JPS5929087A - Water treatment device - Google Patents

Water treatment device

Info

Publication number
JPS5929087A
JPS5929087A JP57138478A JP13847882A JPS5929087A JP S5929087 A JPS5929087 A JP S5929087A JP 57138478 A JP57138478 A JP 57138478A JP 13847882 A JP13847882 A JP 13847882A JP S5929087 A JPS5929087 A JP S5929087A
Authority
JP
Japan
Prior art keywords
tank
aeration tank
vertical aeration
treated
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57138478A
Other languages
Japanese (ja)
Other versions
JPS6136473B2 (en
Inventor
Masayuki Odasawa
織田沢 正幸
Tadashi Hitosugi
一杉 忠
Masato Fujino
正人 藤野
Shinichi Endo
伸一 遠藤
Tetsuhiro Yamane
山根 哲博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP57138478A priority Critical patent/JPS5929087A/en
Publication of JPS5929087A publication Critical patent/JPS5929087A/en
Publication of JPS6136473B2 publication Critical patent/JPS6136473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To provide a water treatment device which enables economical operation according to the fluctuation in the load of a liquid mixture by disposing a shallow vertical aeration tank and a deep vertical aeration tank in series and constituting the same in such a way that the original water to be treated and the return sludge from a flotation tank can be alternately supplied to both tanks. CONSTITUTION:A liquid mixture composed of the original water to be treated and activated sludge is flowed in series through the 1st vertical aeration tank 1 and the 2nd vertical aeration tank 2 or the liquid mixture is circulated only in the tank 2 in this water treatment device. When the load of the liquid mixture is large, the liquid mixture is flowed in series through the tank 1 and the tank 2. The water to be treated is supplied onto the tank 1 in this case, and the water is treated with the return sludge which is kept supplied to the tank 1 and the tank 2. The concn. of the substrate in the tank 1 is high and the amt. of dissolved oxygen is large while the concn. of the substrate is low in the tank 2; therefore, the high decomposing power for the substrate is obtd. over the entire part of the device in the case of using both tanks. The high treatment effect is thus obtd. with the whole device even if the tank 1 is constituted shallow.

Description

【発明の詳細な説明】 この発明は水処理装置、より詳細には竪型曝気槽を備え
た水処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water treatment device, and more particularly to a water treatment device equipped with a vertical aeration tank.

下水、工場排水を生物学的に処理浄化するための装置と
して、所謂ディープシャフト方式による水処理装置が知
られている。この装置は50〜150mの深さをもつ竪
型の曝気槽(ディープシャフト)を有し、この竪型曝気
槽は槽の上部及び下部で連通する上昇流路及び下降流路
を有し、且つこの流路に散気装置を配したものであり、
混合液(「被処理原水+活性汚泥」以下同様とする)を
下降流路から上昇流路に循環させ生物学的処理を行うも
のである。ところで、このような竪型曝気槽の処理容量
は、汚濁濃度と水量の積としての汚濁負荷の最大値に基
づいて設定する必要がある。また、混合液における汚濁
負荷は、例えば都市下水などの場合、季節的に大幅に変
化し、また工場排水の場合には、操業の有無等に応じて
経済的に大幅に変化する。従って、汚濁負荷が低下ずれ
ば、それに応じて混合液の槽内における絶対循環量を少
々くして処理を行えばよい訳であるが、生物学的処理を
継続させるためには、含酸素ガスを下降流路で上昇させ
ない速度を限界にして混合液を循環流動させる必要があ
り、このため処理容量の大きい装置では、汚濁負荷の大
幅な低下にかかわらず必要以上の量の混合液を循環させ
なければならず、このための動力の無駄な消費が極めて
不経済であった、このようなことから大容量の竪型曝気
槽の代わりに、これよりも小さい容量の2つの竪型曝気
相を直列に接続した形式の装置が特開昭55−1398
98号として提案されている、この装置は2つの竪型曝
気槽を適宜に使い分けることにより汚濁負荷に対応した
処理を行うというものであり、装置の経済運転を行うこ
とができるという利点を有している。
2. Description of the Related Art As a device for biologically treating and purifying sewage and industrial wastewater, a water treatment device using a so-called deep shaft method is known. This device has a vertical aeration tank (deep shaft) with a depth of 50 to 150 m, and this vertical aeration tank has an upward flow path and a downward flow path that communicate at the upper and lower parts of the tank, and This flow path is equipped with an air diffuser,
Biological treatment is performed by circulating a mixed solution (“raw water to be treated + activated sludge”, hereinafter the same shall apply) from the downward flow path to the upward flow path. By the way, the processing capacity of such a vertical aeration tank needs to be set based on the maximum value of pollution load as the product of pollution concentration and water volume. In addition, the pollution load in the mixed liquid, for example in the case of urban sewage, changes significantly seasonally, and in the case of industrial wastewater, it changes significantly economically depending on the presence or absence of operation. Therefore, if the pollution load decreases, the absolute circulation rate of the mixed liquid in the tank can be reduced slightly, but in order to continue the biological treatment, it is necessary to increase the oxygen-containing gas. It is necessary to circulate the mixed liquid at a speed that does not increase in the downward flow path, and for this reason, in equipment with a large processing capacity, it is necessary to circulate a larger amount of the mixed liquid than necessary even though the pollution load is significantly reduced. Therefore, instead of a large-capacity vertical aeration tank, two vertical aeration tanks of smaller capacity were connected in series. A type of device connected to JP-A-55-1398
This device, proposed as No. 98, performs treatment according to the pollution load by appropriately using two vertical aeration tanks, and has the advantage of being able to operate the device economically. ing.

