JP2020081973A - Clean water treatment method, and clean water treatment system - Google Patents

Clean water treatment method, and clean water treatment system Download PDF

Info

Publication number
JP2020081973A
JP2020081973A JP2018220790A JP2018220790A JP2020081973A JP 2020081973 A JP2020081973 A JP 2020081973A JP 2018220790 A JP2018220790 A JP 2018220790A JP 2018220790 A JP2018220790 A JP 2018220790A JP 2020081973 A JP2020081973 A JP 2020081973A
Authority
JP
Japan
Prior art keywords
water
water level
tank
separation device
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018220790A
Other languages
Japanese (ja)
Other versions
JP7153540B2 (en
Inventor
克行 保科
Katsuyuki Hoshina
克行 保科
耕平 田邉
Kohei Tanaba
耕平 田邉
泰輔 栗山
Taisuke Kuriyama
泰輔 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2018220790A priority Critical patent/JP7153540B2/en
Publication of JP2020081973A publication Critical patent/JP2020081973A/en
Application granted granted Critical
Publication of JP7153540B2 publication Critical patent/JP7153540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a clean water treatment method and a clean water treatment system, synergistically utilizing the advantages of both of a membrane separation device of a total amount filtration type and a membrane filtration device of a cross-flow filtration type used in combination.SOLUTION: The operation of a casing-storage type membrane separation device 5 and a tank-immersed type membrane separation device 6 used in combination is controlled according to control indices, which casing-storage type membrane separation device 5 filters raw water fed into a casing which is a closed space storing filtration membranes, and which tank-immersed type membrane separation device 6 filters raw water by immersing a housing which is an open space storing filtration membranes, in a tank storing the raw water.SELECTED DRAWING: Figure 1

Description

本発明は、浄水処理方法および浄水処理システムに関し、方式の異なる2種類の膜分離装置を併用する技術に係るものである。 TECHNICAL FIELD The present invention relates to a water purification treatment method and a water purification treatment system, and relates to a technique of using two types of membrane separation devices of different systems in combination.

従来、一般的な膜ろ過装置としては、ケーシング収納型膜分離装置と槽浸漬型膜分離装置がある。 Conventionally, as a general membrane filtration apparatus, there are a casing storage type membrane separation apparatus and a tank immersion type membrane separation apparatus.

ケーシング収納型膜分離装置は、例えば特許文献1のようなものである。 The casing storage type membrane separation device is, for example, as disclosed in Patent Document 1.

この膜コンポーネントは、多孔質の膜エレメントと、膜エレメントを収容する筒状の閉鎖的空間をなすケーシングを備えている。膜エレメントは、略直方体形状に形成されて対向面間に貫通する複数の流体通流孔を有し、流体通流孔の周面と内面との間で原水のろ過を行なう。ケーシングは、筒状の本体とその両端を塞ぐ一対の蓋体とを備えている。 This membrane component comprises a porous membrane element and a casing that forms a closed cylindrical space that houses the membrane element. The membrane element has a plurality of fluid passage holes formed in a substantially rectangular parallelepiped shape and penetrating between the opposed surfaces, and performs filtration of raw water between the peripheral surface and the inner surface of the fluid passage hole. The casing includes a tubular main body and a pair of lids that close both ends thereof.

膜ろ過工程では、原水が流体通流孔を下から上へ流れながら、ケーシング収納型膜分離装置の膜エレメントを内側の一次側から外側の二次側へ透過し、膜エレメントを透過した処理水が外部に取り出される。 In the membrane filtration step, raw water permeates through the membrane element of the casing-enclosed membrane separator from the inner primary side to the outer secondary side while the raw water flows from the bottom to the top of the fluid passage, and the treated water that has permeated the membrane element. Are taken out.

逆圧洗浄工程では、逆洗水が膜エレメントの外側の二次側から内側の一次側へ透過し、流体通流孔の内面に付着した異物を剥離させて膜エレメントを逆圧洗浄する。剥離した異物は逆洗水とともに、逆洗排水として外部に排出される。 In the back pressure washing step, the back washing water permeates from the outer secondary side of the membrane element to the inner primary side to remove foreign matter adhering to the inner surface of the fluid flow hole to back wash the membrane element. The separated foreign matter is discharged to the outside as backwash drainage together with the backwash water.

槽浸漬型膜分離装置は、例えば特許文献2のようなものである。 The tank immersion type membrane separation device is, for example, as disclosed in Patent Document 2.

この膜分離装置は、複数本の管状の膜エレメントを膜ケースに収めたものであり、膜ケースは、上端および下端が開口した開放的空間をなす。膜エレメントは、セラミックス製の管状多孔質支持体の外周面にろ過膜を備えたものである。膜エレメントは、軸心方向(長さ方向)を水平方向に沿わせて配置され、所定間隔をあけて平行に並べられている。相対向する膜エレメントのろ過膜の膜面間には、開放された流路が形成されている。膜エレメントの下方には、散気量を調整可能な散気装置を備えている。 This membrane separation device has a plurality of tubular membrane elements housed in a membrane case, and the membrane case forms an open space with its upper end and lower end opened. The membrane element is provided with a filtration membrane on the outer peripheral surface of a tubular porous support made of ceramics. The membrane elements are arranged with the axial direction (length direction) along the horizontal direction, and are arranged in parallel at a predetermined interval. An open flow path is formed between the membrane surfaces of the filtration membranes of the membrane elements facing each other. Below the membrane element, an air diffuser capable of adjusting the amount of air diffused is provided.

膜ろ過工程では、散気装置から散気する空気のエアリフト作用により被処理水の上向流が生じる。被処理水は膜ケースの内外にわたって循環し、膜ケース内では気液混相流として流れる。被処理水は槽内の自然水頭を受けてろ過膜を透過し、処理水導出系に流れ出る。膜面上に残る異物は膜面に沿って流れる被処理水により洗い流される。 In the membrane filtration step, an upward flow of the water to be treated occurs due to the air lift action of the air diffused from the diffuser. The water to be treated circulates inside and outside the membrane case and flows as a gas-liquid mixed phase flow inside the membrane case. The water to be treated receives the natural head in the tank, permeates the filtration membrane, and flows out to the treated water outlet system. The foreign matter remaining on the film surface is washed away by the water to be treated flowing along the film surface.

また、特許文献3には、取水した水道原水を被処理水として濾過処理し、濾過処理水の水質を検査した後、外部に配水する浄水設備が記載されている。膜濾過部には、被処理水が濾過膜を経由する膜濾過経路と濾過膜を経由しないバイパス経路とを設けており、膜濾過経路を流下した膜濾過処理水と、バイパス経路を流下したバイパス水とに基づいて水質を検査する水質検査手段を設けている。この水質検査手段の検査結果に基づいて、膜濾過制御手段が膜濾過経路において被処理水を経由させる濾過膜の数を決定する。 Further, Patent Document 3 describes a water purification facility that filters the treated raw tap water as water to be treated, inspects the quality of the filtered water, and then distributes the water to the outside. The membrane filtration section is provided with a membrane filtration route through which the water to be treated passes through the filtration membrane and a bypass route not through the filtration membrane, and the membrane filtration treated water flowing down the membrane filtration route and the bypass flowing down the bypass route. Water quality inspection means for inspecting water quality based on water is provided. Based on the inspection result of the water quality inspection means, the membrane filtration control means determines the number of filtration membranes through which the water to be treated passes in the membrane filtration route.

また、特許文献4のメディア及び膜ろ過複合ろ過設備は、メディアろ過池と、メディアろ過池のろ過槽に配設した膜分離装置からなる。膜分離装置は、ろ過時における処理水の水位よりも下方となる位置に膜モジュールを配設している。 Further, the media and membrane filtration combined filtration equipment of Patent Document 4 comprises a media filtration pond and a membrane separation device arranged in the filtration tank of the media filtration pond. In the membrane separation device, the membrane module is arranged at a position below the water level of the treated water during filtration.

ろ過槽に供給された被処理水は、メディアろ過池と膜分離装置の双方によって同時にろ過処理され、メディアろ過池と膜分離装置の双方からろ過後の浄水を同時に得る。 The water to be treated supplied to the filtration tank is simultaneously filtered by both the media filtration pond and the membrane separation device, and the purified water after filtration is simultaneously obtained from both the media filtration pond and the membrane separation device.

