JPS5929853B2 - Heat development method for electron beam resist - Google Patents

Heat development method for electron beam resist

Info

Publication number
JPS5929853B2
JPS5929853B2 JP52127970A JP12797077A JPS5929853B2 JP S5929853 B2 JPS5929853 B2 JP S5929853B2 JP 52127970 A JP52127970 A JP 52127970A JP 12797077 A JP12797077 A JP 12797077A JP S5929853 B2 JPS5929853 B2 JP S5929853B2
Authority
JP
Japan
Prior art keywords
electron beam
resist
poly
irradiated
beam resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52127970A
Other languages
Japanese (ja)
Other versions
JPS5461531A (en
Inventor
孝輝 浅野
勉 辻村
秀雄 国吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Yakuhin Kogyo KK
Victor Company of Japan Ltd
Panasonic Holdings Corp
Original Assignee
Fuji Yakuhin Kogyo KK
Victor Company of Japan Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Yakuhin Kogyo KK, Victor Company of Japan Ltd, Matsushita Electric Industrial Co Ltd filed Critical Fuji Yakuhin Kogyo KK
Priority to JP52127970A priority Critical patent/JPS5929853B2/en
Publication of JPS5461531A publication Critical patent/JPS5461531A/en
Publication of JPS5929853B2 publication Critical patent/JPS5929853B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、高解像度の電子ビームレジストの熱現像方法
に関するもので、更に詳しくは半導体工業における選択
拡散や選択エッチング等の微小パターンの作成、及び特
開昭47−37415号公報等で公知のビデオディスク
の製造にみられるごとき記録情報を表面の凹凸に変えて
保持するサブミクロン画像記録装置において、このパタ
ーン作成を電子ビームレジストを用いて行う際の、電子
ビームレジストの現像方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for thermally developing a high-resolution electron beam resist, and more specifically to the creation of minute patterns such as selective diffusion and selective etching in the semiconductor industry, and the method disclosed in Japanese Patent Laid-Open No. 47-37415. In a submicron image recording device that retains recorded information by converting the recorded information into irregularities on the surface, such as that seen in the production of video discs, which is known in Japanese Patent Publication No. Regarding a developing method.

サブミクロンの微細加工技術には、ポジ型電子ビームレ
ジストは欠くことができないものであることから種々の
ものが考案されている。
Since positive electron beam resists are indispensable for submicron microfabrication techniques, various resists have been devised.

その中でポリメチルメタクリレート(PMMA)は最も
解像性の良いものとして知られているが、低感度である
ことが欠点とされている。それ故、近年ポジ型電子ビー
ムレジストの感度を高める多くの研究が報告されており
、例えばポリメタクリル酸ブチル、メタクリル酸メチル
とメタクリル酸との共重合体、メタクリル酸メチルとイ
ソブチレンとの共・ 重合体、ポリブテンー1−スルホ
ン、ポリイソプロペニルケトン、ポリメタクリルアミド
、ポリシアノアクリレート、含フッ素、ポリメタクリレ
ート等のポジ型電子ビームレジストが発表されているが
、いずれも感度と解像性の両方を十分に満足フ させる
レジストとは言い難い。本発明者等は、上述の欠点を解
決するために、電子ビームレジストについて種々研究し
た結果、現像方法を改良することによつて良好な結果が
得られることを見い出して本発明を完成した。
Among them, polymethyl methacrylate (PMMA) is known to have the best resolution, but its drawback is low sensitivity. Therefore, many studies have been reported in recent years to improve the sensitivity of positive electron beam resists, such as polybutyl methacrylate, copolymers of methyl methacrylate and methacrylic acid, and copolymers of methyl methacrylate and isobutylene. Positive-working electron beam resists have been announced, such as polymer, polybutene-1-sulfone, polyisopropenylketone, polymethacrylamide, polycyanoacrylate, fluorine-containing, and polymethacrylate, but none of them have sufficient sensitivity and resolution. It is difficult to say that this is a resist that satisfies customers. In order to solve the above-mentioned drawbacks, the present inventors conducted various studies on electron beam resists, and as a result found that good results could be obtained by improving the developing method, and completed the present invention.