本発明はこのような従来装置の改良として提案されたも
ので、上記特開昭55−139898号の内容を更に一
歩推し進め、建設コスト面や処理効率面でも大きな利点
が得られる装置を提供せんとするものである。
The present invention was proposed as an improvement on such conventional equipment, and aims to take the content of the above-mentioned Japanese Patent Application Laid-Open No. 55-139898 one step further and provide an equipment that provides significant advantages in terms of construction cost and processing efficiency. It is something to do.

このため本発明は、第1の竪型曝気槽、第2の竪型曝気
槽及び浮上槽からなり、第1の竪型曝気槽を浅く、第2
の竪型曝気槽を深く構成し、かかる画曝気槽を混合液が
第1の竪型曝気槽上部から第2の竪型曝気槽にオーバー
フローし得るように直列的に接続し、前記浮上槽への流
出導管の流入口を第2の竪型曝気槽の上昇流路の途中に
位置せしめ、第1の竪型曝気槽と第2の竪型曝気槽にそ
れぞれ被処理原水と浮上槽からの返送汚泥を供給する供
給系を設け、これら供給系には第1の竪型曝気槽及び第
2の竪型曝気槽に対して択一的に被処理原水及び返送汚
泥を供給し得る流路切換機構を付設したことをその基本
的特徴とする。
For this reason, the present invention consists of a first vertical aeration tank, a second vertical aeration tank, and a flotation tank, and the first vertical aeration tank is shallow and the second vertical aeration tank is shallow.
The vertical aeration tanks are configured deeply, and these aeration tanks are connected in series so that the mixed liquid can overflow from the upper part of the first vertical aeration tank to the second vertical aeration tank, and the floating tank is connected to the floating tank. The inlet of the outflow conduit is located in the middle of the ascending flow path of the second vertical aeration tank, and raw water to be treated and return from the flotation tank are sent to the first vertical aeration tank and the second vertical aeration tank, respectively. A supply system for supplying sludge is provided, and these supply systems include a flow path switching mechanism capable of selectively supplying raw water to be treated and return sludge to the first vertical aeration tank and the second vertical aeration tank. Its basic feature is that it has been attached.

