JPH03284396A - Device for treating organic waste water - Google Patents

Device for treating organic waste water

Info

Publication number
JPH03284396A
JPH03284396A JP2083294A JP8329490A JPH03284396A JP H03284396 A JPH03284396 A JP H03284396A JP 2083294 A JP2083294 A JP 2083294A JP 8329490 A JP8329490 A JP 8329490A JP H03284396 A JPH03284396 A JP H03284396A
Authority
JP
Japan
Prior art keywords
membrane separator
treated
membrane
cross
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2083294A
Other languages
Japanese (ja)
Inventor
Seiji Izumi
清司 和泉
Kazuhiko Asano
浅野 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2083294A priority Critical patent/JPH03284396A/en
Publication of JPH03284396A publication Critical patent/JPH03284396A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the clogging of a filter member and to reduce the energy cost by providing an immersed membrane separator in which the negative- pressure side of a suction pump communicates with its suction side and a cross- flow membrane separator communicating with a treated water tank through a force-feed pump. CONSTITUTION:The immersed membrane separator 5 is placed in an aeration tank 4, and the cross-flow membrane separator 19 communicates with a biological reaction tank 1 through a circulating pipe 20. Accordingly, a liq. to be treated is concentrated in the immersed membrane separator in the aeration condition specified by the BOD concn. to such a sludge concn. that the filter membrane is not clogged, the deficiency in the concentration rate by the immersed membrane separator is made up with the cross-flow membrane separator, and the specified sludge concn. is finally attained. Consequently, clogging of the filter membrane in the immersed membrane separator is prevented, the quantitative load of the liq. to be treated on the cross-flow membrane separator is reduced, the output of the force-feed pump is lowered, and the energy cost is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、し尿、浄化槽汚泥等の窒素を含有する有機性
廃水の処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for treating nitrogen-containing organic wastewater such as human waste and septic tank sludge.

従来の技術 従来、し尿、浄化槽汚泥等の窒素を含有する有機性廃水
の処理装置としては、限外濾過膜の膜面に沿って被処理
液を高流速で供給してクロスフロー濾過するものと、限
外濾過膜や精密濾過膜を生物処理槽に浸漬し、曝気攪拌
により膜面を洗浄しなから負圧により吸引濾過するもの
とがあった。
Conventional technology Conventionally, treatment equipment for organic wastewater containing nitrogen, such as human waste and septic tank sludge, has been designed to perform cross-flow filtration by supplying the liquid to be treated at a high flow rate along the membrane surface of an ultrafiltration membrane. In some cases, an ultrafiltration membrane or a precision filtration membrane is immersed in a biological treatment tank, the membrane surface is cleaned by aeration and stirring, and then suction filtration is performed by negative pressure.

発明が解決しようとする課題 しかし、上記したクロスフロー濾過においては、被処理
液を高流速で通水させるので、圧送ポンプなどにおいて
消費するエネルギーが大きく運転コストが高くなる問題
があった。また、負圧による吸引濾過においては、透過
流束(Flux)がクロスフロー濾過に較べて小さいの
で、クロスフロー濾過と同じ透過流量を確保するために
は膜面積の増大を伴い設備コストが高くなる問題があっ
た。
Problems to be Solved by the Invention However, in the above-mentioned cross-flow filtration, since the liquid to be treated is passed through at a high flow rate, there is a problem that a large amount of energy is consumed in the pressure pump and the like, resulting in high operating costs. In addition, in suction filtration using negative pressure, the permeation flux (Flux) is smaller than that in cross-flow filtration, so in order to secure the same permeation flow rate as cross-flow filtration, the membrane area increases and the equipment cost increases. There was a problem.

さらに、負圧による吸引濾過においては、膜面の目詰ま
りを防止するために曝気撹拌によって膜面の洗浄を行っ
ているが、空気による攪拌では膜面流速が0.5 m/
秒径程度限界とするために、膜面にケーキ層を形成し易
く、被処理液の汚泥濃度を高くできない問題があった。
Furthermore, in suction filtration using negative pressure, the membrane surface is cleaned by aeration agitation to prevent clogging of the membrane surface, but with air agitation, the membrane surface flow velocity is 0.5 m/
Since the limit is about the diameter of a second, a cake layer tends to form on the membrane surface and there is a problem that the sludge concentration of the liquid to be treated cannot be increased.

