated and shrunk using the production system shown in FIG.
The atmosphere of the carbon electric furnace 21 is set to I Torr from 1200°C to 150°C.
The temperature was raised to 0° C. at a rate of 30° C./hr and then cooled to obtain a transparent quartz glass body.

堆積した多孔質ガラス母材13の外径は200mm、収
縮母材12.22の外径は115mm 、得られた透明
ガラスの外径は85mmであった。さらに透明ガラス化
された母材から得られた石英ガラスの前記紫外線照射に
よる蛍光強度を測定したところ0.5であって、はとん
ど蛍光の認められない合成石英ガラスが得られた。
The outer diameter of the deposited porous glass preform 13 was 200 mm, the outer diameter of the contracted preform 12.22 was 115 mm, and the outer diameter of the obtained transparent glass was 85 mm. Further, when the fluorescence intensity of the quartz glass obtained from the transparent vitrified base material by the ultraviolet irradiation was measured, it was 0.5, and a synthetic quartz glass with almost no fluorescence was obtained.

[発明の効果] 以上述べた様に本発明によればガラス微粒子を堆積させ
た多孔質ガラス母材を透明ガラス化する方法において、
石英ガラス中の構造欠陥を少なくすることにより短波長
の紫外線が照射されてもほとんど蛍光を発しないという
優れた効果を有し、特に光エネルギーを伝送する光ファ
イバーにおいては構造欠陥に起因する伝送損失を最小限
にすることが可能となるという効果も認められる。
[Effects of the Invention] As described above, according to the present invention, in the method of converting a porous glass base material on which glass fine particles are deposited into transparent vitrification,
By reducing the structural defects in quartz glass, it has the excellent effect of emitting almost no fluorescence even when irradiated with short wavelength ultraviolet rays, and in particular, it reduces transmission loss caused by structural defects in optical fibers that transmit light energy. The effect of making it possible to minimize the amount of damage is also recognized.

また、透明ガラス化のための減圧炉を大きくすることに
より、1度に複数本の多孔質ガラス母材を透明ガラス化
することが出来ること、さらに高価なヘリウムガスを使
用しないこと等により合成石英ガラスのコストの低減化
に寄与できる効果がある。
In addition, by enlarging the vacuum furnace for transparent vitrification, it is possible to convert multiple porous glass base materials into transparent vitrification at once, and by not using expensive helium gas, synthetic quartz can be produced. This has the effect of contributing to reducing the cost of glass.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の方法の実施例の説明図、第3
図は酸素分圧と蛍光強度の関係を示すグラフ、第4図は
従来の方法の説明図である。 1 、11・ 2 ・ ・ ・ ・ 3、13・ 4、14・ 5、15・ 6、16・ 12、 22・ 21 ・ ・ ・ 23・ ・ ・ 24・ ・ ・ 25・ ・ ・ 26・ ・ ・ ・・石英ガラス製種棒 ・多孔質ガラス母材の透明ガラス 化された部分 ・多孔質ガラス母材 ・透明ガラス化用電気炉 ・合成用バーナ ・ガラス原料供給系 ・収縮母材 ・カーボン製電気炉 ・カーボン製台 ・カーボンヒーター ・ロータリポンプ ・真空ポンプ 第 ! 図 柘 ? 図 第 図 O7l 0 Ozづデ&(%) 市 図
Figures 1 and 2 are explanatory diagrams of an embodiment of the method of the present invention, and Figure 3 is an illustration of an embodiment of the method of the present invention.
The figure is a graph showing the relationship between oxygen partial pressure and fluorescence intensity, and FIG. 4 is an explanatory diagram of the conventional method. 1 , 11・ 2 ・ ・ ・ ・ 3, 13・ 4, 14・ 5, 15・ 6, 16・ 12, 22・ 21 ・ ・ 23・ ・ 24・ ・ ・ 25・ ・ ・ 26・ ・ ・ ・- Quartz glass seed rod - Transparent vitrified portion of porous glass base material - Porous glass base material - Electric furnace for transparent vitrification - Burner for synthesis - Glass raw material supply system - Shrink base material - Carbon electric furnace・Carbon stand, carbon heater, rotary pump, vacuum pump! Zutsu? Figure Figure Figure O7l 0 Ozzude & (%) City Map

