JPS5815040Y2 - Organic nitrogen removal equipment - Google Patents

Organic nitrogen removal equipment

Info

Publication number
JPS5815040Y2
JPS5815040Y2 JP1977122300U JP12230077U JPS5815040Y2 JP S5815040 Y2 JPS5815040 Y2 JP S5815040Y2 JP 1977122300 U JP1977122300 U JP 1977122300U JP 12230077 U JP12230077 U JP 12230077U JP S5815040 Y2 JPS5815040 Y2 JP S5815040Y2
Authority
JP
Japan
Prior art keywords
flow path
liquid
tank
organic nitrogen
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977122300U
Other languages
Japanese (ja)
Other versions
JPS5447874U (en
Inventor
伊藤隆
河杉忠昭
藤本忠生
鳴上善久
和泉清司
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to JP1977122300U priority Critical patent/JPS5815040Y2/en
Publication of JPS5447874U publication Critical patent/JPS5447874U/ja
Application granted granted Critical
Publication of JPS5815040Y2 publication Critical patent/JPS5815040Y2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【考案の詳細な説明】 本考案は、酸素ガスの多い深層型の曝気槽と酸素ガスの
少ない還元槽とにわたって、有機窒素外を含む被処理液
を循環流動させて、有機窒素外を無機化すべく構成した
有機窒素除去装置に関する。
[Detailed description of the invention] This invention circulates and flows the liquid to be treated, which contains non-organic nitrogen, between a deep aeration tank with a large amount of oxygen gas and a reduction tank with a small amount of oxygen gas, thereby converting the non-organic nitrogen into minerals. The present invention relates to an organic nitrogen removal apparatus constructed as follows.

一般に有機窒素除去装置は、有機窒素外を含む被処理液
を曝気処理しまた後、被処理液を還元槽に送って脱窒処
理し、さらに、その被処理液を沈澱槽へ送って沈澱処理
する工程を経るものであるが、被処理液の処理経路を長
くとって処理能率を向上させるために、前記曝気槽並び
に還元槽が比較的深い(5〜6m程度)槽に構成された
従来の有機窒素除去装置では、脱窒ゾーンで多量に発生
した窒素ガスをM的に除去するために、還元槽による脱
窒処理工程の次段に、脱気処理を行なうための脱気槽を
特別に設ける必要があり、深層型としての処理能率の向
上を図ることができる反面、脱気処理を行なうための特
別な装置を設けることが要求される欠点を免がれないも
のであった。
Generally, organic nitrogen removal equipment aerates the liquid to be treated that contains organic nitrogen, then sends the liquid to a reduction tank for denitrification treatment, and then sends the liquid to a precipitation tank for precipitation treatment. However, in order to increase the processing efficiency by increasing the processing path of the liquid to be treated, the conventional method has the aeration tank and reduction tank configured as relatively deep tanks (about 5 to 6 m). In the organic nitrogen removal equipment, in order to remove the large amount of nitrogen gas generated in the denitrification zone, a special deaeration tank is installed to carry out deaeration treatment at the next stage of the denitrification treatment process using the reduction tank. Although it is possible to improve the processing efficiency as a deep type, it has the drawback that it requires the provision of a special device for degassing.

また、従来の循環式の脱窒方法としては、混合分解槽の
処理工程始端箇所とを循環経路で結び、その循環経路中
に、脱窒ゾーン側への被処理液供給用ポンプを特別に設
ける必要があった。
In addition, in the conventional circulation type denitrification method, a mixed decomposition tank is connected to the starting point of the treatment process by a circulation path, and a pump is specially installed in the circulation path to supply the liquid to be treated to the denitrification zone side. There was a need.

本考案は、深層曝気槽の有機窒素除去装置をもって能率
の良い処理を行なうことができるものでありながら、還
元種自体の構造並びに配置構成をもって、特別に脱気装
置を設ける要なく、効果的な脱気処理を行なえ、しかも
、脱窒ゾーンへの被処理液の供給も、特別に駆動源とし
てのポンプを設けることなく、曝気槽と還元槽との配置
構成を利用して構造簡単に、動力ロスもなく行なえるよ
うにすることを目的とする。
Although this invention can perform efficient treatment using an organic nitrogen removal device in a deep aeration tank, the structure and arrangement of the reduced species itself eliminates the need for a special deaeration device and is effective. Deaeration treatment can be performed, and the liquid to be treated can be supplied to the denitrification zone without the need for a special pump as a drive source.The configuration of the aeration tank and reduction tank can be used to simplify the structure and supply the liquid to the denitrification zone. The aim is to be able to do this without any loss.