また、曝気空気量を多くしすぎると、生物処理槽におけ
る生物反応に必要な酸素量を上回り、生物処理に悪影響
を及ぼす問題があった。
Furthermore, if the amount of aerated air is too large, it exceeds the amount of oxygen required for the biological reaction in the biological treatment tank, resulting in the problem of adversely affecting the biological treatment.

本発明は上記課題を解決するもので、浸漬型の吸引濾過
とクロスフロー濾過を併用することにより、両者の欠点
を補完することができる有機性廃水の処理装置を提供す
ることを目的とする。
The present invention solves the above problems, and aims to provide an organic wastewater treatment device that can compensate for the drawbacks of both immersion-type suction filtration and cross-flow filtration by using both methods.

課題を解決するための手段 上記課題を解決するために本発明は、処理水槽内に浸漬
して配置され、負圧側が吸引ポンプの吸入側に連通ずる
浸漬型膜分離装置と、浸漬型膜分離装置の下方に設けら
れた曝気装置と、処理水槽に圧送ポンプを介して連通す
るクロスフロー型膜分離装置と、クロスフロー型膜分離
装置に一端が連通し、他端が処理水槽に連通する循環管
とを備えた構成としたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a submerged membrane separator which is placed immersed in a treated water tank and whose negative pressure side communicates with the suction side of a suction pump, and a submerged membrane separator. An aeration device installed below the device, a cross-flow type membrane separator that communicates with the treated water tank via a pressure pump, and a circulation system in which one end communicates with the cross-flow membrane separator and the other end communicates with the treated water tank. The structure includes a pipe.

また、処理水槽内に複数の浸漬型膜分離装置を設け、各
浸漬型膜分離装置に対応して複数の曝気装置を設けた構
成としたものである。
Further, a plurality of immersion type membrane separation devices are provided in the treated water tank, and a plurality of aeration devices are provided corresponding to each immersion type membrane separation device.

作用 上記した構成により、処理水槽に流入した被処理液は処
理水槽内の活性汚泥と混合され、活性汚泥を形成する硝
化菌・脱窒素菌およびBOD酸化菌などにより窒素・B
ODが除去される。
Effect With the above-mentioned configuration, the liquid to be treated that flows into the treated water tank is mixed with the activated sludge in the treated water tank, and the nitrifying bacteria, denitrifying bacteria, BOD oxidizing bacteria, etc.
OD is removed.

そして、処理水槽の被処理液は吸引ポンプの負圧を受け
て浸漬型膜分離装置に吸引濾過され、浸漬型膜分離装置
の濾過膜を透過する透過液と濾過膜の膜面に捕集される
活性汚泥とに固液分離される。また、濾過膜の膜面に捕
集された活性汚泥は、曝気装置から噴出する空気によっ
て生じる上昇撹拌流を受けて洗浄され、処理水槽内に滞
留する。
Then, the liquid to be treated in the treated water tank is suction-filtered by the submerged membrane separator under the negative pressure of the suction pump, and the permeate that passes through the filtration membrane of the submerged membrane separator is collected on the membrane surface of the filtration membrane. The activated sludge is separated into solid and liquid. In addition, the activated sludge collected on the membrane surface of the filtration membrane is washed by the upward stirring flow generated by the air ejected from the aeration device, and remains in the treated water tank.

そして、処理水槽内の被処理液は圧送ポンプによってク
ロスフロー型膜分離装置に供給され、濾過膜の膜面に沿
って所定の高流速で通水されることによりクロスフロー
濾過され、濾過膜を透過する透過液と濾過膜に透過を阻
止される活性汚泥とに固液分離される。さらに、濾過膜
を透過した透過液は処理水として抽出され、濾過膜に透
過を阻止された活性汚泥は高流速の流水に洗い流されて
循環管を通り、処理水槽に返送汚泥と硝化循環液を兼ね
て戻される。
Then, the liquid to be treated in the treated water tank is supplied to a cross-flow type membrane separation device by a pressure pump, and is cross-flow filtered by passing water along the membrane surface of the filtration membrane at a predetermined high flow rate. Solid-liquid separation is performed into permeated liquid and activated sludge whose permeation is blocked by a filtration membrane. Furthermore, the permeate that has permeated through the filtration membrane is extracted as treated water, and the activated sludge whose permeation is blocked by the filtration membrane is washed away by high-flow water and passes through the circulation pipe, where it is returned to the treatment water tank and the sludge and nitrification circulating liquid are returned. It will also be returned.