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス原料用珪素塩化物と水素ガス、酸素ガスお
よび不活性ガスをバーナに供給し、火炎加水分解反応に
よりガラス微粒子を生成 し、これを出発部材上に堆積させて多孔質ガラス母材を
形成し、該多孔質ガラス母材から透明な石英ガラスを製
造する石英ガラスの製造法において、該多孔質ガラス母
材を透明ガラス化温度より低い1200〜1350℃の
範囲の温度で加熱し収縮させた後、圧力が30Torr
以下または酸素分圧が1%以下の雰囲気中で1350℃
以上の温度で透明ガラス化し、構造欠陥の少ない石英ガ
ラスを製造することを特徴とする石英ガラスの製造法。
(1) Silicon chloride for glass raw materials, hydrogen gas, oxygen gas, and inert gas are supplied to a burner, glass particles are generated by flame hydrolysis reaction, and the particles are deposited on the starting member to form a porous glass base material. In the quartz glass manufacturing method of forming transparent quartz glass from the porous glass base material, the porous glass base material is heated at a temperature in the range of 1200 to 1350°C lower than the transparent vitrification temperature to shrink. After that, the pressure is 30 Torr.
1350℃ or less in an atmosphere with an oxygen partial pressure of 1% or less
A method for producing quartz glass, which is characterized by producing quartz glass that becomes transparent at a temperature above and has few structural defects.
(2)紫外線照射によって発する蛍光の強度が極めて低
いことを特徴とする石英ガラス。
(2) Quartz glass characterized by extremely low intensity of fluorescence emitted by ultraviolet irradiation.
(3)照射する紫外線の波長が254nmであり、蛍光
の波長が約650nmであることを特徴とする請求項2
記載の石英ガラス。
(3) Claim 2 characterized in that the wavelength of the irradiated ultraviolet rays is 254 nm and the wavelength of the fluorescence is about 650 nm.
Quartz glass as described.
JP4247890A 1990-02-26 1990-02-26 Manufacture of silica glass and silica glass Pending JPH03247523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4247890A JPH03247523A (en) 1990-02-26 1990-02-26 Manufacture of silica glass and silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4247890A JPH03247523A (en) 1990-02-26 1990-02-26 Manufacture of silica glass and silica glass

Publications (1)

Publication Number Publication Date
JPH03247523A true JPH03247523A (en) 1991-11-05

Family

ID=12637174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4247890A Pending JPH03247523A (en) 1990-02-26 1990-02-26 Manufacture of silica glass and silica glass

Country Status (1)

Country Link
JP (1) JPH03247523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470369A (en) * 1991-12-16 1995-11-28 Sumitomo Electric Industries, Ltd. Process for consolidation of porous preform for optical fiber
EP1270522A1 (en) * 2001-06-26 2003-01-02 FITEL USA CORPORATION (a Delaware Corporation) Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470369A (en) * 1991-12-16 1995-11-28 Sumitomo Electric Industries, Ltd. Process for consolidation of porous preform for optical fiber
EP1270522A1 (en) * 2001-06-26 2003-01-02 FITEL USA CORPORATION (a Delaware Corporation) Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration

Similar Documents

Publication Publication Date Title
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
JPH0127005B2 (en)
JPH05351B2 (en)
JPH03247523A (en) Manufacture of silica glass and silica glass
JPH0788231B2 (en) Manufacturing method of optical fiber preform
JP4885392B2 (en) Method for producing glass preform and optical fiber obtained from said preform
JPH06263468A (en) Production of glass base material
JPS59174538A (en) Manufacture of base material for optical fiber
JP2004238277A (en) Method of manufacturing optical fiber preform, optical fiber preform and optical fiber
JPH0952719A (en) Production of synthetic quartz glass preform
JPS6289B2 (en)
JPH1059730A (en) Production of synthetic quartz glass
JPH0559052B2 (en)
JPS5899129A (en) Production of rod lens
JPS5855341A (en) Manufacture of optical fiber
JP3114936B2 (en) High heat resistant synthetic quartz glass
JPS63147840A (en) Production of quartz glass material
JPS6042242A (en) Manufacture of glass for optical fiber
JPH04260630A (en) Production of preform optical fiber
JPS63151639A (en) Production of glass preformer for optical fiber
JP2006327858A (en) Method of treating quartz glass base material and method of manufacturing optical fiber preform
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPS61222936A (en) Plasma cvd process
JPH0421536A (en) Preparation of rare earth element-doped glass
JPS6117432A (en) Manufacture of optical fiber preform