混合液の汚濁基質濃度が高い範囲では、活性汚泥の基質
分解速度が大きく、その場合には液中の酸素濃度が高く
なくても微生物の酸素吸収速度を大きく保つことができ
るため見掛けの基質分解速度が増加し、効率的な処理が
行える。一方、混合液の基質濃度が小さくなり、処理水
に近い状態まで浄化されると、微生物体内での基質分解
速度が小さくなり、見掛けの基質分解速度を大きくする
ためには液中の酸素濃度を高めなければならず、このた
めには槽を深くすることによって溶存酸素量を増加させ
る手段が有効となる、本発明者等の研究によれば、上記
2つの要素を利用し、しかも活性汚泥の回収・分離機構
として特定のものを用いることにより、従来装置と同様
の処理能力及び負荷変動対応性を維持したまま、曝気槽
建設上の負荷を合理的に軽減できることが判明した。
In the range where the polluted substrate concentration of the mixed solution is high, the substrate decomposition rate of activated sludge is high, and in that case, even if the oxygen concentration in the liquid is not high, the oxygen absorption rate of microorganisms can be kept high, so the apparent substrate decomposition is Increased speed and efficient processing. On the other hand, when the substrate concentration of the mixed liquid decreases and it is purified to a state close to that of treated water, the rate of substrate decomposition within the microorganisms decreases, and in order to increase the apparent rate of substrate decomposition, the oxygen concentration in the liquid must be increased. According to the research of the present inventors, it is effective to increase the amount of dissolved oxygen by deepening the tank. It has been found that by using a specific collection/separation mechanism, the load on the construction of the aeration tank can be reasonably reduced while maintaining the same throughput and load fluctuation compatibility as conventional equipment.

即ち、2つの竪型曝気槽を直列に接続させる方式におけ
る入側の曝気槽(第1の槽)では、汚濁基質濃度が高い
ので槽を深くして溶存酸素濃度を高くしなくても見掛け
の基質分解速度を高くできるととから、これを浅い曝気
槽とし、また出側の曝気槽(第2の槽)では、汚瀾基質
濃度が低いため溶存酸素量を多く必要とするところから
、高い溶存酸素濃度が得られる深い曝気槽とし、しかも
特に、処理水の槽外への排出及び活性汚泥分離のための
機構として、高濃度の活性汚泥を回収してこれを曝気槽
に供給することができる特開昭56−110193号に
みられるような方式による流出導管及び浮上槽を採用す
ることにより、装置全体の処理能力を確保しつつ、入側
の槽(第1の槽)における建設上の負担を合理的に軽減
し得るようにしたものである。
In other words, in the inlet aeration tank (first tank) in a system in which two vertical aeration tanks are connected in series, the concentration of polluted substrate is high, so even if the tank is not deepened to increase the dissolved oxygen concentration, the apparent In order to increase the rate of substrate decomposition, this is a shallow aeration tank, and in the outlet aeration tank (second tank), the concentration of pollutant substrate is low, so a large amount of dissolved oxygen is required, so a shallow aeration tank is used. It is a deep aeration tank that can obtain a dissolved oxygen concentration, and in particular, as a mechanism for discharging treated water to the outside of the tank and separating activated sludge, it is possible to collect high-concentration activated sludge and supply it to the aeration tank. By adopting the outflow conduit and flotation tank using the method shown in Japanese Patent Application Laid-Open No. 56-110193, the treatment capacity of the entire device is secured, while the construction of the inlet tank (first tank) is This is designed to reasonably reduce the burden.

以下、本発明を図面に示すものについて説明する。第1
図は本発明の基本構成を示すもので、(1)は第1の竪
型曝気槽、(2)は第2の竪型曝気槽、(3)は浮上槽
であり、第1の槽(1)と第2の槽(2)とは、第1の
槽(1)上部から第2の槽(2)に混合液がオーパーフ
ローし得るよう直列的に配設されている。
Hereinafter, the present invention will be described with reference to the drawings. 1st
The figure shows the basic configuration of the present invention, in which (1) is a first vertical aeration tank, (2) is a second vertical aeration tank, (3) is a flotation tank, and (3) is a flotation tank. 1) and the second tank (2) are arranged in series so that the mixed liquid can overflow from the upper part of the first tank (1) to the second tank (2).