したがって、浸漬型膜分離装置においては、被処理液中
のBODm度に規定される曝気条件下において濾過膜が
目詰まりしない程度の汚泥濃度に被処理液が濃縮され、
浸漬型膜分離装置による濃縮率の不足がクロスフロー型
膜分離装置で補なわれて最終的に所定の汚泥濃度が達成
される。このため、浸漬型膜分離装置における濾過膜の
目詰まりが防止されるとともに、クロスフロー型膜分離
装置に対する被処理液の量的負荷が軽減され、圧送ポン
プの出力の低減によりエネルギーコストが低下する。
Therefore, in the submerged membrane separator, the liquid to be treated is concentrated to a sludge concentration that does not clog the filtration membrane under aeration conditions defined by the degree of BODm in the liquid to be treated,
The insufficiency of the concentration rate caused by the submerged membrane separator is compensated for by the cross-flow membrane separator, and a predetermined sludge concentration is finally achieved. This prevents clogging of the filtration membrane in the submerged membrane separator, reduces the quantitative load of the liquid to be treated on the cross-flow membrane separator, and lowers energy costs by reducing the output of the pressure pump. .

そして、複数の浸漬型膜分離装置および曝気装置を設け
、被処理液の流量および被処理液のBOD濃度に応じて
、運転する曝気装置および浸漬型膜分離装置の数量を調
節することにより、浸漬型膜分離装置の濾過膜の目詰ま
りを防止する曝気強度を維持しながら被処理液に対する
曝気空気量を適宜に調整することができる。
Then, by providing a plurality of submerged membrane separators and aeration devices, and adjusting the number of aeration devices and submerged membrane separators to be operated according to the flow rate of the liquid to be treated and the BOD concentration of the liquid to be treated, The amount of aerated air for the liquid to be treated can be adjusted as appropriate while maintaining the aeration intensity that prevents clogging of the filtration membrane of the membrane separation device.

実施例 以下本発明の一実施例を図面に基づいて説明する。第1
図において、生物反応槽1には被処理液2を供給するた
めの被処理液供給管3が連通しており、被処理液2はし
尿、浄化槽汚泥などの有機性廃水を前処理設備(図示せ
ず)において、膜分離の障害とならない程度に夾雑物を
除去したものである。そして、生物反応槽1に連通して
曝気槽4が設けられており、生物反応槽1と曝気槽4と
によって処理水槽が構成されている。また、曝気槽4の
内部には浸漬型膜分離装置5が浸漬して配置されており
、浸漬型膜分離装置5は複数の膜モジュールを10〜2
0ミリ程度の間隔をおいて配置したもので、各膜モジュ
ールはPvCやFRPの濾板に限外濾過膜の平膜を張り
付けたものである。
EXAMPLE An example of the present invention will be described below based on the drawings. 1st
In the figure, a to-be-treated liquid supply pipe 3 for supplying a to-be-treated liquid 2 is connected to a biological reaction tank 1. (not shown), with impurities removed to the extent that they do not interfere with membrane separation. An aeration tank 4 is provided in communication with the biological reaction tank 1, and the biological reaction tank 1 and the aeration tank 4 constitute a treated water tank. Further, a submerged membrane separator 5 is disposed immersed inside the aeration tank 4, and the submerged membrane separator 5 has a plurality of membrane modules of 10 to 2.
They are arranged at intervals of about 0 mm, and each membrane module consists of a flat ultrafiltration membrane attached to a PvC or FRP filter plate.

そして、浸漬型膜分離装置5の負圧倒には濾過液抽出管
7が連通しており、濾過液抽出管7の途中には吸引ポン
プ8が介装されている。さらに、浸漬型膜分離装置5の
下方には曝気装置8が設けられており、曝気装置9には
ブロワ−IOが接続されている。
A filtrate extraction pipe 7 is connected to the negative side of the submerged membrane separator 5, and a suction pump 8 is interposed in the middle of the filtrate extraction pipe 7. Further, an aeration device 8 is provided below the submerged membrane separator 5, and a blower IO is connected to the aeration device 9.