特許第6175262号Patent No. 6175262 特開平8−332352号JP-A-8-332352 特開2005−334777JP 2005-334777 A 特許第4672993号Patent No. 4672993

ケーシング収納型膜分離装置は、槽浸漬型膜分離装置のように、ろ過運転中に散気装置による散気によって気液混相流を生じさせる必要がなく、動力費のランニングコストが少ない利点がある。しかし、供給原水に含まれた懸濁物質やコロイド等のろ過膜を透過しなかった物質がろ過膜の膜面上に堆積するので、適時に逆洗によって膜面を洗浄する必要がある。このため、生産した処理水量から逆洗に要した逆洗水量を減算した値が配給域に供給可能な給水量となる。 The casing-enclosed membrane separator does not need to generate a gas-liquid mixed-phase flow due to air diffusion by the air diffuser during the filtration operation, unlike the tank-immersed membrane separator, and has the advantage of low running cost of power costs. .. However, suspended substances and colloids contained in the supplied raw water that have not permeated the filtration membrane are deposited on the membrane surface of the filtration membrane, so it is necessary to wash the membrane surface by backwashing at appropriate times. Therefore, a value obtained by subtracting the amount of backwash water required for backwashing from the amount of treated water produced is the amount of water that can be supplied to the distribution area.

逆洗の頻度は原水の濁度が高くなるほどに多くなり、逆洗の頻度が多くなるほどに逆洗水として使用する処理水量が増加し、結果として給水量が減少する。 The frequency of backwashing increases as the turbidity of the raw water increases, and the amount of treated water used as backwashing water increases as the frequency of backwashing increases, resulting in a decrease in water supply.

取水する河川水の濁度は、降雨等に起因して高くなるので、台風が発生する季節において原水の濁度が高くなる頻度が多くなる。また、近年、気象環境は不安定となる場合が多く、集中豪雨の一種であるゲリラ豪雨が多発しており、急激な気象の変化に起因して原水の濁度が一時的に高くなることがあり、給水の安定性が阻害される。 Since the turbidity of the river water taken in is high due to rainfall, etc., the turbidity of the raw water is often high in the season when typhoons occur. In recent years, the weather environment has often become unstable, and guerrilla heavy rainfall, which is a type of concentrated heavy rainfall, frequently occurs, and the turbidity of raw water may temporarily increase due to sudden changes in weather. Yes, the stability of water supply is hindered.

槽浸漬型膜分離装置は、散気ガスと供給原水の気液混相流の流速が高いほどに膜面に付着する異物等の物質の堆積が抑制される。しかし、気液混相流の流速を高めるためには、散気量の増加に要する動力費のランニングコストが増加する。 In the tank immersion type membrane separation device, the higher the flow velocity of the gas-liquid mixed phase flow of the diffused gas and the raw feed water, the more the accumulation of substances such as foreign substances attached to the membrane surface is suppressed. However, in order to increase the flow velocity of the gas-liquid mixed phase flow, the running cost of the power cost required to increase the amount of diffused air increases.

本発明は上記課題を解決するものであり、ケーシング収納型膜分離装置と槽浸漬型膜分離装置を併用して、両者の利点を相乗的に利用する浄水処理方法および浄水処理システムを提供すること目的とする。 The present invention is to solve the above problems, and to provide a water purification treatment method and a water purification treatment system that use a casing-enclosed membrane separation device and a tank immersion type membrane separation device in combination and synergistically utilize the advantages of both. To aim.

上記課題を解決するために、本発明の浄水処理方法は、ろ過膜を収納した閉鎖的空間のケーシング内に供給する原水をろ過するケーシング収納型膜分離装置と、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬して原水をろ過する槽浸漬型膜分離装置を併用し、制御指標に基づいてケーシング収納型膜分離装置と槽浸漬型膜分離装置の稼働を制御することを特徴とする。 In order to solve the above problems, the water purification method of the present invention is a casing-accommodating membrane separation device that filters raw water supplied into the casing of a closed space that stores a filtration membrane, and a tank that stores the raw water, The tank-immersed membrane separator that immerses the housing of the open space containing the filtration membrane to filter the raw water is used together, and the operation of the casing-enclosed membrane separator and the tank-immersed membrane separator is controlled based on the control index. It is characterized by doing.

本発明の浄水処理方法において、ケーシング収納型膜分離装置は、制御指標の原水濁度が所定値以下のときに高位の設定稼働率で運転し、制御指標が所定値を超えるときに低位の設定稼働率で運転し、槽浸漬型膜分離装置は、制御指標が所定値以下のときに運転を停止し、制御指標が所定値を超えるときに高位の設定稼働率で運転することを特徴とする。 In the water purification method of the present invention, the casing-enclosed membrane separation device operates at a high set operating rate when the raw water turbidity of the control index is equal to or lower than a predetermined value, and when the control index exceeds a predetermined value, sets the low level. Operated at an operating rate, the tank submerged membrane separation device is characterized by stopping the operation when the control index is less than or equal to a predetermined value, and operating at a higher set operating rate when the control index exceeds a predetermined value. ..

本発明の浄水処理方法において、双方の膜分離装置は、運転台数の変更または運転時間の変更または処理水量の変更またはこれらのうちの二つ以上の組み合わせにより稼働を制御することを特徴とする。 In the water purification method of the present invention, both membrane separation devices are characterized in that their operation is controlled by changing the number of operating units, changing the operating time, changing the amount of treated water, or a combination of two or more of these.

本発明の浄水処理方法において、双方の膜分離装置から給水する処理水は処理水槽を介して下流に送水し、処理水槽の水位を制御指標とし、処理水槽に第1設定水位と、第1設定水位より低い第2設定水位を設定し、ケーシング収納型膜分離装置は、第1設定水位を制御目標水位として稼働を制御し、槽浸漬型膜分離装置は、第2設定水位を制御目標水位として稼働を制御することを特徴とする。 In the purified water treatment method of the present invention, the treated water supplied from both membrane separation devices is sent downstream through the treated water tank, and the water level of the treated water tank is used as a control index, and the first set water level and the first set water level in the treated water tank. The second set water level lower than the water level is set, the casing-enclosed membrane separation device controls the operation with the first set water level as the control target water level, and the tank immersion type membrane separation device uses the second set water level as the control target water level. It is characterized by controlling the operation.

本発明の浄水処理方法において、双方の膜分離装置から給水する処理水は処理水槽を介して下流に送水し、処理水槽の水位を制御指標とし、処理水槽に最も高い第1高位水位と、第1高位水位より低い第2高位水位と、最も低い第1下位水位と、第1下位水位より高い第2下位水位を設定し、ケーシング収納型膜分離装置は、第2下位水位で運転を再開し、第1高位水位で運転を停止し、槽浸漬型膜分離装置は、第1下位水位で運転を再開し、第2高位水位で運転を停止することを特徴とする。 In the water purification method of the present invention, the treated water supplied from both membrane separation devices is sent downstream through the treated water tank, and the water level of the treated water tank is used as a control index, and the highest first high water level in the treated water tank, and The second higher water level lower than the first high water level, the lowest first lower water level, and the second lower water level higher than the first lower water level are set, and the casing-enclosed membrane separation device restarts operation at the second lower water level. The operation is stopped at the first high water level, and the tank submerged membrane separation device is restarted at the first low water level and stopped at the second high water level.