5 本発明で使用する電子ビームレジストは、下記一般
式:〔但し、式中Xは同一又は異なつてシアノ基(−C
N)又はカルバミル基(−CONH2)を表わし、Rは
同一又は異なつて、メチル、エチル、プロピル、ブチル
等の低級アルキル基を表わし、nは正の整数を表わす。
5 The electron beam resist used in the present invention has the following general formula: [However, in the formula, X is the same or different and is a cyano group (-C
R represents a lower alkyl group such as methyl, ethyl, propyl, butyl, etc., and n represents a positive integer.

〕で表わされるポリα−シアノアクリレート、ポリα一
カルバミルアクリレート或いは両者の共重合体を主成分
とするものである。
] The main component is poly-α-cyanoacrylate, poly-α-carbamyl acrylate, or a copolymer of both.

この一般式で示される重合体を主成分とする電子ビーム
レジストは公知であり、PMMAと比べ高感度であるが
解像性の点で劣つていることが報告されている(特開昭
52−153671号)。
Electron beam resists containing polymers represented by this general formula as main components are well known, and have been reported to have higher sensitivity than PMMA, but to be inferior in resolution (Japanese Patent Laid-Open No. 1983-1972-1). No. 153671).

ポリα−シアノアクリレートを主成分とした電子ビーム
レジストを用いた場合の現像法を簡単に述べると、ポリ
α−シアノエチルアクリレート(分子量40万)をシク
ロヘキサノンに5%の濃度に溶かし、この溶液をガラス
にクロムを蒸着した基板上に、約300rpmで回転塗
布して、4000λの厚さの被膜を形成させ、その後1
30℃で15分間加熱処理を行なつた後、照射量約4×
10−6クーロン/Cd、加速電圧15KVで電子ビー
ムを照射させ、しかるのち酢酸エチルとメチルイソブチ
ルケトンの混合溶剤を用いて室温で現像した。次いでイ
ソプロピルアルコールで洗浄して乾燥するが、このとき
次の如き結果が得られる。すなわち、現像時間20秒と
60秒の二つの現像後のパターンを電子顕微鏡を用い倍
率1万倍で観察すると、現像時間20秒のものはレジス
ト皮膜の皮が抜けず、その照射部の底面は非常に凹凸の
激しいあれた面がみられ、また現像時間60秒のものは
底まで現像されていたが現像側面にはあれがあり底面に
ひげが見られた。なお、PMMAを用いたとき11ζ照
射量の高低にかかわらずこのような面あれ現象は殆んど
観察されない。これはポリα−シアノエチルアクリレー
トを用いた電子ビームレジストがPMMAに比べて現像
液に対する溶解性が良いために、増感現像して感度を上
げているためと思われる。本発明者等は、このようなポ
リシアノアクリレート等を用いた電子ビームレジストの
解像度が悪いの&ζ現像−リンス工程中において起るも
のと考え、この現象を解決すべく鋭意研究した結果、前
記一般式で示される重合体よりなるレジストに、電子ビ
ーム照射を施した後の現像処理工程において、酢酸エチ
ル、メチルイソブチルケトン、シクロヘキサノン等を含
む混合溶剤で現像する代りに、レジストを塗布した基板
を加熱すると照射部分が揮散し未照射部分が残り、それ
によりパターンを形成し得ることを見い出して本発明を
完成した。
To briefly explain the development method when using an electron beam resist mainly composed of poly-α-cyanoacrylate, poly-α-cyanoethyl acrylate (molecular weight: 400,000) is dissolved in cyclohexanone to a concentration of 5%, and this solution is applied to a glass plate. On a substrate on which chromium was vapor-deposited, spin coating was performed at about 300 rpm to form a film with a thickness of 4000λ, and then 1
After heat treatment at 30℃ for 15 minutes, the irradiation dose was approximately 4×
The film was irradiated with an electron beam at 10-6 coulombs/Cd and an accelerating voltage of 15 KV, and then developed at room temperature using a mixed solvent of ethyl acetate and methyl isobutyl ketone. Next, it is washed with isopropyl alcohol and dried, and the following results are obtained. That is, when two patterns after development with a development time of 20 seconds and 60 seconds are observed using an electron microscope at a magnification of 10,000 times, the skin of the resist film does not come off in the case of the pattern with a development time of 20 seconds, and the bottom surface of the irradiated area is A very uneven and rough surface was observed, and although the development time was 60 seconds, the development was done to the bottom, but there were roughness on the developed side and whiskers were observed on the bottom surface. Note that when PMMA is used, such a surface roughening phenomenon is hardly observed regardless of the level of the 11ζ irradiation amount. This is thought to be because the electron beam resist using poly-α-cyanoethyl acrylate has better solubility in a developer than PMMA, and therefore the sensitivity is increased by sensitization development. The present inventors thought that the resolution of electron beam resists using polycyanoacrylate etc. is poor and that this occurs during the development and rinsing process, and as a result of intensive research to solve this phenomenon, the above-mentioned general In the development process after applying electron beam irradiation to a resist made of a polymer represented by the formula, instead of developing with a mixed solvent containing ethyl acetate, methyl isobutyl ketone, cyclohexanone, etc., the substrate coated with the resist is heated. Then, the irradiated part evaporates and the unirradiated part remains, and the present invention was completed based on the discovery that a pattern could be formed by this.

