JPS5929207Y2 - fluid flow control device - Google Patents

fluid flow control device

Info

Publication number
JPS5929207Y2
JPS5929207Y2 JP1540079U JP1540079U JPS5929207Y2 JP S5929207 Y2 JPS5929207 Y2 JP S5929207Y2 JP 1540079 U JP1540079 U JP 1540079U JP 1540079 U JP1540079 U JP 1540079U JP S5929207 Y2 JPS5929207 Y2 JP S5929207Y2
Authority
JP
Japan
Prior art keywords
flow rate
pressure
fluid
base
base pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1540079U
Other languages
Japanese (ja)
Other versions
JPS55117009U (en
Inventor
勝哉 伊藤
伸一 市川
章 横山
謙一 宮田
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP1540079U priority Critical patent/JPS5929207Y2/en
Publication of JPS55117009U publication Critical patent/JPS55117009U/ja
Application granted granted Critical
Publication of JPS5929207Y2 publication Critical patent/JPS5929207Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Flow Control (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【考案の詳細な説明】 この考案は流体流量制御装置に係り、特に、本の基管に
接続された複数の枝管によって流体送給する場合、例え
ば加熱炉における各バーナへの燃焼用空気流量などの制
御に適した制御装置に関する。
[Detailed description of the invention] This invention relates to a fluid flow rate control device, and in particular, when fluid is supplied through a plurality of branch pipes connected to a main pipe, for example, the flow rate of combustion air to each burner in a heating furnace is controlled. This invention relates to a control device suitable for controlling such as.

従来の加熱炉における各バーナへの燃焼用空気流量の制
御方法は、−基の送風機に接続された一本の基管に燃焼
用空気を送給してこの基管かも分岐する複数の枝管によ
って各バーナに燃焼用空気を分岐送給し、各枝管に流量
検出制御器を設けて各バーナに送給する空気流量を制御
するものであった。
The method of controlling the flow rate of combustion air to each burner in a conventional heating furnace is to supply combustion air to a single base pipe connected to a base blower, and then to multiple branch pipes that branch from this base pipe. Accordingly, combustion air was branched and fed to each burner, and each branch pipe was provided with a flow rate detection controller to control the air flow rate fed to each burner.

従って基管内の圧力が不充分になると必要充分な燃焼用
空気流量を得ることが不可能になるので、基管内の圧力
をかなり余裕をみた高圧にして燃焼用空気を送給してい
た。
Therefore, if the pressure inside the base pipe becomes insufficient, it becomes impossible to obtain a necessary and sufficient flow rate of combustion air, so the pressure inside the base pipe is set to a high pressure with a considerable margin to supply combustion air.

このため従来は送風機動力の有効利用率が低く、エネル
ギ損失が犬であった。
For this reason, in the past, the effective utilization rate of blower power was low and energy loss was significant.

この考案はこのような従来の問題点を解消すべく創案さ
れたもので、流体機械動力の有効利用率の高い流体流量
制御装置を提供することを目的とする。
This invention was devised to solve these conventional problems, and aims to provide a fluid flow rate control device with a high effective utilization rate of fluid mechanical power.

この考案に係る流体流量制御装置は、流量検出制御器の
流量制御状況に基づいて各枝管の抵抗特性を求めるとと
もにこの抵抗特性に基づいて所定流量を得るための基管
向流体圧力を求め、さらに各枝管に対応した基管向流体
圧力のうち最高圧力を求め、基管向流体圧力をこの最高
圧力に一致させるように流体機械を制御するものである
The fluid flow rate control device according to this invention determines the resistance characteristics of each branch pipe based on the flow rate control status of the flow rate detection controller, and determines the fluid pressure toward the base pipe to obtain a predetermined flow rate based on the resistance characteristics. Furthermore, the highest pressure among the fluid pressures toward the base tube corresponding to each branch pipe is determined, and the fluid machine is controlled so as to make the fluid pressure toward the base tube coincide with this maximum pressure.

次にこの考案に係る流体流量制御装置の、加熱炉におけ
る各バーナへの燃焼用空気流量の制御に関する一実施例
を図面に基づいて説明する。
Next, an embodiment of the fluid flow rate control device according to the invention for controlling the flow rate of combustion air to each burner in a heating furnace will be described with reference to the drawings.

第1回において、送風機1かも一本の空気予熱器Rを有
する基管2を介して複数の枝管3に燃焼用空気Aを送り
、この枝管3から各帯バーナ(図示省略)に燃焼用空気
Aを供給する際、流量検出制御器4によって各枝管3に
おける流量制御を行うとともに、回転数制御器5によっ
て送風機10回転数を制御して基管2内の燃焼用空気A
の圧力を制御し2ている8 流量検出制御器4は流量検出器6および流量制御弁7を
備え、流量検出器6において実測した流量を所定流量に
一致させるように弁7の開度を調節する。
In the first time, the blower 1 sends combustion air A to multiple branch pipes 3 through the base pipe 2 having one air preheater R, and from this branch pipe 3 to each band burner (not shown) burns. When supplying the combustion air A, the flow rate detection controller 4 controls the flow rate in each branch pipe 3, and the rotation speed controller 5 controls the rotation speed of the blower 10 to supply the combustion air A in the base pipe 2.
The flow rate detection controller 4 includes a flow rate detector 6 and a flow rate control valve 7, and adjusts the opening degree of the valve 7 so that the flow rate actually measured by the flow rate detector 6 matches a predetermined flow rate. do.

基管2には圧力検出器8が設けられ、この圧力検出器8
は前記回転数制御器5に接続されている。
A pressure detector 8 is provided in the base pipe 2, and this pressure detector 8
is connected to the rotation speed controller 5.

回転数制御器5は、圧力検出器によって実測された基管
2内の空気Aの圧力Po、および、各枝管3に所定流量
を送給するための基管2内の所要圧力の最高値Pmax
との差△P (−Pmax−P o )に基づいて、送
風機1を駆動するモータ9の回転数を調節する。
The rotation speed controller 5 controls the pressure Po of the air A in the base pipe 2 actually measured by the pressure detector, and the maximum value of the required pressure in the base pipe 2 to supply a predetermined flow rate to each branch pipe 3. Pmax
The rotation speed of the motor 9 that drives the blower 1 is adjusted based on the difference ΔP (-Pmax-P o ).

流量検出制御器4には、弁7の開度に応じた枝管3の抵
抗特性を求めるとともにこの抵抗特性に基づいて所定流
量を得るための基管2内の空気圧力Pを算出する演算器
10が接続されている。
The flow rate detection controller 4 includes a computing unit that determines the resistance characteristic of the branch pipe 3 according to the opening degree of the valve 7 and calculates the air pressure P in the base pipe 2 to obtain a predetermined flow rate based on this resistance characteristic. 10 are connected.

この演算を実行するために、演算器10には、バーナな
どを含めた各枝管3の本来の抵抗特性、弁7の開度に応
じた弁7の抵抗特性、所定流量などが入力されている。
In order to execute this calculation, the original resistance characteristics of each branch pipe 3 including the burner etc., the resistance characteristics of the valve 7 according to the opening degree of the valve 7, a predetermined flow rate, etc. are input into the calculation unit 10. There is.

演算器10には選択回路11が接続され、各枝管3につ
いての圧力Pはこの選択回路11に入力されている。
A selection circuit 11 is connected to the calculator 10, and the pressure P for each branch pipe 3 is input to this selection circuit 11.

選択回路11は各枝管3についての圧力Pを比較して最
高圧力Pmaxを求め、このPmaxを前記回転数制御
器5に入力している。
The selection circuit 11 compares the pressures P for each branch pipe 3 to determine the maximum pressure Pmax, and inputs this Pmax to the rotation speed controller 5.

圧力検出器8および選択回路11にはさらに警報器12
が接続され、警報器12には△Pを算出してこの△Pが
一定の設定値を越えたときには空気流量制御不能として
バーナへの重油供給を停止するための指令信号Sを出力
する。
The pressure detector 8 and the selection circuit 11 further include an alarm 12.
is connected to the alarm 12, which calculates ΔP and outputs a command signal S to stop the supply of heavy oil to the burner, assuming that the air flow rate cannot be controlled when ΔP exceeds a certain set value.

回転数制御器5は圧力差△Pを求めるとともにこの△P
を零にすべく送風機1の回転数を制御し、これによって
必要最小限の圧力Poによって、すなわち必要最小限の
送風機1の動力によって空気の送給を行う。
The rotation speed controller 5 calculates the pressure difference △P and also calculates the pressure difference △P.
The rotational speed of the blower 1 is controlled to make it zero, and air is thereby fed with the minimum necessary pressure Po, that is, with the minimum necessary power of the blower 1.

従って送風機動力の利用率を最大限に高め得る。Therefore, the utilization rate of blower power can be maximized.

そして燃焼用空気Aの所要流量QCNm″/h)とこの
燃焼用空気Aを送給するためにモータ9が消費する電力
E(KW)との関係は第2図に示すようになり、本実施
例による場合(図中実線で示す。
The relationship between the required flow rate QCNm''/h of combustion air A and the electric power E (KW) consumed by the motor 9 to feed this combustion air A is as shown in FIG. Case according to example (shown by solid line in the figure).

)には従来例による場合(図中破線で示す。) is based on the conventional example (indicated by a broken line in the figure).

)よりもはるかに消費電力Eが少ないことが分る。), it can be seen that the power consumption E is much lower than that of

なおこの実施例は加熱炉バーナへの燃焼用空気の送給に
関するものであるが、他の流体送給にも本考案を適用し
得る。
Although this embodiment relates to the supply of combustion air to a heating furnace burner, the present invention can also be applied to the supply of other fluids.

また流体機械としては遠心型空気機械に限定されるもの
ではなく、容積型の空気機械、遠心型また容積型の水力
機械をも採用し得る。
Furthermore, the fluid machine is not limited to a centrifugal air machine, but may also be a positive displacement air machine, a centrifugal type, or a positive displacement hydraulic machine.

ただし圧力制御を行う必要から、容積型の流体機械につ
いてはサージタンクを併用すべきである。
However, due to the need for pressure control, a surge tank should be used in conjunction with positive displacement fluid machines.

前述のとおりこの考案に係る流体流量制御装置は、流量
検出制御器の流量制御状況に基づいて各枝管の抵抗特性
を求めるとともにこの抵抗特性に基づいて所定流量を得
るための基管向流体圧力を求め、さらに各枝管に対応し
た基管向流体圧力のうち最高圧力を求め、基管向流体圧
力をこの最高圧力に一致さそるように流体機械を制御す
るので。
As mentioned above, the fluid flow control device according to this invention determines the resistance characteristics of each branch pipe based on the flow rate control status of the flow rate detection controller, and calculates the fluid pressure in the base pipe direction based on this resistance property to obtain a predetermined flow rate. Then, the highest pressure among the base pipe direction fluid pressures corresponding to each branch pipe is determined, and the fluid machine is controlled so that the base pipe direction fluid pressure matches this maximum pressure.

