JPH1076263A - Sewage treatment apparatus using immersion type membrane separator - Google Patents

Sewage treatment apparatus using immersion type membrane separator

Info

Publication number
JPH1076263A
JPH1076263A JP23458596A JP23458596A JPH1076263A JP H1076263 A JPH1076263 A JP H1076263A JP 23458596 A JP23458596 A JP 23458596A JP 23458596 A JP23458596 A JP 23458596A JP H1076263 A JPH1076263 A JP H1076263A
Authority
JP
Japan
Prior art keywords
tank
flow path
membrane
upward flow
ascending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23458596A
Other languages
Japanese (ja)
Other versions
JP3408699B2 (en
Inventor
Yasuo Horii
安雄 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23458596A priority Critical patent/JP3408699B2/en
Publication of JPH1076263A publication Critical patent/JPH1076263A/en
Application granted granted Critical
Publication of JP3408699B2 publication Critical patent/JP3408699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable operation under a small aeration strength, to suppress foaming in a tank to enhance the concn. of MLSS and to achieve cost reduction. SOLUTION: An immersion type membrane separator 14 wherein a circulating system consisting of ascending and descending passages 4, 5 is formed in an immersion tank 1 and an air diffuser 6 is arranged to the lower part of the ascending passage 4 and a plurality of tubular membrane elements 15 are arranged on the way of the ascending passage 4 along the ascending passage 4 in up and down direction is provided and a stirrer 13 generating descending streams is provided to the upper part of the descending passage 5. By this constitution, the passage resistance caused by the membrane elements are sufficiently reduced and the flow speed of the ascending streams required in the washing of the surfaces of the membranes of the membrane elements can be obtained under small aeration strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浸出水処理装置、
有機性汚水処理装置、汚水中のダイオキシン類除去装置
等に利用する浸漬型膜分離装置を用いた汚水処理装置に
関する。
The present invention relates to a leachate treatment apparatus,
The present invention relates to a sewage treatment apparatus using an immersion type membrane separation apparatus used for an organic sewage treatment apparatus, an apparatus for removing dioxins in wastewater, and the like.

【0002】[0002]

【従来の技術】従来、たとえば生活系排水における窒
素、リンの除去法として、嫌気槽および好気槽において
原水を生物学的に処理する活性汚泥処理法がある。この
活性汚泥処理法では、嫌気槽において、系外から流入す
る原水に凝集剤を投入するとともに、後工程の好気槽か
ら汚泥を返送し、槽内の混合液を攪拌しており、好気槽
において、嫌気槽から流入する混合液に対して散気装置
から空気を曝気し、槽内で混合液を循環させるととも
に、槽内に浸漬した膜分離装置によって混合液を濾過
し、膜分離装置を透過した処理水を処理水槽へ取り出し
ている。
2. Description of the Related Art Conventionally, for example, as a method for removing nitrogen and phosphorus from domestic wastewater, there is an activated sludge treatment method in which raw water is biologically treated in an anaerobic tank and an aerobic tank. In this activated sludge treatment method, in an anaerobic tank, a coagulant is added to raw water flowing from outside the system, sludge is returned from an aerobic tank in a subsequent process, and the mixed liquid in the tank is stirred, In the tank, the mixed solution flowing from the anaerobic tank is aerated with air from a diffuser, the mixed solution is circulated in the tank, and the mixed solution is filtered by a membrane separator immersed in the tank. The treated water that has passed through is discharged to the treated water tank.

【0003】好気槽に配置した膜分離装置は、散気装置
の上方に位置し、曝気空気により生起する気液混相の上
向流に膜面を曝しており、槽内の混合液を膜面に対して
平行に流すクロスフロー方式(循環方式)の下に混合液
を濾過し、上向流が掃流となって膜面を洗うことによっ
て膜面に対する固形分の付着を抑制する。
[0003] A membrane separation device arranged in an aerobic tank is located above a diffuser and exposes the membrane surface to an upward flow of a gas-liquid mixed phase generated by aerated air. The mixture is filtered under a cross-flow method (circulation method) flowing parallel to the surface, and the upward flow serves as a scavenging flow to wash the film surface, thereby suppressing the adhesion of solids to the film surface.