上記第1の竪型曝気槽(1)は上記開放型のヘッドタン
ク(4)、下降流路(5)及び上昇流路(6)を備えて
いる。この曝気槽(1)は上記第2の槽(2)よりも浅
く構成されている。下降流路(5)及び上昇流路(6)
には散気装置(7)(7′)が配設され、液中に酸素含
有ガスを供給する。上昇流路(6)の散気装置(7′)
はその上部の流路をエアリフトポンプとして作用させる
The first vertical aeration tank (1) includes the open head tank (4), a downward flow path (5), and an upward flow path (6). This aeration tank (1) is configured to be shallower than the second tank (2). Downflow path (5) and upflow path (6)
A diffuser (7) (7') is installed in the tank to supply oxygen-containing gas into the liquid. Diffuser (7') for ascending channel (6)
The upper channel acts as an air lift pump.

上記第2の竪型曝気槽(2)は気密型のヘッドタンク(
8)、下降流路(9)及び上昇流路(10)を備えてい
る。この曝気槽(2)は液中の溶存酸素量を大きく取る
ため深く構成され、第1の槽と同様、下降流路(9)及
び上昇流路(10)の途中に散気装置(11)(11)
が配置されている。散気装置(11)はその上部の流路
をエアリフトポンプとして作用させる。
The second vertical aeration tank (2) is an airtight head tank (
8), a downward flow path (9) and an upward flow path (10). This aeration tank (2) is deeply configured to increase the amount of dissolved oxygen in the liquid, and like the first tank, an aeration device (11) is installed in the middle of the descending channel (9) and the ascending channel (10). (11)
is located. The air diffuser (11) causes its upper flow path to function as an air lift pump.

また上記浮上槽(3)は活性汚泥を処理水から浮上分離
させこれを回収する機能を有するものであり、前記第2
の槽(2)から流出導管(12)が導かれ、且つその流
出導管(17)の流入口は第2の槽の上昇流路(10)
の途中に位置せしめられている。上記浮上槽(3)は曝
気槽内で液中に溶存していた気体が、微細な気泡となっ
て汚泥に付着し、汚泥に浮力を働かせることを利用する
ものであり、このため流出導管(13)の流入口を上昇
流路(10)の途中に位置せしめ、処理水を溶存気体量
が未だ多い状態で浮上槽(3)に流出せしめるものであ
る。なお、一般にこの浮上槽(3)は槽内に沈降した活
性汚泥を回収するための機能をも備えている。上記第2
の竪型曝気槽(2)のヘッドタンクは、本実施例では気
密型となっている。このように気密型とすることにより
、槽内の混合液が散気装置(11)(11′)から放出
される酸素含有ガスにより加圧され、その酸素溶存濃度
が高められる。なお、このヘッドタンクは第1の槽と同
様、上部開放型とすることができることは言うまでもな
い。
Further, the flotation tank (3) has a function of floating and separating activated sludge from the treated water and recovering the same.
An outflow conduit (12) is led from the second tank (2), and the inlet of the outflow conduit (17) is connected to the ascending channel (10) of the second tank.
It is located in the middle of. The flotation tank (3) utilizes the fact that the gas dissolved in the liquid in the aeration tank forms fine bubbles and adheres to the sludge, exerting buoyancy on the sludge. The inlet of 13) is located in the middle of the ascending channel (10), and the treated water is allowed to flow out into the flotation tank (3) while still containing a large amount of dissolved gas. Note that this flotation tank (3) generally also has a function for recovering activated sludge that has settled within the tank. 2nd above
The head tank of the vertical aeration tank (2) is of an airtight type in this embodiment. By making the tank airtight, the mixed liquid in the tank is pressurized by the oxygen-containing gas discharged from the diffuser (11) (11'), and its dissolved oxygen concentration is increased. It goes without saying that this head tank can be of an open-top type like the first tank.