すなわち、本発明の熱現像方法は、前記一般式で表わさ
れるポリα−シアノアクリレート等を主成分とするレジ
ストに電子ビーム照射を施した後、その基板を恒温槽中
で現像後の照射部の深度に応じて加熱してパターンを形
成することを特徴とする。本発明は前記一般式で表わさ
れる電子ビームレジストが恒温槽中で加熱した時、加熱
温度が高い程第1図に示すように膜厚減少率が大きく、
また加熱温度が一定のとき該レジスト主成分の重合体の
分子量が小さい程第2図に示すように膜厚減少率が大き
いという知見に基づくものである。
That is, in the heat development method of the present invention, after electron beam irradiation is applied to a resist whose main component is polyα-cyanoacrylate or the like represented by the above general formula, the substrate is placed in a constant temperature bath, and the irradiated area is exposed to the irradiated area after development. It is characterized by forming a pattern by heating according to the depth. The present invention provides that when the electron beam resist represented by the above general formula is heated in a constant temperature bath, the higher the heating temperature, the greater the film thickness reduction rate as shown in FIG.
This is also based on the knowledge that when the heating temperature is constant, the smaller the molecular weight of the polymer that is the main component of the resist, the greater the film thickness reduction rate as shown in FIG.

それ故本発明で用いられるポリα−シアノアクリレート
あるいはポリα一カルバミルアクリレートあるいは両者
の共重合体からなる電子ビームレジスト皮膜を形成する
重合体の分子量は大きい程良く、例えば100万〜30
0万程度のものが好ましい。そして分子量分布は解像度
の点から狭(・ことが望ましい。レジスト膜厚は厚い程
良く、例えば0.5〜1.5μが好ましい。
Therefore, the molecular weight of the polymer forming the electron beam resist film made of poly α-cyanoacrylate, poly α-carbamyl acrylate, or a copolymer of both used in the present invention is better as it is larger; for example, from 1 million to 30
A value of about 0,000 is preferable. It is desirable that the molecular weight distribution be narrow from the viewpoint of resolution. The thicker the resist film, the better; for example, 0.5 to 1.5 μm is preferable.

またプレベークの温度は低いほど好都合である。本発明
による熱現像方法において、電子ビーム照射を施した後
の基板の加熱は好ましくは140〜180℃の恒温槽中
で行なうのが良く、加熱時間は現像後の照射部の深度に
応じて好ましくは5〜60分加熱することによつて行な
われる。
Further, the lower the pre-baking temperature is, the more convenient it is. In the thermal development method according to the present invention, heating of the substrate after electron beam irradiation is preferably carried out in a constant temperature bath at 140 to 180°C, and the heating time is preferably determined according to the depth of the irradiated area after development. is carried out by heating for 5 to 60 minutes.

なお、加熱時に揮散する分解産物は刺激性が強いので十
分換気する必要がある。また、上記熱現像法による電子
ビーム照射特性曲線を、第3図に示す。
Note that the decomposition products that volatilize during heating are highly irritating, so sufficient ventilation is required. Further, an electron beam irradiation characteristic curve obtained by the above thermal development method is shown in FIG.