【0004】[0004]

【発明が解決しようとする課題】ところで、窒素、リ
ン、BODの栄養バランスの崩れた有機性汚水の場合に
は、その性状に起因して曝気時に発泡が多くなるため
に、MLSS濃度が上げられず、BOD除去効率が不安
定となる問題があった。因に、栄養バランスの適正値
は、BOD:N:P=100 :5:1であるが、埋立地浸
出水の場合には、BOD:N:P=5:5:0.1 となっ
ており、適正なMLSS濃度は10,000〜12,000mg/l で
あるが、上述のような有機性汚水の場合には、MLSS
濃度が2,000〜4,000mg/l となっている。
In the case of organic sewage in which the nutritional balance of nitrogen, phosphorus, and BOD is lost, the MLSS concentration is increased because foaming increases during aeration due to its properties. However, there was a problem that the BOD removal efficiency became unstable. The appropriate value of the nutritional balance is BOD: N: P = 100: 5: 1, but in the case of landfill leachate, BOD: N: P = 5: 5: 0.1, The appropriate MLSS concentration is 10,000 to 12,000 mg / l, but in the case of organic wastewater as described above, the MLSS
The concentration is between 2,000 and 4,000 mg / l.

【0005】また、曝気により生起する上向流が膜表面
に付着する汚泥の固形分の洗浄機能を果たすために、こ
の洗浄に必要な曝気強度が律速となり、10〜12m3/m3
hr程度の曝気を行っているが、これは槽内の微生物が必
要とする酸素量に比べて数倍の量である。このために、
発泡が生じ易くなるばかりか、大きなブロワ設備を要し
てコストが高くなるとともに、電気代等のランニングコ
ストが高くなる問題があった。
[0005] In order to upward flow arising by aeration fulfill cleaning function of the solids content of the sludge adhering to the membrane surface, aeration intensity required for this washing is the rate-limiting, 10~12m 3 / m 3 /
Aeration of about hr is performed, which is several times the amount of oxygen required by microorganisms in the tank. For this,
Not only is foaming easy to occur, but also large blower equipment is required, resulting in high costs and running costs such as electricity costs.

【0006】本発明は上記した課題を解決するものであ
り、小さな曝気強度での運転を可能となし、槽内におけ
る発泡を抑制してMLSS濃度を高めるとともに、低コ
スト化を図ることができる浸漬型膜分離装置を用いた汚
水処理装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and enables operation with a small aeration intensity, suppresses foaming in a tank, increases the MLSS concentration, and reduces the cost. An object of the present invention is to provide a sewage treatment apparatus using a type membrane separation device.

【0007】[0007]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の浸漬型膜分離装置を用いた汚水処理装
置は、浸漬槽内に上向流路と下向流路とからなる槽内循
環系を形成し、上向流路の下部に散気装置を配置し、上
向流路の途中に、管状をなす複数の膜エレメントを上向
流路に沿って上下方向に配置した浸漬型膜分離装置を設
け、下向流路の上部に下向流を生起する槽内強制循環手
段を設けたものである。
In order to solve the above-mentioned problems, a sewage treatment apparatus using the immersion type membrane separation device of the present invention comprises an upward flow path and a downward flow path in an immersion tank. An in-tank circulation system was formed, an air diffuser was arranged below the upward flow path, and a plurality of tubular membrane elements were vertically arranged along the upward flow path in the middle of the upward flow path. An immersion type membrane separation device is provided, and a forced circulation means in a tank for generating a downward flow is provided above the downward flow channel.