第1の槽(1)及び第2の槽(2)にはそれぞれ原水を
供給し得るようになっている。本発明では、基本的に汚
濁負荷が大きい重合には両槽を用い、また汚濁負荷が小
さい場合には第2の槽(2)を用いるものであり、従っ
て前者の場合には第1の槽(1)に、また後者の場合に
は第2の槽にそれぞれ原水が供給され得るようになって
いる。また、浮上槽(3)で回収された返送汚泥も第1
及び第2の槽(1)及び(2)にそれぞれ供給され得る
ようになっている。従って、これら原水及び返送汚泥の
供給系には、両槽のいずれかに対してそれらを択一的に
供給し得るようにするための流路切換機構(図示せず)
が付設されている。
Raw water can be supplied to the first tank (1) and the second tank (2), respectively. In the present invention, both tanks are basically used for polymerization with a large pollution load, and the second tank (2) is used when the pollution load is small. Therefore, in the former case, the first tank (2) is used. (1), and in the latter case, the raw water can be supplied to the second tank. In addition, the return sludge collected in the flotation tank (3) is also
and second tanks (1) and (2), respectively. Therefore, the supply system for these raw water and return sludge is equipped with a flow path switching mechanism (not shown) to enable them to be alternatively supplied to either of the two tanks.
is attached.

本発明における竪型曝気槽の深さは、深さの大きい第2
の槽(2)で100m以上であることが好ましい。また
深さの小さい第1の槽(1)は50m以上100m未満
の範囲で選定することが可能である。また曝気槽中の気
体溶存量は深さ60〜70mで最大となり、従って流出
導管(12)の流入口は、この深さに位置せしめられる
ことが好ましい。なお、(13)は散気用のコンプレッ
サである。
The depth of the vertical aeration tank in the present invention is determined by the depth of the second
It is preferable that the tank (2) is 100 m or more. Further, the first tank (1) having a small depth can be selected in a range of 50 m or more and less than 100 m. Further, the amount of dissolved gas in the aeration tank is at its maximum at a depth of 60 to 70 m, and therefore the inlet of the outflow conduit (12) is preferably located at this depth. Note that (13) is a compressor for aeration.

第2図は第1図の基本構成に基づく、より具体的な実施
例を示すもので、第2の槽(2)への混合液の流入導管
(14)の先端は槽の途中でU字状に立上がり、その流
出口(141)が上昇流路(10)内に位置している。
Fig. 2 shows a more specific embodiment based on the basic configuration shown in Fig. 1, in which the tip of the inflow conduit (14) for the mixed liquid into the second tank (2) has a U-shape in the middle of the tank. The outlet (141) is located in the ascending channel (10).

より詳細には、流出口(141)は流出導管(12)の
流入口(121)よりも上方に位置している。
More specifically, the outlet (141) is located above the inlet (121) of the outlet conduit (12).

(15)は混合槽であり、この混合槽(15)で、第1
の槽(1)からのオーバーフロー混合液(又は原水)と
浮上槽(3)からの活性汚泥とが混合せしめられ、流入
導管(14)を通じて第2の槽(2)に供給される。こ
のため混合槽(15)には第1の槽(1)からのオーバ
ーフロー混合液、原水及び浮上槽(3)からの返送汚泥
をそれぞれ供給し得るようになっている。なお本実施例
における原水及び返送汚泥の供給系についても、第1及
び第2の槽に対してそれらを択一的に供給することがで
きる流路切換機構(図示せず)が付設されていることは
言うまでもない。
(15) is a mixing tank, and in this mixing tank (15), the first
The overflow mixture (or raw water) from the first tank (1) and the activated sludge from the flotation tank (3) are mixed and fed to the second tank (2) through the inlet conduit (14). Therefore, the overflow mixed liquid from the first tank (1), raw water, and return sludge from the flotation tank (3) can be supplied to the mixing tank (15), respectively. Note that the supply system for raw water and return sludge in this embodiment is also equipped with a flow path switching mechanism (not shown) that can selectively supply them to the first and second tanks. Needless to say.

また、上昇流路側の散気装置(10′)は、流入導管(
14)のU字状に立上がった先端部内に配設されている
In addition, the air diffuser (10') on the upward flow path side is connected to the inflow conduit (10').
14) is disposed within the U-shaped upright tip.

以上のような本発明の水処理装置によれば、第1の竪型
曝気槽(1)及び第2の竪型曝気槽(2)を負荷変動に
対応させて適宜使い分けつつ水処理を行うもので、主要
な使用態様としては混合液を第1の槽(1)及び第2の
槽(2)に亘って直列的に流■させる態様、及び第2の
槽(2)のみで混合液を循環させる使用態様がある。ま
ず、混合液の負荷が大きいときは、上記第1の槽(1)
及び第2の槽(2)に亘って直列的に流動させるもので
あり、この場合には第1の槽(1)だけに被処理原水を
供給し、返送汚泥は第1及び第2の槽(1)及び(2)
に供給しつつ処理を行う、このように第1及び第2の槽
を直列的に使用する場合、第1の槽(1)では基質濃度
が高く、また第2の槽(2)では基質濃度が低い代わり
に溶存酸素量が多いため、装置全体として、高い基質分
解能力を得ることができ、このため第1の槽(1)が浅
く構成されているにもかかわらず装置全体で高い処理効
率を得ることができる。
According to the water treatment device of the present invention as described above, water treatment is performed while appropriately using the first vertical aeration tank (1) and the second vertical aeration tank (2) in response to load fluctuations. The main modes of use are to flow the mixed liquid in series across the first tank (1) and the second tank (2), and to flow the mixed liquid only in the second tank (2). There is a way to use it in circulation. First, when the load of the mixed liquid is large, the first tank (1)
In this case, the raw water to be treated is supplied only to the first tank (1), and the returned sludge is passed through the first and second tanks. (1) and (2)
When the first and second tanks are used in series in this way, the substrate concentration is high in the first tank (1), and the substrate concentration is low in the second tank (2). Because the amount of dissolved oxygen is high at the expense of low oxygen content, the device as a whole can achieve high substrate decomposition capacity, and therefore the entire device has high processing efficiency despite the shallow structure of the first tank (1). can be obtained.

また、混合液の負荷が小さいときには、第1の槽(1)
への被処理原水及び返送汚泥への供給を停止し、第2の
槽(2)に対してのみこれらを供給しつつ処理を行うこ
とができ、この場合には深い曝気槽(2)と浮上槽(3
)との組み合せにより、高い溶存酸素量と活性汚泥濃度
の下に効果的な処理を行うことができる。
In addition, when the load of the mixed liquid is small, the first tank (1)
It is possible to stop the supply of raw water to be treated and return sludge to the second tank (2) and carry out treatment while supplying these only to the second tank (2). In this case, the deep aeration tank (2) and the floating Tank (3
), it is possible to perform effective treatment under high dissolved oxygen content and activated sludge concentration.

以上述べた本発明によれば、混合液の負荷変動に応じて
経済的な運転が可能であり、しかも処理能力を十分確保
しつつ第1の槽を浅く構成せしめることができるので、
槽の深さに大きく依存する建設コストを従来のものに較
べ改善することができるという効果がある。
According to the present invention described above, economical operation is possible according to load fluctuations of the mixed liquid, and the first tank can be made shallow while ensuring sufficient processing capacity.
This has the effect that the construction cost, which largely depends on the depth of the tank, can be improved compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本構成を示す説明図である。第2図
は第1図の基本構成に基づく、より共体的な実施例を示
す説明図である。 図において、(1),(2)は竪型曝気槽、(3)は浮
上槽、(12)は流出導管を各示す。
FIG. 1 is an explanatory diagram showing the basic configuration of the present invention. FIG. 2 is an explanatory diagram showing a more integrated embodiment based on the basic configuration of FIG. 1. In the figure, (1) and (2) indicate a vertical aeration tank, (3) a flotation tank, and (12) an outflow conduit.