この熱現像法によりパターンを形成したときは、未照射
部分の膜厚も若干減少するが、面あれは照射部分と同じ
く全く見られず、良好な状態である。本発明で用いられ
る前記一般式で示される重合体は、例えば次の方法で得
られる(特願昭5171535号参照)。
When a pattern is formed by this heat development method, the film thickness in the non-irradiated areas is also slightly reduced, but no surface roughness is observed as in the irradiated areas, and the pattern is in good condition. The polymer represented by the above general formula used in the present invention can be obtained, for example, by the following method (see Japanese Patent Application No. 5171535).

なお、前記一般式中のRは、低級アルキル基が好ましく
、これはレジストのガラス転移温度を低くして乾燥しに
くくしたためである。
Note that R in the above general formula is preferably a lower alkyl group, because this lowers the glass transition temperature of the resist and makes it difficult to dry.

α−シアノエチルアクリレートモノマー40部をアセト
ニトリル320部に溶解し、重合開始剤としてジメチル
ホルムアミド0.1部を滴下し、室温で攪拌しながら2
時間アニオン重合する。
40 parts of α-cyanoethyl acrylate monomer was dissolved in 320 parts of acetonitrile, and 0.1 part of dimethylformamide was added dropwise as a polymerization initiator.
Time anionic polymerization.

その後ポリマーを多量のメタノール中に析出させ、真空
乾燥する。本発明による熱現像方法は、従来のような溶
剤現像法と異なり、溶剤の選択、濃度の決定及び後処理
等のわずられしさを省くことができ、しかも面あれや底
面のひげもなく良好なパターンを得ることができる。
Thereafter, the polymer is precipitated into a large amount of methanol and dried under vacuum. The heat development method according to the present invention, unlike conventional solvent development methods, can eliminate the trouble of selecting a solvent, determining the concentration, and post-processing, and is also good with no surface roughness or scratches on the bottom surface. You can get a pattern.

また、利用面では特にパターンの面あれがそのまま雑音
となるビデオデイスクのマスターパターン形成に有効で
ある等、画期的な現像方法である。以下実施例及び比較
例により本発明を詳細に説明するが、本発明はこれらに
限定されるものではない。
Furthermore, in terms of use, it is a revolutionary developing method, as it is particularly effective for forming master patterns on video discs, where surface irregularities in patterns become noise as they are. The present invention will be explained in detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例 1 ポリα−シアノエチルアクリレート(分子量260万)
をシクロヘキサノンに5%濃度に溶解させガラスにクロ
ムを蒸着した基板上に回転塗布法により約3000rp
mで1.0μの厚さのレジスト皮膜を形成させた。
Example 1 Poly α-cyanoethyl acrylate (molecular weight 2.6 million)
was dissolved in cyclohexanone to a concentration of 5% and applied to a glass substrate with chromium vapor-deposited using a spin coating method at approximately 3000 rpm.
A resist film with a thickness of 1.0 μm was formed.

その後、照射電荷量4.0×10−6クーロン/Cr!
l、加速電圧15Kでビーム幅1.5μの電子ビームを
走査させた。照射後、照射装置より基板を取り出し、1
60℃の恒温槽中で15分間加熱現像した。電子ビーム
で照射された部分が凹部になり深さは4000λであつ
た。これを電子顕微鏡を用い倍率1万倍で観察したとこ
ろ、第4図の顕微鏡写真で示すように、照射部及び未照
射部にほ面あれ全く見当らなかつた。比較例ポリα−シ
アノエチルアクリレート(分子量260万)をシクロヘ
キサノンに4%濃度に溶解させ、同様なクロム基板上に
回転塗布法により約1200rpmで5000λの厚さ
のレジスト皮膜を形成させた。
After that, the amount of irradiation charge was 4.0×10-6 coulombs/Cr!
1. An electron beam with a beam width of 1.5μ was scanned at an acceleration voltage of 15K. After irradiation, take out the substrate from the irradiation device and
Heat development was carried out for 15 minutes in a constant temperature bath at 60°C. The portion irradiated with the electron beam became a concave portion with a depth of 4000λ. When this was observed using an electron microscope at a magnification of 10,000 times, no cracks were found in the irradiated and non-irradiated areas, as shown in the micrograph of FIG. Comparative Example Poly α-cyanoethyl acrylate (molecular weight: 2.6 million) was dissolved in cyclohexanone at a concentration of 4%, and a resist film having a thickness of 5000λ was formed on a similar chromium substrate by spin coating at about 1200 rpm.