【0008】この構成により、浸漬槽内では、散気装置
から供給する曝気空気によって気液混相の上向流が上向
流路内に生起するとともに、槽内強制循環手段によって
下向流路内に下向流が生起する。このことにより、浸漬
槽の底部に滞留する槽内混合液が上向流路を通り槽上部
に移動し、槽上部の槽内混合液が下向流路を通って槽底
部に移動し、槽内混合液が槽内循環系を循環移動する。
With this configuration, in the immersion tank, the upward flow of the gas-liquid mixed phase is generated in the upward flow path by the aerated air supplied from the diffuser, and the downward flow path is formed by the forced circulation means in the tank. A downward flow occurs. As a result, the mixed liquid in the tank staying at the bottom of the immersion tank moves to the top of the tank through the upward flow path, and the mixed liquid in the tank at the top of the tank moves to the bottom of the tank through the downward flow path. The internal mixture circulates and moves in the circulation system in the tank.

【0009】この状態において、浸漬型膜分離装置は上
向流路内を流通する槽内混合液を濾過し、膜エレメント
の膜を透過した膜透過液は膜エレメントの内部流路を通
り、膜エレメントに連通する処理水管路を通って槽外へ
流れ出る。一方、各膜エレメントの間を流れる上向流は
掃流となって各膜エレメントの膜面を洗うことにより膜
面に対する固形分の付着を抑制する。
In this state, the immersion type membrane separation apparatus filters the mixed solution in the tank flowing in the upward flow path, and the permeated liquid permeated through the membrane of the membrane element passes through the internal flow path of the membrane element and passes through the internal flow path of the membrane element. The water flows out of the tank through a treated water pipe communicating with the element. On the other hand, the upward flow flowing between the membrane elements becomes a scavenging flow to wash the membrane surface of each membrane element, thereby suppressing the adhesion of solids to the membrane surface.

【0010】このとき、各膜エレメントは上向流路に沿
って上下方向に配置してあるので、膜エレメントに起因
する流路抵抗は従来に比べて十分に小さくなり、膜エレ
メントの膜面洗浄に要する上向流の流速を小さな曝気強
度の下で得ることができる。しかも、上向流が膜エレメ
ントの軸心方向に沿って流れることにより、その掃流作
用が膜エレメントの全長にわたって作用し、単位動力当
たりの洗浄効率が向上する。
At this time, since each of the membrane elements is arranged vertically along the upward flow path, the flow path resistance caused by the membrane element becomes sufficiently smaller than in the prior art, and the membrane surface of the membrane element is cleaned. Can be obtained under a small aeration intensity. In addition, since the upward flow flows along the axial direction of the membrane element, the sweeping action acts on the entire length of the membrane element, and the cleaning efficiency per unit power is improved.

【0011】ところで、流入原水のBOD濃度に相応す
る必要酸素量基準に応じて曝気空気量を調整すると、B
OD濃度が低い場合には、攪拌混合やクロスフロー濾過
に必要な槽内循環流量を確保することができなくなる
が、槽内強制循環手段により下向流を生起することによ
り、曝気空気量に依存することなくクロスフロー濾過に
必要な槽内循環流量を確保することができ、発泡を抑制
し、MLSS濃度を高めてBOD除去効率を安定化する
ことができる。
By the way, if the amount of aerated air is adjusted in accordance with the required oxygen amount standard corresponding to the BOD concentration of the inflowing raw water, B
When the OD concentration is low, it becomes impossible to secure the circulation flow rate in the tank required for stirring and mixing or cross-flow filtration, but it depends on the amount of aerated air by generating a downward flow by forced circulation means in the tank. Thus, the circulation flow rate in the tank required for cross-flow filtration can be ensured, foaming can be suppressed, the MLSS concentration can be increased, and the BOD removal efficiency can be stabilized.