そして、曝気槽4の底部には余剰汚泥排出管11が連通
しており、余剰汚泥排出管11は給泥ポンプ12を介し
て脱水機13に連通している。尚、余剰汚泥排出管11
は、図中に破線示すように、後述する循環管の途中に連
通させても良い。また、脱水機13は分離液管14を介
して二次処理水槽15に連通している。さらに、曝気槽
4は送液ポンプ16を介してプレスクリーン17に連通
しており、プレスクリーン17は圧送ポンプ18を介し
てクロスフロー型膜分離装置13に連通している。尚、
プレスクリーン17は前処理設備との兼ね合いで決定さ
れるもので、前処理の精度がよい場合には必ずしも必要
でない。
An excess sludge discharge pipe 11 communicates with the bottom of the aeration tank 4, and the excess sludge discharge pipe 11 communicates with a dehydrator 13 via a sludge pump 12. In addition, excess sludge discharge pipe 11
may be communicated in the middle of a circulation pipe, which will be described later, as shown by a broken line in the figure. Further, the dehydrator 13 is connected to a secondary treatment water tank 15 via a separated liquid pipe 14. Further, the aeration tank 4 communicates with a prescreen 17 via a liquid feed pump 16, and the prescreen 17 communicates with a cross-flow membrane separation device 13 via a pressure pump 18. still,
The pre-screen 17 is determined based on the pre-processing equipment, and is not necessarily necessary if the pre-processing accuracy is high.

また、クロスフロー型膜分離装置19は循環管20を介
して生物反応槽1に連通ずるとともに、透過側が二次処
理水槽15に連通している。
Further, the cross-flow type membrane separation device 19 communicates with the biological reaction tank 1 via a circulation pipe 20, and the permeate side communicates with the secondary treatment water tank 15.

以下、上記構成における作用について説明する。Hereinafter, the effects of the above configuration will be explained.

被処理液供給管3から生物反応槽1に流入した被処理液
2は生物反応槽1の活性汚泥と混合された後に曝気槽4
に流入する。このとき、被処理液2は生物反応槽1およ
び曝気槽4において活性汚泥を形成する硝化菌・脱窒素
菌およびBOD酸化菌などにより窒素・BODが除去さ
れる。
The liquid to be treated 2 flowing into the biological reaction tank 1 from the liquid to be treated supply pipe 3 is mixed with the activated sludge in the biological reaction tank 1 and then transferred to the aeration tank 4.
flows into. At this time, nitrogen and BOD are removed from the liquid to be treated 2 by nitrifying bacteria, denitrifying bacteria, BOD oxidizing bacteria, etc. that form activated sludge in the biological reaction tank 1 and the aeration tank 4.

そして、曝気槽4の被処理液2は吸引ポンプ8の負圧を
受けて浸漬型膜分離装置5に吸引濾過され、浸漬型膜分
離装置5の濾過膜を透過する透過液と濾過膜の膜面に捕
集される活性汚泥とに固液分離される。また、濾過膜を
透過した透過液は濾過液抽出管7を通って二次処理水槽
15に流入し、濾過膜の膜面に捕集された活性汚泥は、
曝気装置9から噴出する空気によって生じる上昇撹拌流
を受けて洗浄され、曝気槽4に滞留する。そして、曝気
槽4の余剰汚泥が給泥ポンプ12により余剰汚泥排出管
11を通して脱水機13に供給され、曝気槽4における
汚泥濃度が一定に維持される。また、脱水機13におい
て分離された分離液は二次処理水槽I5に流入する。
Then, the liquid to be treated 2 in the aeration tank 4 is subjected to negative pressure from the suction pump 8 and is suction-filtered by the submerged membrane separator 5, and the permeated liquid and the membrane of the filtration membrane pass through the filtration membrane of the submerged membrane separator 5. The activated sludge is collected on the surface and separated into solid and liquid. In addition, the permeated liquid that has passed through the filtration membrane flows into the secondary treatment water tank 15 through the filtrate extraction pipe 7, and the activated sludge collected on the membrane surface of the filtration membrane is
The air is washed by the upward stirring flow generated by the air ejected from the aeration device 9, and remains in the aeration tank 4. The surplus sludge in the aeration tank 4 is then supplied by the sludge pump 12 to the dehydrator 13 through the surplus sludge discharge pipe 11, and the sludge concentration in the aeration tank 4 is maintained constant. Further, the separated liquid separated in the dehydrator 13 flows into the secondary treatment water tank I5.