その後130℃で15分間熱処理を行なつた後、照射電
荷量4×10−6クーロン/Cd、加速電圧15Kでビ
ーム幅1.5μの電子ビームを走査させた。照射後照射
装置より基板を取り出し、酢酸エチルリメチルイソブチ
ルケトン1:1よりなる現像液に45秒浸漬し、次にイ
ソプロピルアルコール中で15分間リンスして乾燥した
。電子顕微鏡を用い1万倍で観察したところ、第5図の
写真で示すように照射部が4000λ溶出しており、そ
の底部には凹凸の激しい面あれが見られた。実施例 2 実施例1と同様にポリα−シアノブチルアクリレートと
ポリα−カルバミルブチルアクリレートの共重合体を膜
厚1.0μに塗布した基板に照射電荷量5×10−5ク
ーロン/c武加速電圧15Kでビーム幅1.5μの電子
ビームを走査させた。
Thereafter, heat treatment was performed at 130° C. for 15 minutes, and then an electron beam with a beam width of 1.5 μm was scanned with an irradiation charge amount of 4×10 −6 coulombs/Cd and an acceleration voltage of 15 K. After irradiation, the substrate was taken out of the irradiation device, immersed in a developer consisting of 1:1 ethyl acetate, ethyllimethylisobutylketone for 45 seconds, and then rinsed in isopropyl alcohol for 15 minutes and dried. When observed using an electron microscope at a magnification of 10,000 times, as shown in the photograph in FIG. 5, 4000λ elution was observed in the irradiated area, and a severely uneven surface was observed at the bottom. Example 2 As in Example 1, a substrate coated with a copolymer of poly α-cyanobutyl acrylate and poly α-carbamyl butyl acrylate to a thickness of 1.0 μm was irradiated with a charge amount of 5×10 −5 coulombs/c Bu. An electron beam with a beam width of 1.5μ was scanned at an acceleration voltage of 15K.

照射後、照射装置より基板を取り出し、160℃の恒温
槽中で30分間加熱現像した。電子ビームで照射された
部分が凹部となつて基板表面が完全に露出した。このと
き、未照射部の膜厚が8200λまで減少したが、電子
顕微鏡を用い倍率1万倍で観察したところ、レジスト皮
膜及びエツジの切れは殆んどあれていなかつた。この現
像した基板を硝酸第二セリウムアンモン一過塩素酸のク
ロムエツチング液に2分間浸漬すると、800λのクロ
ム層が腐蝕され、水洗乾燥後アセトンでレジスト皮膜を
剥離しクロムマスクを得た。
After irradiation, the substrate was taken out from the irradiation device and developed by heating in a constant temperature bath at 160° C. for 30 minutes. The part irradiated with the electron beam became a recess, and the substrate surface was completely exposed. At this time, the film thickness of the unirradiated area decreased to 8200λ, but when observed using an electron microscope at a magnification of 10,000 times, there was almost no breakage in the resist film or edges. When this developed substrate was immersed in a chromium etching solution of ceric ammonium nitrate and perchloric acid for 2 minutes, the 800λ chromium layer was corroded, and after washing and drying, the resist film was peeled off with acetone to obtain a chrome mask.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレジストを各温度において加熱したときの加熱
時間及び膜厚比の関係を示すグラフ、第2図は一定温度
において各分子量のレジストを加熱したときの加熱時間
及び膜厚比の関係を示すグラフ、第3図は本発明による
現像方法による電子ビーム照射特性曲線を示すグラフ、
第4図は実施例1で得られる現像面を示す電子顕微鏡写
真(×10000)、第5図は比較例で得られる現像面
を示す電子顕微鏡写真(×10000)である。
Figure 1 is a graph showing the relationship between heating time and film thickness ratio when resist is heated at various temperatures, and Figure 2 is a graph showing the relationship between heating time and film thickness ratio when resist of each molecular weight is heated at a constant temperature. FIG. 3 is a graph showing an electron beam irradiation characteristic curve according to the developing method according to the present invention.
FIG. 4 is an electron micrograph (×10,000) showing the developed surface obtained in Example 1, and FIG. 5 is an electron micrograph (×10,000) showing the developed surface obtained in Comparative Example.

Claims (1)

【特許請求の範囲】 1 一般式: ▲数式、化学式、表等があります▼ (但し、式中Xは同一又は異なつて、シアノ基又はカル
バミル基を表わし、Rは同一又は異なつて低級アルキル
基を表わし、nは正の整数を表わす。 )で表わされるポリα−シアノアクリレート或いはポリ
α−カルバミルアクリレートもしくは両者の共重合体を
主成分とする電子ビームレジストに電子ビーム照射を施
した後加熱することによつて照射領域を揮散させてパタ
ーンを形成することを特徴とする電子ビームレジストの
熱現像方法。
[Claims] 1 General formula: ▲ Numerical formula, chemical formula, table, etc.▼ (However, in the formula, X is the same or different and represents a cyano group or a carbamyl group, and R is the same or different and represents a lower alkyl group. (where n represents a positive integer) An electron beam resist mainly composed of poly α-cyanoacrylate, poly α-carbamyl acrylate, or a copolymer of both is irradiated with an electron beam and then heated. A method for thermally developing an electron beam resist, characterized in that a pattern is formed by vaporizing an irradiated area.
JP52127970A 1977-10-25 1977-10-25 Heat development method for electron beam resist Expired JPS5929853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52127970A JPS5929853B2 (en) 1977-10-25 1977-10-25 Heat development method for electron beam resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52127970A JPS5929853B2 (en) 1977-10-25 1977-10-25 Heat development method for electron beam resist

Publications (2)

Publication Number Publication Date
JPS5461531A JPS5461531A (en) 1979-05-17
JPS5929853B2 true JPS5929853B2 (en) 1984-07-24

Family

ID=14973181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52127970A Expired JPS5929853B2 (en) 1977-10-25 1977-10-25 Heat development method for electron beam resist

Country Status (1)

Country Link
JP (1) JPS5929853B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585735A (en) * 1981-06-01 1983-01-13 Daikin Ind Ltd Manufacture of patterned resist film on substrate
JP2506800B2 (en) * 1987-07-31 1996-06-12 松下電子工業株式会社 Method of forming resist pattern
JPWO2007029810A1 (en) * 2005-09-09 2009-03-19 学校法人東京理科大学 Manufacturing method of three-dimensional mold, manufacturing method of fine processed product, manufacturing method of fine pattern molded product, three-dimensional mold, fine processed product, fine patterned molded product, and optical element

Also Published As

Publication number Publication date
JPS5461531A (en) 1979-05-17

Similar Documents

Publication Publication Date Title
JP2824350B2 (en) Device manufacturing method
US4061832A (en) Positive-working electron resists
JPH0119135B2 (en)
US4279984A (en) Positive resist for high energy radiation
JPS5929853B2 (en) Heat development method for electron beam resist
US3594243A (en) Formation of polymeric resists
JPS62247356A (en) Manufacture of evaporation photoresist of anionic polymerizable monomer and product thereof
JPS5983157A (en) Method of increasing sensitivity and contrast of positive type polymer resist
JPH0241740B2 (en)
JPS5828571B2 (en) Resist formation method for microfabrication
US4608281A (en) Improvements in sensitivity of a positive polymer resist having a glass transition temperature through control of a molecular weight distribution and prebaked temperature
JPH0693122B2 (en) Highly sensitive radiation resist
US4302529A (en) Process for developing a positive electron resist
JPH03150568A (en) Positive type electron beam resist
JPH0358104B2 (en)
JPS6227535B2 (en)
JPS60252348A (en) Formation of pattern
JPH0469937B2 (en)
JPS5859443A (en) Positive type radiation-sensitive resist material
JPS59124133A (en) Method of forming negative type resist image
JPS5999720A (en) Forming method of resist image
US4604305A (en) Improvements in contrast of a positive polymer resist having a glass transition temperature through control of the molecular weight distribution and prebaked temperature
JPS6180247A (en) Formation of micropattern
JPS6010299B2 (en) How to develop electron beam resist
JPS6259950A (en) Ionizing radiation sensitive positive type resist