【0012】槽内強制循環手段に攪拌機を使用すること
により、ポンプ等の他の機器に比べて単位動力当たりの
循環流量を大きくすることができ、設備費および動力費
を低減することができる。
By using a stirrer as the forced circulation means in the tank, the circulating flow per unit power can be increased as compared with other equipment such as a pump, and equipment costs and power costs can be reduced.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1〜図3において、浸漬槽1は、
有機性汚水や浸出水等の原水を流入管2を通して導き、
活性汚泥により生物学的に処理する生物処理槽をなすも
のであり、浸漬槽1の内部には仕切壁3によって仕切ら
れた上向流路4と下向流路5とからなる槽内循環系が形
成してあり、槽中央に位置する下向流路5の周囲に放射
状に上向流路4が位置している。上向流路4と下向流路
5の形態は、上述したものに限られるものではなく、上
向流路4と下向流路5とを逆に配置することも可能であ
るし、各流路の断面形状は円筒形、扇形、矩形など種々
の形状が考えられる。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3, the immersion tank 1 is
Raw water such as organic wastewater or leachate is led through the inflow pipe 2,
The immersion tank 1 forms a biological treatment tank for biological treatment with activated sludge. Inside the immersion tank 1, an in-tank circulation system including an upward flow path 4 and a downward flow path 5 partitioned by a partition wall 3. Are formed, and the upward flow path 4 is located radially around the downward flow path 5 located at the center of the tank. The forms of the upward flow path 4 and the downward flow path 5 are not limited to those described above, and the upward flow path 4 and the downward flow path 5 can be arranged in reverse. Various shapes such as a cylindrical shape, a fan shape, and a rectangular shape can be considered as the cross-sectional shape of the flow path.

【0014】上向流路4の下部には散気装置6が配置し
てあり、散気装置6は曝気空気供給管7および第1バル
ブ8を介してブロワ9に接続してある。また、ブロワ9
は第2バルブ10および逆洗空気供給管11を介して後
述する処理水管路12に接続してある。下向流路5の上
部には下向流を生起する槽内強制循環手段として攪拌機
13が配置してある。槽内強制循環手段としてはポンプ
等の機器を使用することも可能である。
An air diffuser 6 is disposed below the upward flow path 4, and the air diffuser 6 is connected to a blower 9 via an aerated air supply pipe 7 and a first valve 8. Also, blower 9
Is connected through a second valve 10 and a backwash air supply pipe 11 to a treated water pipe 12 described later. A stirrer 13 is disposed in the upper part of the downward flow path 5 as forced circulation means in the tank for generating a downward flow. It is also possible to use a device such as a pump as the forced circulation means in the tank.

【0015】上向流路4の途中には浸漬型膜分離装置1
4が配置してある。浸漬型膜分離装置14は、管状をな
す複数の膜エレメント15を上向流路4に沿って上下方
向に配置するもので、各膜エレメント15を上端側にお
いてヘッダー16で連結保持するとともに、ヘッダー1
6の内部流路が各膜エレメント15に連通しており、膜
エレメント15を下端側において連結板17で連結保持
している。ヘッダー16および連結板17には上向流が
通過するための通水部18が形成してある。
In the middle of the upward flow path 4, the immersion type membrane separation device 1
4 are arranged. The immersion-type membrane separation device 14 is configured to arrange a plurality of tubular membrane elements 15 in the vertical direction along the upward flow path 4. 1
The internal flow path 6 communicates with each membrane element 15, and the membrane element 15 is connected and held by a connection plate 17 on the lower end side. The header 16 and the connecting plate 17 are formed with a water passage 18 through which the upward flow passes.

【0016】ヘッダー16は内部流路が処理水管路12
および第3バルブ19を介して処理水ポンプ20に連通
し、処理水ポンプ20に接続した送水管21は処理水槽
22に連通している。処理水槽22と処理水管路12の
間には逆洗水系23が設けてあり、逆洗水系23は逆洗
水管24と逆洗ポンプ25と第4バルブ26とを有して
いる。浸漬槽1は底部に余剰汚泥排出系27が接続して
あり、余剰汚泥排出系27は第5バルブ28と汚泥引抜
管29と汚泥ポンプ30を有している。
The header 16 has an internal flow path of the treated water pipe 12.
A third water supply pipe 21 communicates with a treated water pump 20 via a third valve 19, and a water supply pipe 21 connected to the treated water pump 20 communicates with a treated water tank 22. A backwash water system 23 is provided between the treated water tank 22 and the treated water pipe 12, and the backwash water system 23 has a backwash water pipe 24, a backwash pump 25, and a fourth valve 26. The surplus sludge discharge system 27 is connected to the bottom of the immersion tank 1, and the surplus sludge discharge system 27 has a fifth valve 28, a sludge extraction pipe 29, and a sludge pump 30.