そして、曝気槽4の被処理液2は送液ポンプ16によっ
てプレスクリーン17に送られて夾雑物を除去された後
に、圧送ポンプ18によってクロスフロー型膜分離装置
19に供給される。さらに、クロスフロー型膜分離装置
19に供給された被処理水は、濾過膜の膜面に沿って所
定の高流速で通水されることによりクロスフロー濾過さ
れ、濾過膜を透過する透過液と濾過膜に透過を阻止され
る活性汚泥とに固液分離される。さらに、濾過膜を透過
した透過液は処理水として抽出されて二次処理水槽■5
に供給され、濾過膜に透過を阻止された活性汚泥は高流
速の流水に洗い流されて循環管20を通り、生物反応槽
1に返送汚泥と硝化循環液を兼ねて戻される。
The liquid to be treated 2 in the aeration tank 4 is sent to a pre-screen 17 by a liquid feed pump 16 to remove impurities, and then is fed to a cross-flow type membrane separator 19 by a pressure feed pump 18. Further, the water to be treated supplied to the cross-flow type membrane separation device 19 is cross-flow filtered by passing water along the membrane surface of the filtration membrane at a predetermined high flow rate, and the water is mixed with the permeate passing through the filtration membrane. It is separated into solid-liquid and activated sludge whose permeation is blocked by a filtration membrane. Furthermore, the permeate that has passed through the filtration membrane is extracted as treated water to the secondary treatment tank ■5.
The activated sludge that is supplied to the biological reaction tank 1 and whose permeation is blocked by the filter membrane is washed away by high-flow water, passes through the circulation pipe 20, and is returned to the biological reaction tank 1, serving as return sludge and nitrification circulating liquid.

したがって、浸漬型膜分離装置4においては、被処理液
2のBOD濃度に規定される曝気条件下において濾過膜
が目詰まりしない程度の汚泥濃度に被処理液2が濃縮さ
れ、浸漬型膜分離装置4による濃縮率の不足がクロスフ
ロー型膜分離装置19で補なわれて最終的に所定の汚泥
濃度が達成される。このため、浸漬型膜分離装置4にお
ける濾過膜の目詰まりが防止されるとともに、クロスフ
ロー型膜分離装置19に対する被処理液2の量的負荷が
軽減され、圧送ポンプ18の出力の低減によりエネルギ
ーコストが低下する。
Therefore, in the immersed membrane separator 4, the liquid to be treated 2 is concentrated to a sludge concentration that does not clog the filtration membrane under the aeration conditions defined by the BOD concentration of the liquid to be treated 2, and the immersed membrane separator The lack of concentration ratio due to 4 is compensated for by the cross-flow type membrane separator 19, and a predetermined sludge concentration is finally achieved. Therefore, clogging of the filtration membrane in the submerged membrane separator 4 is prevented, and the quantitative load of the liquid to be treated 2 on the cross-flow membrane separator 19 is reduced. Costs go down.

尚、生物反応槽1に浸漬型膜分離装置5を配置しても良
いが、水質レベルを向上させるためには本実施例のよう
に、独立した曝気槽4の内部に浸漬型膜分離装置5を配
置するほうが良い。
Note that the immersed membrane separator 5 may be placed in the biological reaction tank 1, but in order to improve the water quality level, the immersed membrane separator 5 is placed inside the independent aeration tank 4 as in this embodiment. It is better to place

そして、第2図に示すように、−気槽4に複数の浸漬型
膜分離装置5と複数の曝気装置9を配置し、各浸漬型膜
分離装置5と吸引ポンプ8の間に第1開閉弁21を介装
するとともに、各曝気装置9とブロワ−10の間に第2
開閉弁22を介装する構成としても良く、この構成にお
いては、被処理液2の流量および被処理液2のBOD濃
度に応じて、第1開閉弁21および第2開閉弁22を操
作して運転する曝気装置9および浸漬型膜分離装置5の
数量を調節することにより、浸漬型膜分離装置5の濾過
膜の目詰まりを防止する曝気強度を維持しながら被処理
液2に対する曝気空気量を適宜に調整することができる
As shown in FIG. A valve 21 is installed, and a second valve is installed between each aeration device 9 and the blower 10.
A configuration may be adopted in which an on-off valve 22 is provided, and in this configuration, the first on-off valve 21 and the second on-off valve 22 are operated according to the flow rate of the liquid to be treated 2 and the BOD concentration of the liquid to be treated 2. By adjusting the quantity of the aeration device 9 and submerged membrane separator 5 to be operated, the amount of aerated air for the liquid to be treated 2 can be controlled while maintaining the aeration intensity that prevents clogging of the filtration membrane of the submerged membrane separator 5. It can be adjusted as appropriate.