本発明の浄水処理システムは、浄水処理系の途中に並列に配置したケーシング収納型膜分離装置と槽浸漬型膜分離装置を備え、ケーシング収納型膜分離装置は、ろ過膜を収納した閉鎖的空間のケーシング内に供給する原水をろ過する方式をなし、制御指標の原水濁度が所定値以下のときに高位の設定稼働率で運転する高稼働運転モードと、制御指標が所定値を超えるときに低位の設定稼働率で運転する低稼働運転モードを有し、槽浸漬型膜分離装置は、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬して原水をろ過する方式をなし、制御指標が所定値以下のときに運転を停止する運転停止モードと、制御指標が所定値を超えるときに高位の設定稼働率で運転する通常運転モードを有する。 The water purification system of the present invention includes a casing-storing type membrane separation device and a tank immersion type membrane separation device that are arranged in parallel in the middle of the water purification treatment system, and the casing-storing type membrane separation device is a closed space in which a filtration membrane is stored. When the raw water turbidity of the control index is less than or equal to a specified value, a high operation mode that operates at a higher set operating rate and when the control index exceeds the specified value It has a low operation mode that operates at a low set operation rate, and the tank immersion type membrane separation device filters the raw water by immersing the housing of the open space containing the filtration membrane in the tank that stores the raw water. It has a system, and has an operation stop mode in which the operation is stopped when the control index is less than or equal to a predetermined value, and a normal operation mode in which the operation is performed at a high set operating rate when the control index exceeds the predetermined value.

本発明の浄水処理システムは、浄水処理系の途中に並列に配置したケーシング収納型膜分離装置と槽浸漬型膜分離装置、並びに双方の膜分離装置から給水する処理水を貯溜して下流に送水する処理水槽を備え、処理水槽の水位を制御指標とし、処理水槽に第1設定水位と、第1設定水位より低い第2設定水位を設定し、ケーシング収納型膜分離装置は、ろ過膜を収納した閉鎖的空間のケーシング内に供給する原水をろ過する方式をなし、第1設定水位を制御目標水位として稼働を制御する主給水運転モードを有し、槽浸漬型膜分離装置は、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬して原水をろ過する方式をなし、第2設定水位を制御目標水位として稼働を制御する併給水運転モードを有することを特徴とする。 The water purification system of the present invention is a casing storage type membrane separation device and a tank immersion type membrane separation device arranged in parallel in the middle of the water purification treatment system, and stores the treated water supplied from both membrane separation devices and sends it downstream. The treated water tank is used as a control index, and the treated water tank has a first set water level and a second set water level lower than the first set water level, and the casing storage type membrane separation device stores the filtration membrane. It has a method of filtering raw water supplied into the casing of the closed space, and has a main water supply operation mode in which operation is controlled with the first set water level as a control target water level, and the tank immersion type membrane separation device stores the raw water. A method of filtering raw water by immersing a housing of an open space containing a filtration membrane in a tank to be operated, and having a combined water supply operation mode for controlling operation with the second set water level as a control target water level. To do.

本発明の浄水処理システムは、浄水処理系の途中に並列に配置したケーシング収納型膜分離装置と槽浸漬型膜分離装置、並びに双方の膜分離装置から給水する処理水を貯溜して下流に送水する処理水槽を備え、処理水槽の水位を制御指標とし、処理水槽に最も高い第1高位水位と、第1高位水位より低い第2高位水位と、最も低い第1下位水位と、第1下位水位より高い第2下位水位を設定し、ケーシング収納型膜分離装置は、ろ過膜を収納した閉鎖的空間のケーシング内に供給する原水をろ過する方式をなし、第2下位水位で運転を再開し、第1高位水位で運転を停止する主給水運転モードを有し、槽浸漬型膜分離装置は、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬して原水をろ過する方式をなし、第1下位水位で運転を再開し、第2高位水位で運転を停止する併給水運転モードを有することを特徴とする。 The water purification system of the present invention is a casing storage type membrane separation device and a tank immersion type membrane separation device arranged in parallel in the middle of the water purification treatment system, and stores the treated water supplied from both membrane separation devices and sends it downstream. The treated water tank is used as a control index, and the treated water tank has a first high water level that is the highest, a second high water level that is lower than the first high water level, a lowest first lower water level, and a first lower water level. A higher second lower water level is set, and the casing-enclosed membrane separation device has a method of filtering raw water to be supplied into the casing of the closed space accommodating the filtration membrane, and restarts operation at the second lower water level, It has a main water supply operation mode that stops operation at the first high water level, and the tank immersion type membrane separation device filters the raw water by immersing the housing of the open space containing the filtration membrane in the tank that stores the raw water. It is characterized by having a combined water supply operation mode in which the operation is restarted at the first lower water level and the operation is stopped at the second higher water level.

以上の本発明においては、制御指標である濁度や水位の所定値を境にしてケーシング収納型膜分離装置と槽浸漬型膜分離装置との稼働を制御することで、両者の利点を相乗的に利用することができる。 In the present invention described above, by controlling the operation of the casing storage type membrane separation device and the tank immersion type membrane separation device at the boundary of a predetermined value of turbidity or water level which is a control index, the advantages of both are synergistic. Can be used for.

すなわち、ケーシング収納型膜分離装置の利点である低濁度において安定して、かつ低ランニングコストで浄水処理を行えることと、槽浸漬型膜分離装置の利点である高濁度において安定して浄水処理を行えることを組み合わせることで、台風等の季節的な要因による濁度の変化やゲリラ豪雨による急激な濁度の変化に対しても、安定した浄水処理を実現できる。 That is, it is possible to perform stable water purification at a low turbidity, which is an advantage of the casing-containing membrane separation device, and at a low running cost, and to stably purify water at a high turbidity, which is an advantage of the tank immersion type membrane separation device. By combining the treatments that can be performed, stable water purification treatment can be achieved even with changes in turbidity due to seasonal factors such as typhoons and rapid changes in turbidity due to guerrilla heavy rainfall.

本発明の実施の形態における浄水処理システムを示す模式図The schematic diagram which shows the water purification system in embodiment of this invention. 同実施の形態におけるケーシング収納型膜分離装置の一例を示す断面図Sectional drawing which shows an example of the casing storage type membrane separation apparatus in the same embodiment. 同実施の形態におけるケーシング収納型膜分離装置の膜エレメントを示す斜視図The perspective view which shows the membrane element of the casing storage type membrane separation apparatus in the same embodiment. 同実施の形態における槽浸漬型膜分離装置の一例を示す断面図Sectional drawing which shows an example of the tank immersion type membrane separation apparatus in the same embodiment. 同実施の形態における原水の濁度の変化と運転モードの関係を示す図The figure which shows the change of the turbidity of the raw water and the operation mode in the same embodiment. 本発明の他の実施の形態におけるケーシング収納型膜分離装置と槽浸漬型膜分離装置を、処理水を溜める浄水池の水位を制御指標として稼働させる場合の制御方法を示す模式図A schematic diagram showing a control method in the case of operating a casing-encased membrane separation device and a tank immersion type membrane separation device according to another embodiment of the present invention, using the water level of a water purification reservoir for storing treated water as a control index.

実施例1
以下、本発明の実施の形態に係る浄水処理システムを、図面を参照して説明する。図1から図5において、本浄水処理システムは、着水井1と混和池2を備えた取水設備3と、浄水を貯溜して下流域に配水する浄水池4との間に、ケーシング収納型膜分離装置5と槽浸漬型膜分離装置6を並列に配置した浄水処理系である。
(ケーシング収納型膜分離装置)
ケーシング収納型膜分離装置5は、ろ過膜を収納した閉鎖的空間のケーシング内に供給する供給原水の全量をろ過するケーシング収納型膜分離装置をなし、例えば、基本ユニットが図2、図3に示す構造を有し、複数の基本ユニットで構成される。本実施の形態では、膜材質としてセラミックスを例示して説明するが、本発明は膜材質に限定はない。また、いわゆる内圧式、外圧式等の形態による限定もない。
Example 1
Hereinafter, a water purification system according to an embodiment of the present invention will be described with reference to the drawings. 1 to 5, the present water treatment system includes a casing-accommodating membrane between a water intake facility 3 including a landing well 1 and a mixing basin 2 and a water basin 4 that stores the purified water and distributes it to a downstream region. This is a water purification system in which a separation device 5 and a tank immersion type membrane separation device 6 are arranged in parallel.
(Casing type membrane separator)
The casing-storing membrane separation device 5 is a casing-storing membrane separation device that filters the entire amount of the raw feed water supplied into the casing of the closed space that stores the filtration membrane. For example, the basic unit is shown in FIGS. It has the structure shown and is composed of a plurality of basic units. In the present embodiment, ceramics will be described as an example of the film material, but the present invention is not limited to the film material. Further, there is no limitation by a so-called internal pressure type, external pressure type or the like.

ここでは、膜エレメント101は、略直方体形状をなす複数のセラミックス成形体101aからなり、接合材層101bを介して多孔質体のセラミックス成形体101aどうしを接合してなる。膜エレメント101には、複数本の貫通流路104が一対の対向する端面102、103の間を貫通して形成されている。貫通流路104の内面側が一次側をなし、膜エレメント101の外面側が二次側をなす。 Here, the membrane element 101 is composed of a plurality of ceramics molded bodies 101a having a substantially rectangular parallelepiped shape, and the porous ceramics molded bodies 101a are bonded to each other via a bonding material layer 101b. In the membrane element 101, a plurality of through channels 104 are formed so as to penetrate between a pair of opposed end surfaces 102 and 103. The inner surface side of the through channel 104 forms the primary side, and the outer surface side of the membrane element 101 forms the secondary side.

膜エレメント101には、複数のスリット105が形成されている。スリット105は、貫通流路104の軸心方向に延びており、膜エレメント101の側面106に開口する溝状をなし、スリット105の両端が膜エレメント101の端面102、103の近傍で閉じている。 A plurality of slits 105 are formed in the membrane element 101. The slit 105 extends in the axial direction of the through channel 104 and has a groove shape that opens to the side surface 106 of the membrane element 101, and both ends of the slit 105 are closed in the vicinity of the end surfaces 102 and 103 of the membrane element 101. ..

膜エレメント101はケーシング112の内部に収納されている。ケーシング112は上部に上部一次室114が形成され、下部に下部一次室115が形成されている。上部一次室において膜エレメント101の上端部が露出し、下部一次室115において膜エレメント101の下端部が露出し、貫通流路104が上部一次側室114および下部一次室115に連通している。 The membrane element 101 is housed inside the casing 112. The casing 112 has an upper primary chamber 114 formed in the upper part and a lower primary chamber 115 formed in the lower part. The upper end of the membrane element 101 is exposed in the upper primary chamber, the lower end of the membrane element 101 is exposed in the lower primary chamber 115, and the through channel 104 communicates with the upper primary side chamber 114 and the lower primary chamber 115.

ケーシング112の下部一次室115の原水流入口109には、第1の弁116を介して原水供給系130が連通し、第2の弁118を介して逆洗水排出系131が連通している。 A raw water supply system 130 communicates with a raw water inlet 109 of a lower primary chamber 115 of the casing 112 through a first valve 116, and a backwash water discharge system 131 communicates through a second valve 118. ..

ケーシング112は側部に処理水流出口110を有し、処理水流出口110が膜エレメント101の二次側を囲む空間に連通している。処理水流出口110には、第3の弁117を介して処理水系132が連通し、第4の弁119を介して逆洗水供給系133が連通している。 The casing 112 has a treated water outlet 110 on its side, and the treated water outlet 110 communicates with the space surrounding the secondary side of the membrane element 101. A treated water system 132 communicates with the treated water outlet 110 via a third valve 117, and a backwash water supply system 133 communicates with the treated water outlet 110 via a fourth valve 119.

ケーシング112の上部一次室114の加圧ガス流入口111には、第5の弁120を介して加圧ガス供給系134が連通している。
(膜ろ過工程)
原水供給系130の第1の弁116および処理水系131の第3の弁117を開にし、その他の弁118、119、120を閉にし、供給原水W2を原水流入口109から下部一次側室107に供給する。
A pressurized gas supply system 134 is connected to the pressurized gas inlet 111 of the upper primary chamber 114 of the casing 112 via a fifth valve 120.
(Membrane filtration process)
The first valve 116 of the raw water supply system 130 and the third valve 117 of the treated water system 131 are opened, and the other valves 118, 119 and 120 are closed, so that the raw water W2 is supplied from the raw water inlet 109 to the lower primary side chamber 107. Supply.

下部一次側室107の供給原水W2は、貫通流路104を下から上へ流れながら、ケーシング収納型膜分離装置で膜エレメント101を一次側から二次側へ透過し、膜エレメント101を透過した処理水W3は処理水流出口110から処理水系132に取り出される。
(逆圧洗浄工程)
逆洗水排出系131の第2の弁118および逆洗水供給系133の第4の弁119を開にし、その他の弁116、117、120を閉にし、逆洗水W1を処理水流出口110から膜エレメント101に供給する。
The raw water W2 supplied to the lower primary-side chamber 107 permeates the membrane element 101 from the primary side to the secondary side in the casing-enclosed membrane separation device while flowing from the bottom to the top in the through-flow passage 104, and then passes through the membrane element 101. The water W3 is taken out from the treated water outlet 110 to the treated water system 132.
(Back pressure cleaning process)
The second valve 118 of the backwash water discharge system 131 and the fourth valve 119 of the backwash water supply system 133 are opened, and the other valves 116, 117, 120 are closed, and the backwash water W1 is fed to the treated water outlet 110. To the membrane element 101.

逆洗水W1は、膜エレメント101の外側の二次側から内側の一次側へ透過し、貫通流路104の内周面に付着した異物を剥離させて膜エレメント101を逆圧洗浄する。剥離した異物は逆洗水W1とともに、貫通流路104を上から下に流れて下部一次側室107に流れ込み、原水流入口109から逆洗排水として外部に排出される。
(フラッシング工程)
逆圧洗浄工程の一部であるフラッシング工程では、さらに、第5の弁120を開く。これにより、逆洗水W1を供給しつつ、加圧ガス供給系134内の加圧ガスG1が加圧ガス流入口111から上部一次側室114内に供給される。ケーシング102内に残留していた逆洗水W1は、加圧ガスG1によって、剥離した異物と共に確実に原水流入口109から逆洗水排出系131を通って排出される。
(槽浸漬型膜分離装置)
槽浸漬型膜分離装置6は、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬し、槽内の原水をハウジングの内外に循環させ、ろ過膜の膜面の周囲を、いわゆるクロスフローで流れる固液混相流をろ過する槽浸漬型膜分離装置をなし、例えば図4に示す構造をなす。図4では、例示として一つの槽浸漬型膜分離装置6を開示しているが、本実施の形態では、複数の槽浸漬型膜分離装置6が処理槽7の内部に配置されている。上述したように、本発明は膜材質による限定はなく、いわゆる内圧式、外圧式等の形態による限定もない。
The backwash water W1 permeates from the secondary side on the outer side of the membrane element 101 to the primary side on the inner side, and foreign matters adhering to the inner peripheral surface of the through channel 104 are peeled off to backwash the membrane element 101 with pressure. The separated foreign matter flows together with the backwash water W1 from the top to the bottom in the through-flow passage 104 into the lower primary side chamber 107, and is discharged to the outside from the raw water inlet 109 as backwash drainage.
(Flushing process)
In the flushing process which is a part of the back pressure cleaning process, the fifth valve 120 is further opened. As a result, the pressurized gas G1 in the pressurized gas supply system 134 is supplied from the pressurized gas inlet 111 into the upper primary side chamber 114 while supplying the backwash water W1. The backwash water W1 remaining in the casing 102 is surely discharged from the raw water inlet 109 through the backwash water discharge system 131 together with the separated foreign matter by the pressurized gas G1.
(Tank immersion type membrane separator)
The tank immersion type membrane separation device 6 immerses the housing of the open space containing the filtration membrane in the tank for storing the raw water, circulates the raw water in the tank inside and outside the housing, and surrounds the membrane surface of the filtration membrane. Is a tank-immersed membrane separator for filtering a solid-liquid mixed-phase flow that flows in a so-called cross flow, and has a structure shown in FIG. In FIG. 4, one tank immersion type membrane separation device 6 is disclosed as an example, but in this embodiment, a plurality of tank immersion type membrane separation devices 6 are arranged inside the processing tank 7. As described above, the present invention is not limited by the film material, and is not limited by the so-called internal pressure type, external pressure type or the like.

ここでは、槽浸漬型膜分離装置6が、複数本の管状の膜エレメント51と、これら膜エレメント51を収めるハウジングとしての膜ケース52とを有している。膜ケース52は断面が矩形をなして上端および下端が開口し、開放的空間をなす。 Here, the tank-immersion type membrane separation device 6 has a plurality of tubular membrane elements 51 and a membrane case 52 as a housing for housing these membrane elements 51. The membrane case 52 has a rectangular cross section and has an open upper end and a lower end to form an open space.

各膜エレメント51はセラミックス製の多孔質管状支持体53の表面にろ過膜54を取付けたものであり、内部が処理水を導出する処理水導出系(図示省略)に連通している。 Each membrane element 51 has a porous membrane support 53 made of ceramics and a filtration membrane 54 attached to the surface thereof, and the inside thereof communicates with a treated water outlet system (not shown) for leading out treated water.

各膜エレメント51は、軸心方向(長さ方向)を水平方向に沿わせて配置され、所定間隔をあけて平行に並べられている。相対向する膜エレメント51のろ過膜54の膜面間には、上下両方に開放された流路56が形成されている。膜エレメント51の下方には、散気量を調整可能な散気装置57を備えている。
(膜ろ過工程)
散気装置57から散気する空気のエアリフト作用により被処理水と空気の気液混相流の上向流が生じ、槽内の被処理水が膜ケース52の内外にわたって循環し、かつ膜ケース52の内部では、ろ過膜54の膜面の周囲を流れる。
The membrane elements 51 are arranged with the axial direction (length direction) along the horizontal direction, and are arranged in parallel at a predetermined interval. Between the membrane surfaces of the filtration membranes 54 of the membrane elements 51 facing each other, a flow path 56 that is open vertically is formed. Below the membrane element 51, an air diffuser 57 capable of adjusting the amount of air diffused is provided.
(Membrane filtration process)
The air lift action of the air diffused from the air diffuser 57 causes an upward flow of the gas-liquid mixed phase flow of the water to be treated and the air, the water to be treated in the tank circulates inside and outside the membrane case 52, and the membrane case 52 The inside of the filter flows around the membrane surface of the filtration membrane 54.

供給原水W4は、膜エレメント51の内部に作用する吸引圧力を受けてろ過膜54を透過し、処理水導出系55に流れ出る。膜面上に残る異物は膜面に沿って流れる被処理水により洗い流される。
(稼働制御)
ケーシング収納型膜分離装置5と槽浸漬型膜分離装置6は、制御指標に設定した所定値を境に稼働が制御される。
The raw water W4 to be supplied receives a suction pressure acting on the inside of the membrane element 51, permeates the filtration membrane 54, and flows out to the treated water outlet system 55. The foreign matter remaining on the film surface is washed away by the water to be treated flowing along the film surface.
(Operation control)
The operations of the casing storage type membrane separation device 5 and the tank immersion type membrane separation device 6 are controlled at a predetermined value set as a control index.

例えば、ケーシング収納型膜分離装置5は、高稼働運転モードと低稼働運転モードを有する。稼働率100%で運転するケーシング収納型膜分離装置5が製造する浄水の定格処理水量がここでは3,750m3/dであるとすると、高稼働運転モードでは高位の設定稼働率93%で運転して3,600m3/dの浄水を製造し、低稼働運転モードでは低位の設定稼働率45%で運転して1,688m3/dの浄水を製造する。 For example, the casing storage type membrane separation device 5 has a high operation mode and a low operation mode. Assuming that the rated amount of purified water produced by the casing-enclosed membrane separation device 5 that operates at an operating rate of 100% is 3,750 m3/d here, it operates at a high setting operating rate of 93% in the high operating mode. 3,600 m3/d of purified water is produced, and in the low operation mode, it operates at a low set operating rate of 45% to produce 1,688 m3/d of purified water.

槽浸漬型膜分離装置6は、運転停止モードと通常運転モードを有する。通常運転モードは高位の設定稼働率100%で運転し、槽浸漬型膜分離装置6の浄水の定格処理水量である1250m3/dの浄水を製造する。
(原水の濁度を制御指標とする場合)
原水の濁度は、河川水を取水する場合に、降雨や上流側のダムの放流等によって変動し、雨量の多い夏場、台風の多い秋口等において豪雨によって急激な変動が生じる場合がある。
The tank immersion type membrane separation device 6 has an operation stop mode and a normal operation mode. In the normal operation mode, the operation is performed at a high setting operation rate of 100%, and purified water of 1250 m3/d, which is the rated amount of treated water of the tank immersion type membrane separation device 6, is manufactured.
(When the turbidity of raw water is used as a control index)
The turbidity of raw water may fluctuate due to rainfall or discharge of upstream dams when river water is taken in, and may suddenly fluctuate due to heavy rainfall in the summer, when there is a lot of rainfall, or in the autumn when there are many typhoons.

このため、図5に示すように、原水の濁度が通常の範囲内、例えば原水濁度が500度以下である場合に、ケーシング収納型膜分離装置5は、高稼働モードで運転し、槽浸漬型膜分離装置6は、基本的に運転を停止し、あるいは間欠的に運転し、浄水処理の省エネルギー化を図る。このような低濁度の運転は、例えば年間で11.5ヶ月以上にわたって行われる。 Therefore, as shown in FIG. 5, when the turbidity of the raw water is within a normal range, for example, when the turbidity of the raw water is 500 degrees or less, the casing-containing membrane separation device 5 operates in the high operation mode and The immersion type membrane separation device 6 basically stops its operation or operates intermittently to save energy in water purification treatment. Such low turbidity operation is performed, for example, for 11.5 months or more per year.

原水の濁度が高濁度の範囲内、例えば原水濁度が500度を超えて1000度以下である場合に、ケーシング収納型膜分離装置5は、低稼働モードで運転し、低負荷運転を行う。一方、槽浸漬型膜分離装置6は、通常運転モードで連続的に運転する。このような高濁度の運転は、例えば年間で0.5ヶ月以下の期間で行われる。 When the turbidity of the raw water is in the range of high turbidity, for example, when the turbidity of the raw water is more than 500 degrees and less than 1000 degrees, the casing-enclosed membrane separation device 5 operates in the low operation mode and operates at low load. To do. On the other hand, the tank immersion type membrane separation device 6 is continuously operated in the normal operation mode. Such high turbidity operation is performed, for example, in a period of 0.5 months or less per year.

ケーシング収納型膜分離装置5、槽浸漬型膜分離装置6において、処理水量の変更は稼働率の変更であり、運転時間の変更は稼働率の変更であり、それぞれが複数台を運転に用いる場合にあっては運転台数の変更が稼働率の変更である。 In the casing storage type membrane separation device 5 and the tank submerged type membrane separation device 6, when the amount of treated water is changed, the operation rate is changed, and when the operation time is changed, the operation rate is changed. In that case, the change in the operating number is the change in the operating rate.

より具体的には、ケーシング収納型膜分離装置の高稼働運転モードから低稼働運転モードへの稼働率の変更は以下のように行う。例えば、膜ろ過工程における膜分離装置1台あたりの処理水量を小さくする。または、逆圧洗浄工程の実施間隔を短くする。あるいは、膜分離装置の稼働台数を減少させる。さらには、膜分離装置が停止中に逆圧洗浄工程を実施する。 More specifically, the operation rate of the casing-containing type membrane separation device is changed from the high operation mode to the low operation mode as follows. For example, the amount of treated water per membrane separation device in the membrane filtration step is reduced. Alternatively, the back pressure washing step is performed at shorter intervals. Alternatively, the number of operating membrane separation devices is reduced. Further, the back pressure washing step is performed while the membrane separation device is stopped.

本実施例1において、原水濁度の測定は、原水が流入する着水井1等に濁度計を配置して自動計測することで行ってもよく、人的作業によって計測してもよい。
実施例2
この実施例2において、ケーシング収納型膜分離装置5と槽浸漬型膜分離装置6は先に図1〜図4において説明したものと同様であり、同符号を用いて説明を省略する。ここでは、ケーシング収納型膜分離装置5と槽浸漬型膜分離装置6が浄水池4の水位を制御指標として稼働を制御される。双方の膜分離装置から給水する処理水は浄水池4を介して下流に送水する。
In Example 1, the measurement of the turbidity of the raw water may be performed by arranging a turbidity meter in the landing well 1 or the like into which the raw water flows and automatically measuring the turbidity, or may be measured manually.
Example 2
In the second embodiment, the casing storage type membrane separation device 5 and the tank immersion type membrane separation device 6 are the same as those described above with reference to FIGS. 1 to 4, and the description thereof will be omitted by using the same reference numerals. Here, the casing storage type membrane separation device 5 and the tank immersion type membrane separation device 6 are controlled in operation by using the water level of the water purification basin 4 as a control index. Treated water supplied from both membrane separators is sent downstream through the water purification basin 4.

図6に示すように、浄水池4は処理水を貯溜する処理水槽をなす。浄水池4には、複数の水位が制御指標の所定値(閾値)として設定されており、最も高い第1高位水位H1と、第1高位水位より低い第2高位水位H2と、最も低い第1下位水位L1と、第1下位水位より高い第2下位水位L2である。 As shown in FIG. 6, the water purification pond 4 constitutes a treated water tank for storing treated water. In the water purification pond 4, a plurality of water levels are set as predetermined values (threshold values) of the control index, and the highest first high water level H1, the second high water level H2 lower than the first high water level, and the lowest first water level H2. The lower water level L1 and the second lower water level L2, which is higher than the first lower water level.

ケーシング収納型膜分離装置5は、第2下位水位L2で運転を再開し、第1高位水位H1で所定値として運転を停止する主給水運転モードを有する。 The casing-enclosed membrane separation device 5 has a main water supply operation mode in which the operation is restarted at the second lower water level L2 and the operation is stopped at the first high water level H1 as a predetermined value.

槽浸漬型膜分離装置6は、第1下位水位L1で運転を再開し、第2高位水位H2で運転を停止する併給水運転モードを有する。 The tank submerged membrane separation device 6 has a combined feed water operation mode in which the operation is restarted at the first lower water level L1 and stopped at the second higher water level H2.

主給水運転モードで運転するケーシング収納型膜分離装置5は、先の実施例1で説明した高位の設定稼働率93%で運転して3,600m3/dの浄水を製造する。そして、浄水池4の水位が増加して第1上位水位H1に達すると運転を停止し、浄水池4の水位が減少して第2下位水位L2に達すると運転を再開する。 The casing-enclosed membrane separation device 5 that operates in the main water supply operation mode operates at the high set operating rate of 93% described in Example 1 above to produce purified water of 3,600 m3/d. Then, when the water level of the water purification reservoir 4 increases and reaches the first upper water level H1, the operation is stopped, and when the water level of the water purification reservoir 4 decreases and reaches the second lower water level L2, the operation is restarted.

併給水運転モードで運転する槽浸漬型膜分離装置6は、先の実施例1で説明した高位の設定稼働率100%で運転して1250m3/dの浄水を製造する。そして、浄水池4の水位が増加して第2高位水位H2に達すると運転を停止し、浄水池4の水位が減少して第1下位水位L1に達すると運転を再開する。 The tank submerged membrane separation device 6 operating in the combined feed water operation mode operates at the high set operating rate of 100% described in the first embodiment to produce purified water of 1250 m3/d. Then, when the water level of the water purification tank 4 increases and reaches the second high water level H2, the operation is stopped, and when the water level of the water purification tank 4 decreases and reaches the first lower water level L1, the operation is restarted.

したがって、需要量が多くてケーシング収納型膜分離装置5による給水によっても浄水池4の水位が減少を継続するときには、第2下位水位L2において槽浸漬型膜分離装置6が運転を開始し、槽浸漬型膜分離装置6とケーシング収納型膜分離装置5とで給水することで、浄水池4に十分な給水を行うことができる。また、需要量が減少して給水量が需要量を超える場合には、水位が第2上位水位H2に達したときに、槽浸漬型膜分離装置6の運転を停止し、ケーシング収納型膜分離装置5の運転を継続して需要量と給水量のバランスを図ることができる。 Therefore, when the demand level is high and the water level of the water purification basin 4 continues to decrease even when water is supplied by the casing-encased membrane separation device 5, the tank submerged membrane separation device 6 starts operation at the second lower water level L2, By supplying water by the immersion type membrane separation device 6 and the casing-enclosed type membrane separation device 5, sufficient water can be supplied to the water purification basin 4. Further, when the demand amount decreases and the water supply amount exceeds the demand amount, when the water level reaches the second upper water level H2, the operation of the tank submersion type membrane separation device 6 is stopped and the casing storage type membrane separation is performed. The operation of the device 5 can be continued to balance the demand amount and the water supply amount.

また、上記実施例1では稼働する期間が少ない槽浸漬型膜分離装置6を定期的に稼働させることができるので、槽内に貯溜される原水の腐敗やろ過膜の閉塞などを防止することができる。 In addition, in the above-described Example 1, the tank-immersed membrane separation device 6 that operates for a short period of time can be regularly operated, so that it is possible to prevent spoilage of raw water stored in the tank and blockage of the filtration membrane. it can.

実施例2では、制御指標の所定値(閾値)として、最も高い第1高位水位H1と、第1高位水位より低い第2高位水位H2と、最も低い第1下位水位L1と、第1下位水位より高い第2下位水位L2を設定した。 In Example 2, as the predetermined value (threshold value) of the control index, the highest first high water level H1, the second high water level H2 lower than the first high water level, the lowest first lower water level L1, and the first lower water level. A higher second lower water level L2 was set.

しかし、処理水槽に第1高位水位H1を第1設定水位として設定し、第2高位水位H2を第2設定水位として設定し、ケーシング収納型膜分離装置5が、第1設定水位を制御目標水位として稼働を制御する主給水運転モードを有し、槽浸漬型膜分離装置6が、第2設定水位を制御目標水位として稼働を制御する併給水運転モードを有する構成とすることも可能である。 However, the first high water level H1 is set as the first set water level in the treated water tank, the second high water level H2 is set as the second set water level, and the casing-enclosed membrane separation device 5 sets the first set water level as the control target water level. It is also possible to have a main water supply operation mode for controlling the operation as, and a configuration in which the tank submerged membrane separation device 6 has a combined water supply operation mode for controlling the operation with the second set water level as the control target water level.

すなわち、ケーシング収納型膜分離装置5は主給水運転モードにおいて、第1設定水位を維持するように稼働し、水位が第1設定水位に達した時点で運転を停止し、水位が第1設定水位より下がったことを検出した時点から一定時間経過した後に、タイマー等により運転を再開する。 That is, the casing storage type membrane separation device 5 operates so as to maintain the first set water level in the main water supply operation mode, and stops operation when the water level reaches the first set water level, and the water level is the first set water level. After a certain time has elapsed from the time when it was detected that the temperature has dropped further, the operation is restarted by a timer or the like.

また、槽浸漬型膜分離装置6は併給水運転モードにおいて、第2設定水位を維持するように稼働し、水位が第2設定水位に達した時点で運転を停止し、水位が第2設定水位より下がったことを検出した時点から一定時間経過した後に、タイマー等により運転を再開する。 Further, in the combined water supply operation mode, the tank submerged membrane separation device 6 operates so as to maintain the second set water level, and stops operation when the water level reaches the second set water level, and the water level is the second set water level. After a certain time has elapsed from the time when it was detected that the temperature has dropped further, the operation is restarted by a timer or the like.

上記実施例1、2では、ケーシング収納型膜分離装置5に略直方体形状のセラミックス製膜エレメントを例示した。しかし、膜エレメントの形状は、円柱状であっても、多角柱状であってもよい。また、モノリス型だけでなく、管状膜や中空糸膜を使った膜エレメントでもよく、膜の材質も限定はなく、樹脂製であってもよい。 In Examples 1 and 2 described above, the casing-enclosed membrane separation device 5 is exemplified by a substantially rectangular parallelepiped ceramic membrane element. However, the shape of the membrane element may be cylindrical or polygonal. Further, not only the monolith type, but also a membrane element using a tubular membrane or a hollow fiber membrane may be used, and the material of the membrane is not limited, and may be made of resin.

槽浸漬型膜分離装置6にセラミックス製の管状膜エレメントを例示した。しかし、膜エレメントは平膜でも中空糸膜でも良く、膜の材質も限定はなく、樹脂製であってもよい。 A tubular membrane element made of ceramics is exemplified as the tank immersion type membrane separation device 6. However, the membrane element may be a flat membrane or a hollow fiber membrane, the material of the membrane is not limited, and may be made of resin.

上記実施例1、2では、原水の濁度を制御指標とするものと、処理水槽の水位を制御指標とするものを別々の実施例として例示した。しかし、制御指標として原水の濃度と処理水槽の水位の両方を用いて各膜分離装置の運転を制御し、浄水処理を行ってもよい。この場合に各膜分離装置の制御は、停止ではなく、運転を優先させる設定とすればよい。 In the above-mentioned Examples 1 and 2, examples in which the turbidity of raw water was used as a control index and those in which the water level of the treated water tank was used as a control index were illustrated as separate examples. However, the water purification treatment may be performed by controlling the operation of each membrane separation device by using both the concentration of raw water and the water level of the treated water tank as the control index. In this case, the control of each membrane separation device may be set not to stop but to give priority to the operation.

1 着水井
2 混和池
3 取水設備
4 浄水池
5 ケーシング収納型膜分離装置
6 槽浸漬型膜分離装置
7 処理槽
51 膜エレメント
52 膜ケース
53 膜支持体
54 ろ過膜
56 流路
57 散気装置
101 膜エレメント
102、103 端面
104 貫通流路
105 スリット
106 側面
109 原水流入口
110 処理水流出口
111 加圧ガス流入口
112 ケーシング
114 上部一次室
115 下部一次室
116 第1の弁
117 第3の弁
118 第2の弁
119 第4の弁
120 第5の弁
130 原水供給系
131 逆洗水排出系
132 処理水系
133 逆洗水供給系
134 加圧ガス供給系
135 堆積物排出系
G1 加圧ガス
W1 逆洗水
W2 供給原水
W3 処理水
W4 供給原水
H1 第1高位水位
H2 第2高位水位
L1 第1下位水位
L2 第2下位水位
1 Water well 2 Mixing basin 3 Water intake facility 4 Purification basin 5 Casing storage type membrane separation device 6 Tank immersion type membrane separation device 7 Treatment tank 51 Membrane element 52 Membrane case 53 Membrane support 54 Filtration membrane 56 Flow channel 57 Air diffuser 101 Membrane elements 102, 103 End surface 104 Through flow path 105 Slit 106 Side surface 109 Raw water inlet 110 Treated water outlet 111 Pressurized gas inlet 112 Casing 114 Upper primary chamber 115 Lower primary chamber 116 First valve 117 Third valve 118 Third 2nd valve 119 4th valve 120 5th valve 130 Raw water supply system 131 Backwash water discharge system 132 Treated water system 133 Backwash water supply system 134 Pressurized gas supply system 135 Deposit discharge system G1 Pressurized gas W1 Backwash Water W2 Supply raw water W3 Treated water W4 Supply raw water H1 1st high water level H2 2nd high water level L1 1st low water level L2 2nd low water level

Claims (8)

ろ過膜を収納した閉鎖的空間のケーシング内に供給する原水をろ過するケーシング収納型膜分離装置と、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬して原水をろ過する槽浸漬型膜分離装置を併用し、制御指標に基づいてケーシング収納型膜分離装置と槽浸漬型膜分離装置の稼働を制御することを特徴とする浄水処理方法。 A casing storage type membrane separation device that filters the raw water supplied to the casing of the closed space that stores the filtration membrane and a tank that stores the raw water are immersed in the housing of the open space that stores the filtration membrane to remove the raw water. A water purification method characterized in that a tank-immersed membrane separation device for filtering is also used, and the operations of the casing-enclosed membrane separator and the tank-immersed membrane separator are controlled based on a control index. ケーシング収納型膜分離装置は、制御指標の原水濁度が所定値以下のときに高位の設定稼働率で運転し、制御指標が所定値を超えるときに低位の設定稼働率で運転し、
槽浸漬型膜分離装置は、制御指標が所定値以下のときに運転を停止し、制御指標が所定値を超えるときに高位の設定稼働率で運転することを特徴とする請求項1に記載の浄水処理方法。
The casing storage type membrane separation device operates at a high set operating rate when the raw water turbidity of the control index is below a predetermined value, and operates at a low set operating rate when the control index exceeds a predetermined value,
The tank immersion type membrane separation device is stopped when the control index is equal to or lower than a predetermined value, and is operated at a higher set operating rate when the control index exceeds the predetermined value. Water treatment method.
双方の膜分離装置は、運転台数の変更または運転時間の変更または処理水量の変更またはこれらのうちの二つ以上の組み合わせにより稼働を制御することを特徴とする請求項1または2に記載の浄水処理方法。 3. The purified water according to claim 1 or 2, wherein both membrane separation devices control the operation by changing the number of operating units, changing the operating time, changing the amount of treated water, or a combination of two or more of these. Processing method. 双方の膜分離装置から給水する処理水は処理水槽を介して下流に送水し、処理水槽の水位を制御指標とし、処理水槽に第1設定水位と、第1設定水位より低い第2設定水位を設定し、
ケーシング収納型膜分離装置は、第1設定水位を制御目標水位として稼働を制御し、
槽浸漬型膜分離装置は、第2設定水位を制御目標水位として稼働を制御することを特徴とする請求項1に記載の浄水処理方法。
Treated water supplied from both membrane separators is sent downstream through the treated water tank, and the water level of the treated water tank is used as a control index, and the first set water level and the second set water level lower than the first set water level are set in the treated water tank. Set,
The casing storage type membrane separation device controls the operation with the first set water level as a control target water level,
The water purification method according to claim 1, wherein the tank immersion type membrane separation device controls the operation with the second set water level as a control target water level.
双方の膜分離装置から給水する処理水は処理水槽を介して下流に送水し、処理水槽の水位を制御指標とし、処理水槽に最も高い第1高位水位と、第1高位水位より低い第2高位水位と、最も低い第1下位水位と、第1下位水位より高い第2下位水位を設定し、
ケーシング収納型膜分離装置は、第2下位水位で運転を再開し、第1高位水位で運転を停止し、
槽浸漬型膜分離装置は、第1下位水位で運転を再開し、第2高位水位で運転を停止することを特徴とする請求項1に記載の浄水処理方法。
Treated water supplied from both membrane separators is sent downstream through the treated water tank, and the water level in the treated water tank is used as a control index, and the highest water level in the treated water tank is the highest water level and the second water level is lower than the first water level. Set the water level, the lowest first lower water level, and the second lower water level higher than the first lower water level,
The casing-enclosed membrane separation device restarts operation at the second lower water level and stops operation at the first higher water level,
The water purification method according to claim 1, wherein the tank submerged membrane separation device restarts operation at a first lower water level and stops operation at a second higher water level.
浄水処理系の途中に並列に配置したケーシング収納型膜分離装置と槽浸漬型膜分離装置を備え、
ケーシング収納型膜分離装置は、ろ過膜を収納した閉鎖的空間のケーシング内に供給する原水をろ過する方式をなし、制御指標の原水濁度が所定値以下のときに高位の設定稼働率で運転する高稼働運転モードと、制御指標が所定値を超えるときに低位の設定稼働率で運転する低稼働運転モードを有し、
槽浸漬型膜分離装置は、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬して原水をろ過する方式をなし、制御指標が所定値以下のときに運転を停止する運転停止モードと、制御指標が所定値を超えるときに高位の設定稼働率で運転する通常運転モードを有することを特徴とする浄水処理システム。
Equipped with a casing storage type membrane separation device and a tank immersion type membrane separation device arranged in parallel in the middle of the water purification system,
The casing storage type membrane separation device has a method of filtering the raw water supplied into the casing of the closed space containing the filtration membrane, and operates at a high set operating rate when the turbidity of the raw water as a control index is below a predetermined value. And a low operation mode that operates at a low set operation rate when the control index exceeds a predetermined value.
The tank submerged membrane separation device has a method of filtering raw water by immersing the housing of the open space containing the filtration membrane in the tank that stores the raw water, and stops the operation when the control index is below a predetermined value. A water purification system characterized by having an operation stop mode for operating and a normal operation mode for operating at a high set operating rate when the control index exceeds a predetermined value.
浄水処理系の途中に並列に配置したケーシング収納型膜分離装置と槽浸漬型膜分離装置、並びに双方の膜分離装置から給水する処理水を貯溜して下流に送水する処理水槽を備え、
処理水槽の水位を制御指標とし、処理水槽に第1設定水位と、第1設定水位より低い第2設定水位を設定し、
ケーシング収納型膜分離装置は、ろ過膜を収納した閉鎖的空間のケーシング内に供給する原水をろ過する方式をなし、第1設定水位を制御目標水位として稼働を制御する主給水運転モードを有し、
槽浸漬型膜分離装置は、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬して原水をろ過する方式をなし、第2設定水位を制御目標水位として稼働を制御する併給水運転モードを有することを特徴とする浄水処理システム。
A casing storage type membrane separation device and a tank immersion type membrane separation device arranged in parallel in the middle of the water purification system, and a treated water tank that stores the treated water supplied from both membrane separation devices and sends it downstream.
Using the water level of the treated water tank as a control index, set the first set water level and the second set water level lower than the first set water level in the treated water tank,
The casing storage type membrane separation device has a method of filtering raw water supplied into the casing of the closed space in which the filtration membrane is stored, and has a main water supply operation mode in which operation is controlled with the first set water level as a control target water level. ,
The tank immersion type membrane separation device has a method of filtering raw water by immersing the housing of the open space containing the filtration membrane in the tank that stores the raw water, and controls the operation with the second set water level as the control target water level. A water purification system characterized by having a combined water supply operation mode.
浄水処理系の途中に並列に配置したケーシング収納型膜分離装置と槽浸漬型膜分離装置、並びに双方の膜分離装置から給水する処理水を貯溜して下流に送水する処理水槽を備え、
処理水槽の水位を制御指標とし、処理水槽に最も高い第1高位水位と、第1高位水位より低い第2高位水位と、最も低い第1下位水位と、第1下位水位より高い第2下位水位を設定し、
ケーシング収納型膜分離装置は、ろ過膜を収納した閉鎖的空間のケーシング内に供給する原水をろ過する方式をなし、第2下位水位で運転を再開し、第1高位水位で運転を停止する主給水運転モードを有し、
槽浸漬型膜分離装置は、原水を貯留する槽内に、ろ過膜を収納した開放的空間のハウジングを浸漬して原水をろ過する方式をなし、第1下位水位で運転を再開し、第2高位水位で運転を停止する併給水運転モードを有することを特徴とする浄水処理システム。
A casing storage type membrane separation device and a tank immersion type membrane separation device arranged in parallel in the middle of the water purification system, and a treated water tank that stores the treated water supplied from both membrane separation devices and sends it downstream.
Using the water level of the treated water tank as a control index, the highest high water level of the treated water tank, the second high water level lower than the first high water level, the lowest first lower water level, and the second lower water level higher than the first lower water level. Set
The casing storage type membrane separation device has a method of filtering the raw water supplied into the casing of the closed space in which the filtration membrane is stored, and restarts the operation at the second lower water level and stops the operation at the first higher water level. It has a water supply operation mode,
The tank submerged membrane separation device has a method of filtering the raw water by immersing the housing of the open space containing the filtration membrane in the tank storing the raw water, restarting the operation at the first lower water level, and A water purification system having a combined water supply operation mode in which operation is stopped at a high water level.
JP2018220790A 2018-11-27 2018-11-27 Water purification method and water purification system Active JP7153540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018220790A JP7153540B2 (en) 2018-11-27 2018-11-27 Water purification method and water purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018220790A JP7153540B2 (en) 2018-11-27 2018-11-27 Water purification method and water purification system

Publications (2)

Publication Number Publication Date
JP2020081973A true JP2020081973A (en) 2020-06-04
JP7153540B2 JP7153540B2 (en) 2022-10-14

Family

ID=70905316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018220790A Active JP7153540B2 (en) 2018-11-27 2018-11-27 Water purification method and water purification system

Country Status (1)

Country Link
JP (1) JP7153540B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284396A (en) * 1990-03-29 1991-12-16 Kubota Corp Device for treating organic waste water
CN102616888A (en) * 2011-01-27 2012-08-01 上海市政工程设计研究总院(集团)有限公司 Constant liquid level siphon gravity flow submerged film filter and water production method thereof
CN102642920A (en) * 2012-04-29 2012-08-22 南京大学 Membrane bioreactor system for studying improvement on membrane pollution of filler, quantitative test method and application
JP2012179505A (en) * 2011-02-28 2012-09-20 Kubota Corp Membrane element, membrane module and method of manufacturing membrane element
JP2013173102A (en) * 2012-02-24 2013-09-05 Miura Co Ltd Water treatment system
WO2014148628A1 (en) * 2013-03-21 2014-09-25 東レ株式会社 Multi-stage immersion membrane separation device and membrane separation method
JP2016067968A (en) * 2014-09-26 2016-05-09 三浦工業株式会社 Filtration system
WO2016199725A1 (en) * 2015-06-09 2016-12-15 東レ株式会社 Fresh water production device and method for operating fresh water production device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284396A (en) * 1990-03-29 1991-12-16 Kubota Corp Device for treating organic waste water
CN102616888A (en) * 2011-01-27 2012-08-01 上海市政工程设计研究总院(集团)有限公司 Constant liquid level siphon gravity flow submerged film filter and water production method thereof
JP2012179505A (en) * 2011-02-28 2012-09-20 Kubota Corp Membrane element, membrane module and method of manufacturing membrane element
JP2013173102A (en) * 2012-02-24 2013-09-05 Miura Co Ltd Water treatment system
CN102642920A (en) * 2012-04-29 2012-08-22 南京大学 Membrane bioreactor system for studying improvement on membrane pollution of filler, quantitative test method and application
WO2014148628A1 (en) * 2013-03-21 2014-09-25 東レ株式会社 Multi-stage immersion membrane separation device and membrane separation method
JP2016067968A (en) * 2014-09-26 2016-05-09 三浦工業株式会社 Filtration system
WO2016199725A1 (en) * 2015-06-09 2016-12-15 東レ株式会社 Fresh water production device and method for operating fresh water production device

Also Published As

Publication number Publication date
JP7153540B2 (en) 2022-10-14

Similar Documents

Publication Publication Date Title
US20070051679A1 (en) Water filtration using immersed membranes
WO2005082498A1 (en) Water filtration using immersed membranes
US20060065596A1 (en) Membrane filter cleansing process
JP6024754B2 (en) Multi-stage immersion membrane separation apparatus and membrane separation method
JP2010115646A (en) System and method for filtering liquid
KR101233775B1 (en) Apparatus having a bioreactor and membrane filtration module for treatment of an incoming fluid
US11452971B2 (en) Method for operating membrane separation device with halt process
CN111282370A (en) Air purification integrated immersed hollow fiber membrane module device
KR20130082363A (en) Membrane module using hallow fiber
JP2005246307A (en) Method for treating activated sludge by membrane separation
JP7153540B2 (en) Water purification method and water purification system
JP2012045488A (en) Water treatment apparatus and method for operation thereof
JP2017113735A (en) Operation method of separate membrane filtration device and water purification device
WO2016178366A1 (en) Membrane separation active sludge treatment method and membrane separation active sludge treatment system
KR101100715B1 (en) A water-treatment apparatus using membrane module, and method thereby
JP5423184B2 (en) Filtration membrane module cleaning method and cleaning apparatus
JP7288846B2 (en) Method of operating water treatment equipment and water treatment equipment
JP2022087855A (en) Water purification treatment method and water purification treatment system
RU2630121C1 (en) Microfiltration device for water treatment from mechanical pollution
JP2000084554A (en) Method for operating water treating apparatus having membrane separator
JP2013233484A (en) Membrane filtration apparatus using membrane module and method of cleaning filter membrane
RU222598U1 (en) SUBMERGED MEMBRANE MODULE ON CERAMIC MEMBRANES
CA2560152A1 (en) Water filtration using immersed membranes
JP6056855B2 (en) Multi-stage immersion membrane separation apparatus and membrane separation method
JP7222055B1 (en) MEMBRANE FILTER AND METHOD FOR CLEANING MEMBRANE FILTER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R150 Certificate of patent or registration of utility model

Ref document number: 7153540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150