【0017】以下、上記構成における作用を説明する。
浸漬槽1の内部においては、散気装置6から供給する曝
気空気によって気液混相の上向流が上向流路4の内部に
生起し、攪拌機13によって下向流路5の内部に下向流
が生起するので、浸漬槽1の底部に滞留する槽内混合液
が上向流路4を通り連結板17およびヘッダー16の通
水部18を通過して槽上部に移動し、槽上部の槽内混合
液が下向流路5を通って槽底部に移動し、槽内混合液が
槽内循環系を循環移動し、この間に槽内混合液を生物学
的に活性汚泥処理する。
The operation of the above configuration will be described below.
Inside the immersion tank 1, the upward flow of the gas-liquid mixed phase is generated inside the upward flow path 4 by the aerated air supplied from the diffuser 6, and the downward flow is caused inside the downward flow path 5 by the stirrer 13. Since a flow is generated, the mixed liquid in the tank stagnating at the bottom of the immersion tank 1 passes through the upward flow path 4, passes through the connecting plate 17 and the water passage 18 of the header 16, moves to the upper part of the tank, and moves to the upper part of the tank. The mixture in the tank moves to the bottom of the tank through the downward flow path 5, and the mixture in the tank circulates and moves in the circulation system in the tank. During this time, the mixture in the tank is biologically activated sludge treated.

【0018】この状態において、浸漬型膜分離装置14
は処理水ポンプ20の吸引圧を受けて上向流路4を流通
する槽内混合液を濾過する。膜エレメント15の膜を透
過した膜透過液は膜エレメント15の内部流路を通って
ヘッダー16の内部流路に流入して後に、ヘッダー16
に連通する処理水管路12、第3バルブ19、処理水ポ
ンプ20、送水管21を通って処理水槽へ流れ出る。
In this state, the immersion type membrane separation device 14
Receives the suction pressure of the treated water pump 20 and filters the mixture in the tank flowing through the upward flow path 4. The membrane permeated liquid that has passed through the membrane of the membrane element 15 flows through the internal flow path of the membrane element 15 into the internal flow path of the header 16 and then flows through the header 16.
Through the treated water pipe 12, the third valve 19, the treated water pump 20, and the water supply pipe 21 to the treated water tank.

【0019】一方、各膜エレメント15の相互間の流路
を流れる上向流は、掃流となって各膜エレメント15の
膜面を洗うことにより膜面に対する固形分の付着を抑制
する。このとき、各膜エレメント15は上向流路4に沿
って上下方向に配置してあるので、膜エレメント15に
起因する流路抵抗は従来に比べて十分に小さくなり、膜
エレメント15の膜面洗浄に要する上向流の流速を小さ
な曝気強度の下で得ることができる。しかも、上向流が
膜エレメント15の軸心方向に沿って流れることによ
り、その掃流作用が膜エレメント15の全長にわたって
作用し、単位動力当たりの洗浄効率が向上する。
On the other hand, the upward flow flowing through the flow path between the membrane elements 15 becomes a sweeping flow to wash the membrane surface of each membrane element 15 to suppress the adhesion of solids to the membrane surface. At this time, since each of the membrane elements 15 is arranged in the up-down direction along the upward flow path 4, the flow path resistance caused by the membrane element 15 becomes sufficiently smaller than in the past, and the membrane surface of the membrane element 15 is reduced. The upward flow velocity required for cleaning can be obtained under a small aeration intensity. In addition, since the upward flow flows along the axial direction of the membrane element 15, the sweeping action acts on the entire length of the membrane element 15, and the cleaning efficiency per unit power is improved.