Claims (1)

【特許請求の範囲】[Claims] 第1の竪型吸気槽、第2の竪型曝気槽及び浮上槽からな
り、第1の竪型曝気槽を浅く第2の竪型曝気槽を深く構
成し、これら両曝気槽を混合液が第1の竪型曝気槽上部
から第2の竪型曝気槽にオーバーフローし得るように直
列的に接続し、前記浮上槽への流出導管の流入口を第2
の竪型曝気槽の上昇流路の途中に位置せしめ、第1の竪
型曝気槽と第2の竪型曝気槽にそれぞれ被処理原水と浮
上槽からの返送汚泥とを供給する供給系を設け、これら
供給系には第1の竪型曝気槽及び第2の竪型曝気槽に対
して択一的に被処理原水及び返送汚泥を供給し得る流路
切換機沿を付設してなる水処理装置。
Consisting of a first vertical suction tank, a second vertical aeration tank, and a flotation tank, the first vertical aeration tank is shallow and the second vertical aeration tank is deep. The upper part of the first vertical aeration tank is connected in series to allow overflow to the second vertical aeration tank, and the inlet of the outflow conduit to the flotation tank is connected to the second vertical aeration tank.
A supply system is provided, which is located in the middle of the upward flow path of the vertical aeration tank, and supplies raw water to be treated and sludge returned from the flotation tank to the first vertical aeration tank and the second vertical aeration tank, respectively. , these supply systems are equipped with flow path switching machines that can selectively supply raw water to be treated and return sludge to the first vertical aeration tank and the second vertical aeration tank. Device.
JP57138478A 1982-08-11 1982-08-11 Water treatment device Granted JPS5929087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57138478A JPS5929087A (en) 1982-08-11 1982-08-11 Water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138478A JPS5929087A (en) 1982-08-11 1982-08-11 Water treatment device

Publications (2)

Publication Number Publication Date
JPS5929087A true JPS5929087A (en) 1984-02-16
JPS6136473B2 JPS6136473B2 (en) 1986-08-19

Family

ID=15223005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138478A Granted JPS5929087A (en) 1982-08-11 1982-08-11 Water treatment device

Country Status (1)

Country Link
JP (1) JPS5929087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054608A (en) * 2012-09-13 2014-03-27 Takasago Thermal Eng Co Ltd Discharge water processing method and discharge water processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054608A (en) * 2012-09-13 2014-03-27 Takasago Thermal Eng Co Ltd Discharge water processing method and discharge water processing system

Also Published As

Publication number Publication date
JPS6136473B2 (en) 1986-08-19

Similar Documents

Publication Publication Date Title
EP0225965B1 (en) Method of treating waste water and equipment therefor
JP4465047B2 (en) Equipment for biological purification of wastewater
CA1067218A (en) Process and apparatus for the aerobic biological purification of liquid wastes containing organic pollutants
US3953326A (en) Oxygen aeration system for contaminated liquids
JPS5929087A (en) Water treatment device
JP2003053378A (en) Method and device for treating water by using separation membrane
WO2003072513A1 (en) Membrane bioreactor
US4173534A (en) Sludge thickening apparatus and process
JPS6136474B2 (en)
US5039404A (en) Oxygen permeable membrane used in wastewater treatment
JPH09290280A (en) Ozone contact tank and control method therefor
JP3087914B2 (en) Aeration treatment equipment
JPS62237998A (en) Reactor for biofilter
CN106587354A (en) Full biological denitrification and sludge reduction system
JPH07214056A (en) Device for treating waste water
JPH02135196A (en) Sewage and waste water treating device
JPS6218232B2 (en)
CN205710321U (en) Integral type A2O-MBR system
RU2049077C1 (en) Method of biological purifying of waste
JPH0415360Y2 (en)
CN114940552A (en) Countercurrent aeration internal circulation coupling precipitation separation ozone oxidation reactor
JPS5815040Y2 (en) Organic nitrogen removal equipment
JPH1076263A (en) Sewage treatment apparatus using immersion type membrane separator
JPS6075396A (en) Removal of phosphorus from organic waste liquid
JPH0490895A (en) Apparatus for treating organic waste water