発明の効果 以上述べたように本発明によれば、浸漬型膜分離装置と
クロスフロー型膜分離装置を併用し、浸漬型膜分離装置
による濃縮率の不足をクロスフロー型膜分離装置で補っ
て最終的に所定の汚泥濃度を達成することにより、浸漬
型膜分離装置においては、被処理液中のBOD濃度に規
定される曝気条件下において濾過膜が目詰まりしない程
度の汚泥濃度に被処理液を濃縮すれば良くなり、浸漬型
膜分離装置の濾過膜の目詰まりを防止することができる
。また、浸漬型膜分離装置により被処理液をある程度に
濃縮することにより、クロスフロー型膜分離装置に対す
る被処理液の量的負荷を軽減して圧送ポンプの出力を低
減し、エネルギーコストの低下を図ることができる。
Effects of the Invention As described above, according to the present invention, a submerged membrane separator and a cross-flow membrane separator are used in combination, and the cross-flow membrane separator compensates for the lack of concentration caused by the submerged membrane separator. By finally achieving a predetermined sludge concentration, the sludge concentration in the treated liquid is adjusted to such a level that the filtration membrane does not become clogged under the aeration conditions specified by the BOD concentration in the treated liquid. It is possible to prevent clogging of the filtration membrane of the submerged membrane separator. In addition, by concentrating the liquid to be treated to a certain extent using the submerged membrane separator, the quantitative load of the liquid to be treated on the cross-flow membrane separator is reduced, reducing the output of the pressure pump and reducing energy costs. can be achieved.

また、複数の浸漬型膜分離装置および曝気装置を設ける
ことにより、運転する曝気装置および浸漬型膜分離装置
の数量を調節して浸漬型膜分離装置の濾過膜の目詰まり
を防止す−る曝気強度を維持しながら被処理液に対する
曝気空気量を適宜に調整することができる。
In addition, by providing a plurality of submerged membrane separators and aeration devices, the number of aeration devices and submerged membrane separators to be operated can be adjusted to prevent clogging of the filtration membrane of the submerged membrane separator. The amount of aerated air for the liquid to be treated can be adjusted as appropriate while maintaining the strength.

【図面の簡単な説明】 第1図は本発明の一実施例を示す全体構成図、第2図は
本発明の他の実施例を示す浸漬型膜分離装置の配置図で
ある。 1・・・生物反応槽、4・・・曝気槽、5・・・浸漬型
膜分離装置、19・・・クロスフロー型膜分離装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, and FIG. 2 is a layout diagram of a submerged membrane separation apparatus showing another embodiment of the present invention. 1... Biological reaction tank, 4... Aeration tank, 5... Immersion type membrane separation device, 19... Cross flow type membrane separation device.

Claims (1)

【特許請求の範囲】 1、処理水槽内に浸漬して配置され、負圧側が吸引ポン
プの吸入側に連通する浸漬型膜分離装置と、浸漬型膜分
離装置の下方に設けられた曝気装置と、処理水槽に圧送
ポンプを介して連通するクロスフロー型膜分離装置と、
クロスフロー型膜分離装置に一端が連通し、他端が処理
水槽に連通する循環管とを備えたことを特徴とする有機
性廃水の処理装置。 2、処理水槽内に複数の浸漬型膜分離装置を設け、各浸
漬型膜分離装置に対応して複数の曝気装置を設けたこと
を特徴とする請求項1記載の有機性廃水の処理装置。
[Scope of Claims] 1. An immersed membrane separator that is immersed in a treated water tank and whose negative pressure side communicates with the suction side of a suction pump; and an aeration device provided below the immersed membrane separator. , a cross-flow membrane separation device that communicates with the treated water tank via a pressure pump;
1. An organic wastewater treatment device comprising a circulation pipe having one end communicating with a cross-flow type membrane separation device and the other end communicating with a treated water tank. 2. The organic wastewater treatment apparatus according to claim 1, wherein a plurality of immersion type membrane separation devices are provided in the treated water tank, and a plurality of aeration devices are provided corresponding to each immersion type membrane separation device.
JP2083294A 1990-03-29 1990-03-29 Device for treating organic waste water Pending JPH03284396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2083294A JPH03284396A (en) 1990-03-29 1990-03-29 Device for treating organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2083294A JPH03284396A (en) 1990-03-29 1990-03-29 Device for treating organic waste water

Publications (1)

Publication Number Publication Date
JPH03284396A true JPH03284396A (en) 1991-12-16

Family

ID=13798378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083294A Pending JPH03284396A (en) 1990-03-29 1990-03-29 Device for treating organic waste water

Country Status (1)

Country Link
JP (1) JPH03284396A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348417B1 (en) * 1999-09-08 2002-08-13 에스케이건설 주식회사 Apparatus and method of submerged membrane wastewater treatment with stabilized sludge
KR100443423B1 (en) * 2002-04-04 2004-08-09 주식회사 청우네이처 Ultra Filtration Wastewater Reusing System Using Hydraulic Pressure
JP2020081973A (en) * 2018-11-27 2020-06-04 株式会社クボタ Clean water treatment method, and clean water treatment system
JP2021098165A (en) * 2019-12-23 2021-07-01 株式会社クボタ Water treatment facility operation method and water treatment facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120694A (en) * 1984-11-19 1986-06-07 Mitsubishi Kakoki Kaisha Ltd Treatment of organic waste water
JPS62197197A (en) * 1986-01-29 1987-08-31 Mitsui Petrochem Ind Ltd Treatment of organic drain
JPH01168304A (en) * 1987-12-22 1989-07-03 Kubota Ltd Solid/liquid separation and condensation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120694A (en) * 1984-11-19 1986-06-07 Mitsubishi Kakoki Kaisha Ltd Treatment of organic waste water
JPS62197197A (en) * 1986-01-29 1987-08-31 Mitsui Petrochem Ind Ltd Treatment of organic drain
JPH01168304A (en) * 1987-12-22 1989-07-03 Kubota Ltd Solid/liquid separation and condensation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100348417B1 (en) * 1999-09-08 2002-08-13 에스케이건설 주식회사 Apparatus and method of submerged membrane wastewater treatment with stabilized sludge
KR100443423B1 (en) * 2002-04-04 2004-08-09 주식회사 청우네이처 Ultra Filtration Wastewater Reusing System Using Hydraulic Pressure
JP2020081973A (en) * 2018-11-27 2020-06-04 株式会社クボタ Clean water treatment method, and clean water treatment system
JP2021098165A (en) * 2019-12-23 2021-07-01 株式会社クボタ Water treatment facility operation method and water treatment facility

Similar Documents

Publication Publication Date Title
US7329344B2 (en) Grease and scum removal in a filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
US11643345B2 (en) Method for treating organic wastewater, and device for treating organic wastewater
JP7110052B2 (en) Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment
JPH07155758A (en) Waste water treating device
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JPH1076264A (en) Sewage treatment apparatus using immersion type membrane separator
JPH07303895A (en) Water treatment apparatus
JPH1015574A (en) Sewage treatment apparatus
JPH03284396A (en) Device for treating organic waste water
JP3278560B2 (en) Water treatment equipment
JP3654799B2 (en) Nitrogen-containing wastewater treatment equipment
JP3773360B2 (en) Septic tank with membrane separation
JP4046445B2 (en) Wastewater treatment method
JPH09117794A (en) Biological denitrification device
JP3124197B2 (en) Sewage treatment equipment
JPH07256294A (en) Living waste water treatment apparatus
JP3807945B2 (en) Method and apparatus for treating organic wastewater
JP3666064B2 (en) Wastewater treatment equipment
JPH06218238A (en) Suction device for film separation unit
JP2744381B2 (en) Water treatment control device
JP2801110B2 (en) Organic wastewater treatment equipment
JPH0398697A (en) Water treatment apparatus
JP2000167576A (en) Septic tank
JP2001276874A (en) Solid/liquid separation method and device in organic drain treatment
JPH11128929A (en) Solid-liquid separator for sludge mixed liquid