【0020】ところで、流入原水のBOD濃度が低い場
合には、攪拌混合やクロスフロー濾過に必要な槽内循環
流量を確保することができなくなるが、攪拌機13によ
り下向流を生起するので、曝気空気量に依存することな
くクロスフロー濾過に必要な槽内循環流量を確保するこ
とができ、発泡を抑制し、MLSS濃度を高めてBOD
除去効率を安定化することができる。しかも、攪拌機1
3は、ポンプ等の他の機器に比べて単位動力当たりの循
環流量を大きくすることができ、設備費および動力費を
低減することができる。
When the BOD concentration of the inflowing raw water is low, the circulation flow in the tank required for stirring and mixing and cross-flow filtration cannot be ensured. It is possible to secure the circulation flow rate in the tank required for cross-flow filtration without depending on the amount of air, suppress foaming, and increase the MLSS concentration to increase the BOD.
The removal efficiency can be stabilized. Moreover, the stirrer 1
3 can increase the circulating flow rate per unit power as compared with other devices such as a pump, and can reduce equipment costs and power costs.

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、各
膜エレメントを上向流路に沿って上下方向に配置するこ
とにより、膜エレメントに起因する流路抵抗を十分に小
さくし、膜エレメントの膜面洗浄に要する上向流の流速
を小さな曝気強度の下で得ることができ、上向流の掃流
作用が膜エレメントの全長にわたって作用し、単位動力
当たりの洗浄効率が向上する。槽内強制循環手段により
下向流を生起するので、曝気空気量に依存することなく
必要な槽内循環流量を確保することができ、発泡を抑制
し、MLSS濃度を高めてBOD除去効率を安定化する
ことができる。しかも、攪拌機により単位動力当たりに
おいて大きな循環流量を得ることができ、設備費および
動力費を低減することができる。
As described above, according to the present invention, by arranging each of the membrane elements vertically along the upward flow path, the flow path resistance caused by the membrane element can be sufficiently reduced, The upward flow velocity required for cleaning the membrane surface of the membrane element can be obtained with a small aeration intensity, and the upward sweeping action acts over the entire length of the membrane element, thereby improving the cleaning efficiency per unit power. . Since a downward flow is generated by the forced circulation means in the tank, the required circulation flow rate in the tank can be secured without depending on the amount of aerated air, suppressing foaming and increasing the MLSS concentration to stabilize the BOD removal efficiency. Can be In addition, a large circulation flow rate per unit power can be obtained by the stirrer, and equipment costs and power costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における浸漬型膜分離装置
を用いた汚水処理装置を示す全体構成図である。
FIG. 1 is an overall configuration diagram showing a sewage treatment apparatus using a submerged membrane separation device according to an embodiment of the present invention.

【図2】図1のA−A矢視図である。FIG. 2 is a view as viewed in the direction of arrows AA in FIG. 1;

【図3】同実施の形態における浸漬型膜分離装置の断面
図である。
FIG. 3 is a cross-sectional view of the immersion type membrane separation device in the embodiment.

【符号の説明】[Explanation of symbols]