流体機械動力の有効利用率を高め得るという優れた効果
を有する。
This has the excellent effect of increasing the effective utilization rate of fluid mechanical power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案に係る流体流量制御装置の一実施例を
示すブロック図、第2図は燃焼用空気の所要流量Qと消
費電力Eの関係について同実施例(実線)と従来例(破
線)を比較するグラフである。 1・・・・・・送風機、2・・・・・・基管、3・・・
・・・枝管、4・・・・・・流量検出制御器、5・・・
・・・回転数制御器、6・・・・・・流量検出器、7・
・・・・・流量制御弁、8・・・・・・圧力検出器、9
・・・・・・モータ、10・・・・・・演算器、11・
・・・・・警報器。 A・・・・・・燃焼用空気、R・・・・・・空気予熱器
、P o 、 P 、 Pmax・・・・・・圧力、S
・・・・・・指令信号。
Fig. 1 is a block diagram showing an embodiment of the fluid flow rate control device according to this invention, and Fig. 2 shows the relationship between the required flow rate Q of combustion air and the power consumption E in the embodiment (solid line) and the conventional example (broken line). ) is a graph comparing 1...Blower, 2...Base pipe, 3...
...Branch pipe, 4...Flow rate detection controller, 5...
...Rotation speed controller, 6...Flow rate detector, 7.
...Flow control valve, 8...Pressure detector, 9
...Motor, 10...Arithmetic unit, 11.
...Alarm. A...Combustion air, R...Air preheater, P o, P, Pmax...Pressure, S
・・・・・・Command signal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一基の流体機械によって流体が送給される一本の基管に
複数の枝管を接続し、各枝管には各枝管の流体流量を所
定流量に近づけるべく流体流量を制御する流量検出制御
器を設け、この流量検出制御器には流量検出制御器の流
量制御状況に基づいて各枝管の抵抗特性を求めるととも
にこの抵抗特性に基づいて所定流量を得るための基管内
所要流体圧力を求める演算器を接続し、この演算器には
基管内所要流体圧力のうちの最高圧力を求める選択回路
を接続し、前記基管には基管向流体圧力を検出する圧力
検出器を設け、この圧力検出器および前記選択回路には
前記最高圧力と基管向流体圧力の実測値とを比較して基
管向流体圧力を前記最高圧力に一致させろように前記流
体機械を接続しである流体量制御装置。
Multiple branch pipes are connected to a single base pipe to which fluid is supplied by a single fluid machine, and each branch pipe has flow rate detection that controls the fluid flow rate to bring the fluid flow rate of each branch pipe close to a predetermined flow rate. A controller is provided, and the flow rate detection controller determines the resistance characteristics of each branch pipe based on the flow rate control status of the flow rate detection controller, and calculates the required fluid pressure in the base pipe to obtain a predetermined flow rate based on this resistance property. A calculation unit for determining the pressure is connected, a selection circuit for determining the highest pressure among the required fluid pressures in the base pipe is connected to the calculation unit, a pressure detector is provided in the base pipe for detecting the fluid pressure in the direction of the base pipe, and this The fluid machine is connected to the pressure detector and the selection circuit so as to compare the maximum pressure with the actual measured value of the base fluid pressure and make the base fluid pressure match the maximum pressure. Control device.
JP1540079U 1979-02-08 1979-02-08 fluid flow control device Expired JPS5929207Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1540079U JPS5929207Y2 (en) 1979-02-08 1979-02-08 fluid flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1540079U JPS5929207Y2 (en) 1979-02-08 1979-02-08 fluid flow control device

Publications (2)

Publication Number Publication Date
JPS55117009U JPS55117009U (en) 1980-08-18
JPS5929207Y2 true JPS5929207Y2 (en) 1984-08-22

Family

ID=28837028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1540079U Expired JPS5929207Y2 (en) 1979-02-08 1979-02-08 fluid flow control device

Country Status (1)

Country Link
JP (1) JPS5929207Y2 (en)

Also Published As

Publication number Publication date
JPS55117009U (en) 1980-08-18

Similar Documents

Publication Publication Date Title
CN106225249A (en) Gas heater and safety control system thereof and method
JPS5929207Y2 (en) fluid flow control device
JPS60222511A (en) Thermal power generating equipment
JPH0573917B2 (en)
JPH05248646A (en) Protective device for boiler circulation pump
JP3628353B2 (en) Cremation furnace exhaust system
JPH05118280A (en) Operation control system for variable speed water supply device
JPS6149519B2 (en)
JPH0324591B2 (en)
JPH0410487Y2 (en)
JPS6332224A (en) Heat supply system
JP2710125B2 (en) Control device for excess steam in steam separator of fuel cell
JP2553000Y2 (en) Multi-can installation of vacuum hot water boiler
JPS59184921A (en) Method and device for controlling fluid pressure
SU567829A1 (en) Method of regulating a group of heating turbines
JP2827923B2 (en) Backup control method in case of temperature detector failure in fluid number control system
JP3074334B2 (en) How to operate the pump
RU1783169C (en) Method and device for controlling gas system compressors
JPH08121793A (en) Heat insulation operating method for circulation type water heater
JPH0587325A (en) Control of steam pressure for soot blower
JPH08159554A (en) Device for automatically controlling number of thermal medium boilers
JPS5822419A (en) Controlling method for rotational frequency of feed water pump motor for water pipe boiler
JP2525914B2 (en) Controller for electric mixing valve in water heater
JPS6311545Y2 (en)
JPH0743186B2 (en) Control method for multiple heat source units