本考案による有機窒素除去装置の特徴とする構成は、深
い下降流路を内部に形成した内筒と、その内筒との間に
上昇流路を形成する外筒とから曝気槽を構威し、その曝
気槽の上部外周位置に環状流路を形成する還元槽を配設
すると共に、前記上昇流路からの溢流液を前記環状流路
側へ流出させる連通口を前記外筒に形成し、さらに、前
記還元槽には、前記環状流路の周方向で連続状態を断つ
ように、かつ、前記連通口をその両側に位置させた状態
で仕切壁を設け、この仕切壁によって区分された流路の
一端側近くに、被処理液および活性汚泥の供給路を接続
し、流路の他端側近くには、前記曝気槽の下降流路に向
けて被処理液を循環移送するようにポンプを流路途中に
介装させた循環流路を接続した点にあり、かかる構成か
ら次の作用効果を奏する。
The characteristic structure of the organic nitrogen removal device according to the present invention is that an aeration tank is constructed from an inner cylinder with a deep downward flow path formed inside and an outer cylinder with an upward flow path formed between the inner cylinder. , disposing a reduction tank forming an annular flow path at an upper outer circumferential position of the aeration tank, and forming a communication port in the outer cylinder through which overflow liquid from the ascending flow path flows out to the annular flow path side; Furthermore, a partition wall is provided in the reduction tank so as to interrupt the continuous state in the circumferential direction of the annular flow path, and the communication port is located on both sides of the partition wall, and the flow is divided by the partition wall. A supply path for the liquid to be treated and activated sludge is connected near one end of the channel, and a pump is connected near the other end of the channel to circulate and transfer the liquid to be treated toward the downward flow path of the aeration tank. The structure is connected to a circulation flow path in which the flow path is interposed in the middle of the flow path, and this configuration provides the following effects.

即ち、深層型の曝気槽を用いて曝気処理を能率良く行な
うことができるものでありながらも、脱窒ゾーンとなる
還元槽は、前記曝気槽に比して水深を浅く構成され、曝
気槽を取り巻くように周方向で長い環状流路をもって構
成されるものであるから、脱窒処理が行なわれる環状流
路では水流の表面積が大きく、かつ、流速も比較的太で
、脱気のための特別な攪拌手段などを要することなく、
脱窒と同時的に脱気処理も行なわれることとなり、脱窒
後に改めて脱気するための特別な装置を省略できる利点
がある。
In other words, although it is possible to perform aeration processing efficiently using a deep aeration tank, the reduction tank, which serves as the denitrification zone, is constructed with a shallower water depth than the aeration tank, making it difficult to use the aeration tank. Since it is constructed with a long annular flow channel in the circumferential direction surrounding it, the surface area of the water flow is large in the annular flow channel where denitrification is performed, and the flow velocity is also relatively thick. without the need for special stirring means, etc.
Since the degassing process is performed simultaneously with denitrification, there is an advantage that a special device for degassing again after denitrification can be omitted.

また、曝気処理後の被処理液を脱窒ゾーンへ循環供給す
るために、上昇流路の上端部に設けた連通口を介して溢
流液を供給するように構成しであるので、この供給手段
の為にポンプ等の特別な駆動源を要しない点でも有利で
ある。
In addition, in order to circulate and supply the liquid to be treated after aeration to the denitrification zone, the overflow liquid is supplied through a communication port provided at the upper end of the ascending flow path. It is also advantageous in that a special drive source such as a pump is not required for the means.

以下に、本考案の実施例を図面に基いて説明する0 水平断面が円形あるいはそれに類似の内筒1aと外筒1
bからなる二重筒状の曝気槽1によって、例えば100
m程度のレベル差を有する下降流路Aと上昇流路Bとを
形成し、前記外筒1bの上端側外周部に、その外筒1b
および蓋体12とによって環状流路2Aを有した還元槽
2を構成し、この環状の還元槽2には、その環状流路2
人の周方向での連続状態を断つように半径方向の仕切壁
3を設けると共に、この仕切壁30両側に第1釦よび第
2堰4,5を、第1堰4はどレベルを高くして取付け、
そして前記仕切壁3と第1堰4とにわたる外筒1b部分
に、第1堰4よりもレベルの高い第3堰6を設け、前記
仕切壁3と第2堰5とにわたる外筒1b部分に、前記第
2堰5よりもレベルが高く、かつ、前記第3′堰6と略
同レベルの第4堰7を形成し前記第3堰6釦よび第4堰
7の夫夫の上部に形成される開口部分を、被処理液が溢
流する連通口6’、?’として構成しである。
Embodiments of the present invention will be described below with reference to the drawings. Inner cylinder 1a and outer cylinder 1 whose horizontal cross section is circular or similar
For example, 100
A descending passage A and an ascending passage B having a level difference of about m are formed, and the outer cylinder 1b
and the lid body 12 constitute a reduction tank 2 having an annular flow path 2A.
A partition wall 3 in the radial direction is provided to break the continuity of the person in the circumferential direction, and a first button and second weirs 4 and 5 are provided on both sides of this partition wall 30, and the level of the first weir 4 is raised. and install it,
A third weir 6 having a higher level than the first weir 4 is provided in a portion of the outer cylinder 1b that extends between the partition wall 3 and the first weir 4, and a third weir 6 that is higher in level than the first weir 4 is provided in a portion of the outer cylinder 1b that extends between the partition wall 3 and the second weir 5. , a fourth weir 7 having a higher level than the second weir 5 and approximately the same level as the third' weir 6 is formed above the third weir 6 button and the fourth weir 7; A communication port 6', ? through which the liquid to be treated overflows the opening portion that is It is configured as '.

そしてさらに、この還元槽2には、有機窒素分を含む被
処理液に活性汚泥を混入して成る混合液の供給流路Cを
、前記環状流路2人の始端部に相当する第1堰4の近く
に接続し、そして前記仕切壁3と第2堰および第4堰5
,7による流路終端の貯溜部分2aから前記下降流路A
の上部に向けて、前記混合液をポンプPによって揚送す
る流路りを設け、下降流路Aと上昇流路Bとに亘り被処
理液を流動させると共に、大気圧以上で過飽和にする状
態で曝気用の酸素ガスを下降流路Aの途中に供給する装
置8を接続し、もって前記曝気槽1にむいて、その下降
流路Aの上部で酸素ガスを被処理液中に溶解させ、そし
て上昇流路Bの第3堰6をオーバーフローする被処理液
を、第1堰4から流路の長い環状の還元槽2内の還状状
路2Aを通して第2堰5から流路終端の貯溜部分2aに
オーバーフローさせると共に、この被処理液と前記第4
堰7をオーバーフローする被処理液とを前記ポンプPに
より下降流路Aの上部に揚送するサイクルを繰返させ、
即ち酸素ガスの多い曝気槽1を酸化ゾーンとし、酸素ガ
スの少ない還元槽2を脱窒ゾーンとして、この両ゾーン
での被処理液の循環流動により、その被処理液中の有機
窒素分を無機化すべく構成されているもので、例えばア
ンモニア分についてその分解状態を示すと、 (1)酸化ゾーンにおいて、 NH’4 +02→NO3+H++H20(2)脱窒ゾ
ーンにおいて、 N03−)−CH30H→N2+CO2+H20+OH
となる。
Further, in this reduction tank 2, a supply flow path C for a mixed liquid formed by mixing activated sludge into a liquid to be treated containing organic nitrogen is connected to a first weir corresponding to the starting end of the two annular flow paths. 4, and the partition wall 3, the second weir and the fourth weir 5
, 7 from the storage portion 2a at the end of the flow path to the downward flow path A.
A flow path for pumping the mixed liquid by a pump P is provided toward the upper part of the liquid, and the liquid to be treated is made to flow through the downward flow path A and the upward flow path B, and is supersaturated at atmospheric pressure or higher. A device 8 for supplying oxygen gas for aeration is connected to the middle of the downward flow path A, and the oxygen gas is dissolved in the liquid to be treated at the upper part of the downward flow path A toward the aeration tank 1. The liquid to be treated that overflows the third weir 6 of the ascending flow path B is passed from the first weir 4 through the circular path 2A in the annular reduction tank 2 with a long flow path, and from the second weir 5 to the storage at the end of the flow path. While overflowing into the portion 2a, this liquid to be treated and the fourth
repeating a cycle in which the liquid to be treated overflowing the weir 7 is pumped to the upper part of the descending channel A by the pump P;
That is, the aeration tank 1 with a large amount of oxygen gas is used as an oxidation zone, and the reduction tank 2 with a low amount of oxygen gas is used as a denitrification zone, and by circulating the liquid to be treated in both zones, the organic nitrogen content in the liquid to be treated is converted into inorganic nitrogen. For example, the decomposition state of ammonia is as follows: (1) In the oxidation zone, NH'4 +02→NO3+H++H20 (2) In the denitrification zone, N03-)-CH30H→N2+CO2+H20+OH
becomes.

上記CH30Hは、一般にBOD(生物化学的酸素要求
量)を増大させる成分として原液中に含1れており、例
えば被処理液を酸素ガスの多い曝気槽1に供給すれば、
BODの分解が窒素分の分解よりも早く行なわれて窒素
分の分解率が低下し、脱窒ゾーンにおいて窒素分の分解
のためにCH30Hを多量添加する必要が生じるが、被
処理液を脱窒ゾーンに供給する構成をとれば、このゾー
ンに訃いて窒素分が分解され、かつBODが減少され、
有機窒素分並びにBODの少ない被処理液を酸化ゾーン
に循環させることができて、CH30Hの添加を極めて
少なくあるいは不要にしながら、全体に有機窒素分の無
機化を効率良く経済的に行なうことができる。
The above CH30H is generally contained in the stock solution as a component that increases BOD (biochemical oxygen demand). For example, if the liquid to be treated is supplied to the aeration tank 1 with a large amount of oxygen gas,
BOD decomposition occurs faster than nitrogen decomposition and the nitrogen decomposition rate decreases, making it necessary to add a large amount of CH30H to denitrify the nitrogen in the denitrification zone. If a configuration is adopted in which nitrogen is supplied to the zone, nitrogen will be decomposed in this zone and BOD will be reduced.
The treated liquid with low organic nitrogen content and BOD can be circulated to the oxidation zone, making it possible to mineralize the organic nitrogen content efficiently and economically while minimizing or eliminating the need for addition of CH30H. .

また、酸化ゾーンでH+が、かつ脱窒ゾーンでOHが発
生するので、PH調整を軽減あるいは不要にすることが
できる。
Furthermore, since H+ is generated in the oxidation zone and OH is generated in the denitrification zone, pH adjustment can be reduced or eliminated.

被処理液は、上昇流路B側から少量ぜつ分離タンク9に
送り込渣れ、比重選別によってスラッジと清浄液とに分
離されて、スラッジがコンベア10で集められ、必要に
応じてポンプP1により前記供給流路Cに還元されると
共に清浄液が排出路11から取出される。
The liquid to be treated is fed into a small amount separation tank 9 from the ascending channel B side, separated into sludge and cleaning liquid by specific gravity sorting, and the sludge is collected by a conveyor 10, and pump P1 is used as necessary. The cleaning liquid is returned to the supply channel C and taken out from the discharge channel 11.

尚、前記曝気槽1を二重筒構造として、この曝気槽1を
上下に長くしてその径を小にし、方形でのタンク設置敷
地を極めて狭くしたが、この曝気槽1を従来のように高
さ制限を受ける状態で地上設置しても、両槽1,2の設
置敷地を従来に比して狭くできるものである。
The aeration tank 1 has a double-tube structure, and the aeration tank 1 is lengthened vertically to reduce its diameter, making the square tank installation site extremely narrow. Even if installed on the ground with height restrictions, the installation site for both tanks 1 and 2 can be made smaller than in the past.

また本案装置は、主として下水処理に適用するが、その
他各種の有機窒素分を含む原液の処理装置として適用で
き、そして活性汚泥としては、従来から有機窒素の無機
化に利用されている各種のものが適用できる。
In addition, although the proposed device is mainly applied to sewage treatment, it can also be applied as a treatment device for various kinds of raw solutions containing organic nitrogen, and activated sludge includes various types of activated sludge that have been conventionally used to mineralize organic nitrogen. is applicable.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案に係る有機窒素除去装置の実施例を示し、
第1図はフローシート、第2図は第1および第2タンク
の横断面図、第3図は第2図の■−■線断面図である。 1・・・・・・曝気槽、1a・・・・・・内筒、1b・
・・・・・外筒、2・・・・・・還元槽、2A・・・・
・・環状流路、3・・・・・・仕切壁、6’、7’・・
・・・・連通口、A・・・・・・下降流路、B・・・・
・・上昇流路、C・・・・・・供給路、D・・・・・・
循環流路、P・・・・・・ポンプ。
The drawings show an embodiment of the organic nitrogen removal device according to the present invention,
FIG. 1 is a flow sheet, FIG. 2 is a cross-sectional view of the first and second tanks, and FIG. 3 is a cross-sectional view taken along the line ■--■ in FIG. 1... Aeration tank, 1a... Inner cylinder, 1b.
...Outer cylinder, 2...Reduction tank, 2A...
...Annular channel, 3...Partition wall, 6', 7'...
...Communication port, A...Descent flow path, B...
・・Rising flow path, C・・Supply path, D・・・・
Circulation channel, P...pump.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 深い下降流路Aを内部に形成した内筒1aと、その内筒
1aとの間に上昇流路Bを形成する外筒1bとから曝気
槽1を構成し、その曝気槽1の上部外周位置に環状流路
2人を形成する還元槽2を配設すると共に、前記上昇流
路Bからの溢流液を前記環状流路2A側へ流出させる連
通口6/ 、 7/を前記外筒1bに形威し、さらに、
前記還元槽2には、前記環状流路2人の周方向での連続
状態を断つように、かつ、前記連通口6’、7’をその
両側に位置させた状態で仕切壁3を設け、この仕切壁3
によって区分された流路の一端側近くに、被処理液およ
び活性汚泥の供給路Cを接続し、流路の他端側近くには
、前記曝気槽1の下降流路Aに向けて被処理液を循環移
送するようにポンプPを流路途中に介装させた循環流路
りを接続しであることを特徴とする有機窒素除去装置。
An aeration tank 1 is composed of an inner cylinder 1a in which a deep downward flow path A is formed and an outer cylinder 1b that forms an upward flow path B between the inner cylinder 1a, and the upper outer peripheral position of the aeration tank 1 is A reduction tank 2 forming two annular flow channels is disposed in the outer cylinder 1b, and communication ports 6/, 7/ for allowing the overflow liquid from the upward flow channel B to flow out to the annular flow channel 2A side are provided in the outer cylinder 1b. In addition,
A partition wall 3 is provided in the reduction tank 2 so as to interrupt the continuous state of the two annular channels in the circumferential direction, and with the communication ports 6' and 7' located on both sides thereof, This partition wall 3
A supply path C for the liquid to be treated and activated sludge is connected near one end of the flow path divided by An organic nitrogen removal apparatus characterized in that a circulation flow path is connected to the flow path in which a pump P is interposed in the flow path so as to circulate and transfer the liquid.
JP1977122300U 1977-09-10 1977-09-10 Organic nitrogen removal equipment Expired JPS5815040Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977122300U JPS5815040Y2 (en) 1977-09-10 1977-09-10 Organic nitrogen removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977122300U JPS5815040Y2 (en) 1977-09-10 1977-09-10 Organic nitrogen removal equipment

Publications (2)

Publication Number Publication Date
JPS5447874U JPS5447874U (en) 1979-04-03
JPS5815040Y2 true JPS5815040Y2 (en) 1983-03-25

Family

ID=29080283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977122300U Expired JPS5815040Y2 (en) 1977-09-10 1977-09-10 Organic nitrogen removal equipment

Country Status (1)

Country Link
JP (1) JPS5815040Y2 (en)

Also Published As

Publication number Publication date
JPS5447874U (en) 1979-04-03

Similar Documents

Publication Publication Date Title
JPS5933439B2 (en) Microbiological wastewater treatment equipment for nitrogenous wastewater
US3872003A (en) High-oxygen treatment of waste with selective oxygen recirculation
US3808123A (en) Method and apparatus for the treatment of influent waters such as sewage
JPH0546279B2 (en)
US3953326A (en) Oxygen aeration system for contaminated liquids
US4203841A (en) Apparatus for high-efficient microbiological oxidation treatment
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JPS5815040Y2 (en) Organic nitrogen removal equipment
JPH0813359B2 (en) Wastewater treatment equipment containing nitrogen
US4202763A (en) High-efficient activated sludge method
JPS631920B2 (en)
JPS6223596Y2 (en)
JPH10192884A (en) Aerobic treatment apparatus for sewage
CN205773635U (en) A kind of oxidation ditch nitrogen rejection facility
CN213012375U (en) Fenton oxidation and chemical softening integrated device
JP3824782B2 (en) Aerobic sewage treatment equipment
JPS6136474B2 (en)
JPH0415359Y2 (en)
JPH0415360Y2 (en)
JPS6216239Y2 (en)
JPS6218232B2 (en)
JPS60118292A (en) Waste water treating apparatus
JPH027679Y2 (en)
JPS5845911B2 (en) wastewater treatment equipment
JPH0118239Y2 (en)