1 浸漬槽 4 上向流路 5 下向流路 6 散気装置 12 処理水管路 13 攪拌機 14 浸漬型膜分離装置 15 膜エレメント 16 ヘッダー 18 通水部 Reference Signs List 1 immersion tank 4 upward flow path 5 downward flow path 6 air diffuser 12 treated water pipeline 13 stirrer 14 immersion type membrane separation device 15 membrane element 16 header 18 water passage section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 浸漬槽内に上向流路と下向流路とからな
る槽内循環系を形成し、上向流路の下部に散気装置を配
置し、上向流路の途中に、管状をなす複数の膜エレメン
トを上向流路に沿って上下方向に配置した浸漬型膜分離
装置を設け、下向流路の上部に下向流を生起する槽内強
制循環手段を設けたことを特徴とする浸漬型膜分離装置
を用いた汚水処理装置。
1. An in-tank circulation system comprising an upward flow path and a downward flow path is formed in an immersion tank, and an air diffuser is disposed below the upward flow path. A immersion type membrane separation device in which a plurality of tubular membrane elements are arranged vertically along an upward flow path is provided, and an in-tank forced circulation means for generating a downward flow is provided above a downward flow path. A sewage treatment apparatus using a submerged membrane separation apparatus.
【請求項2】 槽内強制循環手段は、回転翼を有する攪
拌機からなることを特徴とする請求項1記載の浸漬型膜
分離装置を用いた汚水処理装置。
2. A sewage treatment apparatus using an immersion type membrane separation device according to claim 1, wherein the forced circulation in the tank comprises a stirrer having rotating blades.
JP23458596A 1996-09-05 1996-09-05 Sewage treatment equipment using immersion type membrane separation equipment Expired - Fee Related JP3408699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23458596A JP3408699B2 (en) 1996-09-05 1996-09-05 Sewage treatment equipment using immersion type membrane separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23458596A JP3408699B2 (en) 1996-09-05 1996-09-05 Sewage treatment equipment using immersion type membrane separation equipment

Publications (2)

Publication Number Publication Date
JPH1076263A true JPH1076263A (en) 1998-03-24
JP3408699B2 JP3408699B2 (en) 2003-05-19

Family

ID=16973335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23458596A Expired - Fee Related JP3408699B2 (en) 1996-09-05 1996-09-05 Sewage treatment equipment using immersion type membrane separation equipment

Country Status (1)

Country Link
JP (1) JP3408699B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090276A (en) * 2007-09-18 2009-04-30 Asahi Kasei Chemicals Corp System for filtering raw water for drinking water
JP2015024369A (en) * 2013-07-26 2015-02-05 株式会社クボタ Aerobic-cum-anaerobic reaction tank and operation method of the same
JP6877656B1 (en) * 2020-03-24 2021-05-26 三菱電機株式会社 Water treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090276A (en) * 2007-09-18 2009-04-30 Asahi Kasei Chemicals Corp System for filtering raw water for drinking water
JP2015024369A (en) * 2013-07-26 2015-02-05 株式会社クボタ Aerobic-cum-anaerobic reaction tank and operation method of the same
JP6877656B1 (en) * 2020-03-24 2021-05-26 三菱電機株式会社 Water treatment system

Also Published As

Publication number Publication date
JP3408699B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
JPH1076264A (en) Sewage treatment apparatus using immersion type membrane separator
KR100254089B1 (en) Apparatus and method for purifying polluted water
JPH07303895A (en) Water treatment apparatus
US11731891B2 (en) Organic wastewater treatment apparatus
JP2001212587A (en) Method and apparatus for diffusing air of membrane separation activated sludge method
JPH07155758A (en) Waste water treating device
US11643345B2 (en) Method for treating organic wastewater, and device for treating organic wastewater
JP4082556B2 (en) Nitrogen removal equipment in membrane separation type oxidation ditch
JP3408699B2 (en) Sewage treatment equipment using immersion type membrane separation equipment
JP2003053378A (en) Method and device for treating water by using separation membrane
KR101192174B1 (en) Plants for advanced treatment of wastewater
JP2005144290A (en) Method for controlling mlss
JP4374885B2 (en) Membrane separator
JPH1076262A (en) Sewage treatment apparatus using immersion type membrane separator
KR100313222B1 (en) Combined purification apparatus and method using submerged membrane process for use in advanced treatment
JP3830026B2 (en) Membrane separation type oxidation ditch
JP3785212B2 (en) Wastewater treatment equipment
JP2003275546A (en) Apparatus for treating membrane separated waste water
JP2699108B2 (en) Sewage treatment method by hollow fiber membrane
CN220703411U (en) MBR membrane sewage treatment plant
CN210030173U (en) Leachate short-range biochemical system
JP3563319B2 (en) Yeast reactor with screen-type solid-liquid separator
JPH03249995A (en) Sewage treating device
JPH03284396A (en) Device for treating organic waste water
JP2886421B2 (en) High load activated sludge equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090314

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees