JPS5928625B2 - Mitsushimetal-Nickel based ternary alloy manufacturing method for hydrogen storage - Google Patents

Mitsushimetal-Nickel based ternary alloy manufacturing method for hydrogen storage

Info

Publication number
JPS5928625B2
JPS5928625B2 JP55138408A JP13840880A JPS5928625B2 JP S5928625 B2 JPS5928625 B2 JP S5928625B2 JP 55138408 A JP55138408 A JP 55138408A JP 13840880 A JP13840880 A JP 13840880A JP S5928625 B2 JPS5928625 B2 JP S5928625B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55138408A
Other languages
Japanese (ja)
Other versions
JPS5763669A (en
Inventor
泰章 大角
博 鈴木
明彦 加藤
啓介 小黒
正典 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55138408A priority Critical patent/JPS5928625B2/en
Publication of JPS5763669A publication Critical patent/JPS5763669A/en
Publication of JPS5928625B2 publication Critical patent/JPS5928625B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 本発明は水素吸蔵用ミツシュメタル−ニッケル系三元合
金の改良された製造方法に関し、特に一定温度における
水素吸蔵・解離圧特性の平坦部、いわゆるプラトー域で
の水素化物組成に対する水素化圧力の変化の少ない特性
を有する合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing a Mitshu metal-nickel based ternary alloy for hydrogen storage, and in particular, to improve the hydride composition in the flat region of hydrogen storage and dissociation pressure characteristics at a constant temperature, the so-called plateau region. The present invention relates to a method for producing an alloy having characteristics that show little change in hydrogenation pressure.

従来から、ある種の金属、あるいは合金が、適当な圧力
、温度の下で水素と反応して金属水素化物を生成するこ
とはすでに良く知られている。
It has been well known that certain metals or alloys react with hydrogen under appropriate pressure and temperature to produce metal hydrides.

この反応は他の固−気反応と比較して可逆性が良く、反
応速度も犬きく、シかも単位重量、または単位体積あた
りの蓄熱量が大きいことから、金属水素化物はエネルギ
ー変換材料として種々のシステムへの利用が考えられて
いる。
Compared to other solid-gas reactions, this reaction has good reversibility, a fast reaction rate, and a large amount of heat storage per unit weight or unit volume, so metal hydrides are used in various energy conversion materials. It is being considered for use in systems such as

ところでかかる利用の場合に、実用上極めて重要な特性
の一つが一定温度における水素吸蔵・解離特性であり、
特にプラトー域が平坦で水素化物組成に対する圧力変化
の少ないことが要求されている。
By the way, in the case of such uses, one of the extremely important properties in practice is the hydrogen absorption and dissociation properties at a constant temperature.
In particular, it is required that the plateau region be flat and that the pressure change with respect to the hydride composition be small.

しかしながら、一般に水素吸蔵用多元系合金は、成分単
体金属をアルゴンアーク炉、高周波炉などで直接溶融、
混合して製造するために、冷却過程で液体一固体への変
化が急激に起り、不安定な格子間隙を有するままで固化
し、単相合金が得られに<<、プラトー域での圧力変化
が大きくなる欠点があった。
However, multi-component alloys for hydrogen storage are generally produced by directly melting the component metals in an argon arc furnace, high frequency furnace, etc.
Because it is manufactured by mixing, a rapid change from liquid to solid occurs during the cooling process, and it solidifies with unstable lattice gaps, resulting in a single-phase alloy. The disadvantage was that it became larger.

そこで本発明は、かかる従来の欠点を解消することを目
的とするものであり、得られた合金が単−相であり、結
晶の格子間距離もほぼ一定になるため、従来の合金に比
してプラトー域での圧力変化が極めて少なく、実用上利
用しつる水素量も多くなるという利点があり、しかも水
素吸蔵・放出過程における水素との反応速度が速いため
反応完結時間が短くなる等の特徴を有するものである。
Therefore, the present invention aims to eliminate such conventional drawbacks, and because the obtained alloy is single-phase and the interstitial distance of the crystals is almost constant, it is more effective than conventional alloys. It has the advantage that the pressure change in the plateau region is extremely small, and the amount of hydrogen that can be used for practical purposes is large.Moreover, the reaction rate with hydrogen during the hydrogen absorption and release process is fast, so the reaction completion time is shortened. It has the following.

すなわち本発明はミツシュメタル(以下、Mmと略記す
る)−ニッケル系三元合金を種々の条件で処理し、プラ
トー域での圧力変化に及ぼす影響を検討した結果、ミツ
シュメタル−ニッケル系三元合金を合金の溶融温度以下
の温度で短時間、熱処理を施すことにより、前記従来の
欠点を解消できることを見出し、これを完成したもので
あり、一般式MmNi5−xAxで表わされる合金を5
00〜1000℃の温度に加熱し、次いで冷却すること
を特徴とする水素吸蔵用ミツシュメタル−ニッケル系三
元合金の製造方法である。
That is, the present invention has developed a Mitshu metal (hereinafter abbreviated as Mm)-nickel based ternary alloy by treating it under various conditions and examining the effect on the pressure change in the plateau region. It was discovered that the above-mentioned conventional drawbacks could be overcome by heat treatment for a short time at a temperature below the melting temperature of , and this was completed.
This is a method for producing a Mitshu metal-nickel based ternary alloy for hydrogen storage, which is characterized by heating to a temperature of 00 to 1000°C and then cooling.

ただし、式中獅はミツシュメタルを示し、AはA6 、
Cr 、SiおよびCoからなる群から選ばれた元素
であり、AがAe 、 Cr、またはSiのときXは0
.01〜2の範囲の数であり、AがCoのときXは0,
1〜4.9の範囲の数である。
However, the lion in the ceremony represents Mitsushmetal, A is A6,
An element selected from the group consisting of Cr, Si, and Co, and when A is Ae, Cr, or Si, X is 0
.. It is a number in the range of 01 to 2, and when A is Co, X is 0,
The number ranges from 1 to 4.9.

本発明で用いる原料の合金はMm 、 ニッケルおよ
びAn 、 Cr 、 SiおよびCoからなる群から
選ばれた元素からなるミツシュメタル−ニッケル系三元
合金であり、一般式rVIrn N t 5− xA
xで示されるものである。
The raw material alloy used in the present invention is a Mitshu metal-nickel based ternary alloy consisting of Mm, nickel and an element selected from the group consisting of An, Cr, Si and Co, and has the general formula rVIrnNt5-xA.
This is indicated by x.

そして、XはAがA6 、 CrおよびSiのときは0
.01〜2の範囲の数である。
And X is 0 when A is A6, Cr and Si
.. The number ranges from 01 to 2.

Xが0.01以下ではMmNi 5に近い特性しか示さ
なくなって金属A (AI 、 Cr 、 Si)の添
加効果があられれない。
When X is less than 0.01, the properties are only close to those of MmNi 5 and the effect of adding metal A (AI, Cr, Si) cannot be achieved.

すなわち、MrnNi5水素化物は解離圧が高いことか
ら、活性化には十分な脱ガス後に高圧水素を印加するか
、水素雰囲気中で低温を保持するか、またはこの両者の
組合せが必要であるという不利な点を生ずる。
That is, since MrnNi5 hydride has a high dissociation pressure, activation requires applying high pressure hydrogen after sufficient degassing, maintaining low temperature in a hydrogen atmosphere, or a combination of both. It gives rise to a certain point.

Xが2以上では活性化の容易さは保持されるものの、水
素吸蔵能力が著しく低下し、吸蔵水素の放出が困難とな
り、高温加熱と、時にはこれに減圧を組合せなければな
らないという問題点を生ずる。
When X is 2 or more, the ease of activation is maintained, but the hydrogen storage capacity is significantly reduced, making it difficult to release the stored hydrogen, resulting in the problem of requiring high-temperature heating and sometimes combining this with depressurization. .

またAがCoのときには、XはO51〜4,9の範囲の
数である。
Further, when A is Co, X is a number in the range of O51 to 4,9.

Xが0.1以下ではMmNi 5に近い特性しか示さな
くなってCoの添加効果があられれない。
When X is less than 0.1, the properties only close to those of MmNi 5 are exhibited, and the effect of Co addition cannot be achieved.

すなわち、活性化には高圧水素を印加するか、水素雰囲
気中で低温で保持するか、またはこの両者の組合せが必
要であるという不利な点を生ずる。
That is, activation requires the application of high-pressure hydrogen, maintenance at low temperatures in a hydrogen atmosphere, or a combination of both, which is a disadvantage.

Xが4.9以上ではMITICo5に近い特性を示し、
水素吸蔵量がMmNi5にくらべて約半分になるという
問題点を生ずる。
When X is 4.9 or more, it exhibits characteristics close to MITICo5,
A problem arises in that the amount of hydrogen storage is approximately half that of MmNi5.

本発明はかかるミツシュメタル−ニッケル系三元合金を
500〜1ooo℃に加熱し、これを冷却することによ
り行なわれる。
The present invention is carried out by heating the Mitshu metal-nickel based ternary alloy to 500 to 100° C. and cooling it.

加熱は空気存在下で行なっても良いが、合金の表面層が
酸化されることを考慮すれば減圧下、或は不活性ガスた
とえばアルゴンの存在下、またはこの両者の組合せ等の
不活性雰囲気下で行なうことが好ましい。
Heating may be carried out in the presence of air, but if the surface layer of the alloy is oxidized, heating may be carried out under reduced pressure, or in an inert atmosphere such as in the presence of an inert gas such as argon, or a combination of both. It is preferable to do so.

加熱は如何なる方法であっても良く、たとえばシリコニ
ット、あるいはニクロム発熱体電気炉等により行なわれ
る。
Heating may be performed by any method, for example, using a siliconite or nichrome heating element electric furnace.

加熱温度は加熱時間との一組合せにもよるが、通常では
500〜1000°Cの範囲であり、好ましくは600
〜1000℃、より好ましくは700〜1000℃、最
も好ましくは800〜1000℃の範囲である。
The heating temperature depends on the combination with the heating time, but is usually in the range of 500 to 1000°C, preferably 600°C.
The temperature range is from 1000°C to 1000°C, more preferably from 700°C to 1000°C, and most preferably from 800°C to 1000°C.

500℃以下では熱処理を長時間実施すれば上記の温度
範囲で処理した時と同じ効果が得られるが、合金の大量
製造には実用的でない。
If the heat treatment is carried out for a long time at 500° C. or lower, the same effect as the treatment in the above temperature range can be obtained, but this is not practical for mass production of alloys.

また1000℃以上では、合金の成分として比較的蒸気
圧の高いAe、Crなどを含む場合は、その一部が揮散
して水素化物の解離圧を高め、かつ目的とする組成の合
金が得られなくなる。
Furthermore, at temperatures above 1000°C, if the alloy contains Ae, Cr, etc., which have relatively high vapor pressures, some of them will volatilize, increasing the dissociation pressure of hydrides, and making it difficult to obtain an alloy with the desired composition. It disappears.

加熱時間は加熱温度との関係から決定されるものであり
、加熱温度が500〜1000℃の範囲内で1000℃
に近ければ短時間で良く、500℃に近ければやや長時
間を要するが、一般には0.25〜6時間の範囲である
The heating time is determined from the relationship with the heating temperature, and the heating time is 1000°C within the range of 500 to 1000°C.
If the temperature is close to 500°C, it may take a short time; if the temperature is close to 500°C, it may take a long time, but generally it is in the range of 0.25 to 6 hours.

0.25時間以下では、合金熱処理の効果が低下する傾
向となり、6時間以上では熱処理効果に差がなくなる。
If it is less than 0.25 hours, the effect of the alloy heat treatment tends to decrease, and if it is more than 6 hours, there is no difference in the heat treatment effect.

合金加熱後の冷却は、加熱後直ちに氷水中で急冷しても
良いし、空気中で徐冷しても良い。
For cooling after heating the alloy, it may be rapidly cooled in ice water immediately after heating, or it may be slowly cooled in air.

なお本発明で用いる合金の成分であるMmは一般にラン
タン25〜35%(重量係、以下同じ)、セリウム40
〜70%、プラセオジウム1〜15%、ネオジウム4〜
15%、サマリウム+ガドリニウム1〜7係、鉄0.1
〜5%、ケイ素0.1〜1%、マグネシウム0.1〜2
宏アルミニウム0.1〜1優等を含むものであり、容易
かつ安価に人手できる。
Note that Mm, which is a component of the alloy used in the present invention, is generally 25 to 35% lanthanum (by weight, the same hereinafter) and 40% cerium.
~70%, Praseodymium 1-15%, Neodymium 4-
15%, samarium + gadolinium 1 to 7, iron 0.1
~5%, silicon 0.1-1%, magnesium 0.1-2
It contains 0.1 to 1 grade of Hiroshi aluminum and can be easily and inexpensively made by hand.

また本発明で原料として用いる合金 ■nN + 5− XA Xは、公知の各種の方法で製
造することができ、たとえばアルゴンアーク炉溶融法が
採用される。
Further, the alloy (1) nN + 5-

すなわち、前述した合金組成になるように膳、ニッケル
およびA成分の金属を夫々、粉末状または適蟲な形状、
たとえば棒状で混合後、任意の形状にプレス成形し、こ
の成形品をアルゴンアーク炉に装入し、不活性雰囲気中
で加熱、溶融、放冷を数回繰返して組成の均質化を行な
った後、炉から取出し、これを原料の合金として使用す
る。
That is, the metals of nickel and A component are respectively powdered or shaped into appropriate shapes so as to have the alloy composition described above.
For example, after mixing in the form of a rod, it is press-formed into an arbitrary shape, the molded product is charged into an argon arc furnace, and the composition is homogenized by repeating heating, melting, and cooling several times in an inert atmosphere. , taken out from the furnace and used as a raw material alloy.

かかる本発明の方法によれば、比較的簡単な操作によっ
てMmNi5−xAx系合金に優れた効果を付与するこ
とができる。
According to the method of the present invention, excellent effects can be imparted to the MmNi5-xAx alloy through relatively simple operations.

すなわち、原料の合金を500〜1000℃で熱処理し
、これを冷却することによって合金製造時に生じた不安
定な格子間隙が消失して単−相の合金が得られ、しかも
結晶の格子間距離もほぼ一定になるので、従来の合金に
比較して一定温度における水素吸蔵・解離圧特性の平坦
部、プラトー域での圧力変化が極めて少なく、また実用
上利用できる水素量も多くなるという利点を有している
In other words, by heat-treating the raw material alloy at 500 to 1000°C and cooling it, the unstable lattice gaps that occur during alloy production disappear and a single-phase alloy is obtained, and the interstitial distance between the crystals also decreases. Since it remains almost constant, it has the advantage that compared to conventional alloys, the pressure changes in the flat or plateau region of the hydrogen storage and dissociation pressure characteristics at a constant temperature are extremely small, and the amount of hydrogen that can be used for practical purposes is large. are doing.

しかも水素吸蔵、放出過程における水素との反応速度が
速いため、反応完結時間が短くなり、短時間で水素吸蔵
反応が終了する。
Moreover, since the reaction rate with hydrogen during the hydrogen absorption and desorption process is fast, the reaction completion time is shortened, and the hydrogen absorption reaction is completed in a short time.

更に、水素の吸蔵、放出反応を何度繰返しても合金自体
の劣化は実質的に認められず、従って長期間にわたる使
用が可能であり、水素吸蔵用合金として極めて優れてい
る。
Furthermore, no matter how many times the hydrogen storage and release reactions are repeated, there is virtually no deterioration of the alloy itself, and therefore it can be used for a long period of time, making it extremely excellent as a hydrogen storage alloy.

更に本発明の方法は獅−ニッケル系三元合金ばかりでな
く、主成分として■とNiを含有する三元以上の水素吸
蔵用多元合金、たとえばMfTll−XAXNi5.獅
l−XA3Nl5−yBy。
Furthermore, the method of the present invention can be applied not only to a ternary Ni-nickel alloy, but also to a ternary or higher hydrogen storage multi-component alloy containing 1 and Ni as main components, such as MfTll-XAXNi5. Shil-XA3Nl5-yBy.

Mml xAx−2C2Ni5゜ Mml−xAx−2C2N15−yB、。Mml xAx-2C2Ni5゜ Mml-xAx-2C2N15-yB,.

Mml−XAxNi5−yB、−202(いずれもA、
Bおよびは相異なる元素)などについても同様に用いる
ことができる。
Mml-XAxNi5-yB, -202 (both A,
B and different elements) can also be used in the same way.

以下、本発明の実施例について述べる。Examples of the present invention will be described below.

実施例 1 アルゴンアーク炉溶融法によって製造された従来の合金
、■へt4,5 Ae6.5 、 MmN t2,5
Co2.5 。
Example 1 Conventional alloy manufactured by argon arc furnace melting method, t4,5 Ae6.5, MmN t2,5
Co2.5.

1’v1mN i4.5 CrO,5およびMmNi4
.5S io、5をそれぞわ石英容器に入れ、アルゴン
を導入して容器を十分にガス置換した後、真空装置で容
器内を1 torrの圧力に保持した。
1'v1mN i4.5 CrO,5 and MmNi4
.. 5S io and 5 were each placed in a quartz container, and after introducing argon to sufficiently replace the gas in the container, the inside of the container was maintained at a pressure of 1 torr using a vacuum device.

この容器をあらかじめ900’Cに保持した電気炉中に
入れ、熱処理を行なった。
This container was placed in an electric furnace previously maintained at 900'C and heat treated.

2時間後に熱処理を中止し、直ちに氷水中で冷却した。The heat treatment was stopped after 2 hours, and the mixture was immediately cooled in ice water.

このようにして熱処理温度および処理時間を種々変化さ
せ、熱処理効果に与える影響をしらべた。
In this way, the heat treatment temperature and treatment time were varied to examine the effects on the heat treatment effect.

結果を第1表に示す。注:熱処理効果は900℃、2時
間の熱 処理条件で出現した効果を100とし て比較した。
The results are shown in Table 1. Note: The heat treatment effect was compared with the effect that appeared under heat treatment conditions of 900° C. and 2 hours as 100.

A:90〜100係 8170〜90% C:50〜70% D=50%以下 第1表から明らかなように、熱処理温度500〜100
0℃、処理時間0.25時間(15分)、好ましくは処
理時間2時間の条件で得られた熱処理合金は、いずれも
熱処理効果が著明であり、後述の第1〜第3図に示すよ
うに結晶性が良好であり、水素吸蔵圧−組成等温線のプ
ラトー域での圧力変化が極めて少なく、水素吸蔵速度が
速く、水素吸蔵材料として優れたものである。
A: 90-100 ratio 8170-90% C: 50-70% D = 50% or less As is clear from Table 1, heat treatment temperature 500-100
All of the heat-treated alloys obtained under the conditions of 0°C and a treatment time of 0.25 hours (15 minutes), preferably a treatment time of 2 hours, had a remarkable heat treatment effect, as shown in Figures 1 to 3 below. It has good crystallinity, very little pressure change in the plateau region of the hydrogen storage pressure-composition isotherm, and has a fast hydrogen storage rate, making it an excellent hydrogen storage material.

実施例 2 アルゴンアーク炉溶融法により製造された従来の合金、
MmN i 4.5 Ae o、i’rを1 torr
のアルゴンガス雰囲気中、900°Cで2時間熱処理を
行なった。
Example 2 Conventional alloy produced by argon arc furnace melting method,
MmN i 4.5 Ae o, i'r 1 torr
Heat treatment was performed at 900°C for 2 hours in an argon gas atmosphere.

この熱処理をした合金と、熱処理をしない従来の合金の
粉末X線回折図を第1図に示す。
FIG. 1 shows the powder X-ray diffraction patterns of this heat-treated alloy and a conventional alloy that was not heat-treated.

第1図から明らかなように、本発明により熱処理をした
合金のX線回折図口は、熱処理をしない合金のX線回折
図イに比較して図形がシャープになり、ピークの半値巾
が著るしく小さくなり、均質な結晶相となっていること
が理解できる。
As is clear from FIG. 1, the X-ray diffraction pattern of the alloy heat-treated according to the present invention has a sharper shape than the X-ray diffraction pattern A of the alloy that has not been heat-treated, and the half-width of the peak is significantly larger. It can be seen that the crystalline phase becomes much smaller and has a homogeneous crystalline phase.

実施例 3 実施例2の熱処理をしたMmN i 4.5AJ O,
5を減圧下に80℃で加熱脱ガスし、水素で十分活性化
した後、水素吸蔵反応におけるMmN i4.5Ae、
5−H系の吸蔵圧カー水素化物組成等温線(40℃)を
、熱処理をしない合金のそれと比較した。
Example 3 MmN i 4.5AJ O, heat treated in Example 2
5 was heated and degassed at 80°C under reduced pressure, and after being sufficiently activated with hydrogen, MmN i4.5Ae in the hydrogen storage reaction,
The storage pressure car hydride composition isotherm (40° C.) of the 5-H system was compared with that of the alloy without heat treatment.

結果を第2図に示す。The results are shown in Figure 2.

従来から、MmNi5のニッケルの一部を他ノ元素で置
換した場合、置換が進行するにつれてプラトー域での圧
力勾配が著るしく傾斜することが知られており、たとえ
ばMmNi5−XA帳帳合合金は、Xが0.1〜2の範
囲で増大するにつれてプラトー域の傾斜も漸増する。
It has been known that when some of the nickel in MmNi5 is replaced with other elements, the pressure gradient in the plateau region becomes steeper as the substitution progresses; for example, the MmNi5-XA total alloy , X increases in the range of 0.1 to 2, the slope of the plateau region also increases gradually.

しかしながら第2図に示すように、本発明の熱処理をし
たMmN i 4.5Aeo、5の水素吸蔵圧−組成等
温線Aのプラトー域での圧力変化が2.3〜4.5気圧
の範囲であるのに対して、従来の熱処理をしなG)Mm
Ni4.5Aeo、5の等温線Bは1.6〜6.0気圧
の範囲で大きく変化しており、本発明に係る合金が水素
吸蔵材料として極めて優れた特性を有することが明らか
である。
However, as shown in FIG. 2, the pressure change in the plateau region of the hydrogen storage pressure-composition isotherm A of MmN i 4.5 Aeo, 5, which was heat-treated according to the present invention, was in the range of 2.3 to 4.5 atm. G) Mm
The isotherm B of Ni4.5Aeo,5 varies greatly in the range of 1.6 to 6.0 atmospheres, and it is clear that the alloy according to the present invention has extremely excellent properties as a hydrogen storage material.

実施例 4 実施例2の熱処理をした合金MmN i4.5 A6o
、5の水素吸蔵時の反応速度を測定した。
Example 4 Alloy MmN i4.5 A6o heat treated as in Example 2
, 5 was measured.

結果を熱処理をしないNIl′T1Ni4.5A6o、
5合金と比較して第3図に示す。
NIl′T1Ni4.5A6o without heat treatment,
A comparison with alloy No. 5 is shown in FIG.

第3図から明らかなように、熱処理をした合金の水素吸
蔵反応率Aは、熱処理をしない合金の反応率Bに比して
約1/2の時間で反応が終了する。
As is clear from FIG. 3, the hydrogen storage reaction rate A of the heat-treated alloy completes the reaction in approximately 1/2 the time of the reaction rate B of the non-heat-treated alloy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法および従来の方法により得られた
合金、MmNi4.、Aeo、5の粉末X線解析図、第
2図はこれら合金の水素吸蔵圧−水素化物組成等温線図
、第3図はこれら合金の水素吸蔵速度と時間の関係を示
す図である。
FIG. 1 shows alloys obtained by the method of the present invention and the conventional method, MmNi4. , Aeo, and 5, FIG. 2 is a hydrogen storage pressure-hydride composition isotherm diagram of these alloys, and FIG. 3 is a diagram showing the relationship between hydrogen storage rate and time of these alloys.

Claims (1)

【特許請求の範囲】 1 一般式MITINi5−xAxで表わされる合金を
500〜1000℃の温度に加熱し、次いでこの合金を
冷却することを特徴とする水素吸蔵用ミツシュメタル−
ニッケル系三元合金の製造方法。 ただし、式中凧はミツシュメタル、Aは A#、Cr、SiおよびCoからなる群から選ばれた元
素を示し、AがAe 、 Cr、およびSiのときXは
0.01〜2の範囲の数であり、AがCoのときXは0
.1〜4.9の範囲の数である。
[Claims] 1 Mitshu metal for hydrogen storage, characterized in that an alloy represented by the general formula MITINi5-xAx is heated to a temperature of 500 to 1000°C, and then this alloy is cooled.
A method for producing a nickel-based ternary alloy. However, in the formula, the kite represents Mitsushmetal, A represents an element selected from the group consisting of A#, Cr, Si, and Co, and when A is Ae, Cr, and Si, X is a number in the range of 0.01 to 2. and when A is Co, X is 0
.. The number ranges from 1 to 4.9.
JP55138408A 1980-10-02 1980-10-02 Mitsushimetal-Nickel based ternary alloy manufacturing method for hydrogen storage Expired JPS5928625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55138408A JPS5928625B2 (en) 1980-10-02 1980-10-02 Mitsushimetal-Nickel based ternary alloy manufacturing method for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55138408A JPS5928625B2 (en) 1980-10-02 1980-10-02 Mitsushimetal-Nickel based ternary alloy manufacturing method for hydrogen storage

Publications (2)

Publication Number Publication Date
JPS5763669A JPS5763669A (en) 1982-04-17
JPS5928625B2 true JPS5928625B2 (en) 1984-07-14

Family

ID=15221253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55138408A Expired JPS5928625B2 (en) 1980-10-02 1980-10-02 Mitsushimetal-Nickel based ternary alloy manufacturing method for hydrogen storage

Country Status (1)

Country Link
JP (1) JPS5928625B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143036A (en) * 1983-02-02 1984-08-16 Agency Of Ind Science & Technol Ternary alloy of rare earth element for occluding hydrogen

Also Published As

Publication number Publication date
JPS5763669A (en) 1982-04-17

Similar Documents

Publication Publication Date Title
US4370163A (en) Hydrogen storage alloy and process for making same
Burch et al. Absorption of hydrogen by titanium–cobalt and titanium–nickel intermetallic alloys. Part 1.—Experimental results
JP4838963B2 (en) Method for producing hydrogen storage alloy
JPS5839217B2 (en) Mitsushi Metal for hydrogen storage - Nickel alloy
US4440737A (en) Room temperature reaction of vanadium-based alloys with hydrogen
JPS60218458A (en) Hydrogen storage substance comprising zrcr2-stoichiometrically characterized zirconium-chromium-iron and optional titanium
JPS5928626B2 (en) Mitsushi Metal for Hydrogen Storage - Manufacturing method of nickel-based quaternary alloy
JPS5928625B2 (en) Mitsushimetal-Nickel based ternary alloy manufacturing method for hydrogen storage
US5900334A (en) Hydrogen occluding alloy
JPS58217654A (en) Titanium-chromium-vanadium alloy for occluding hydrogen
JPS60131942A (en) Hydrogen storage material for superchemical weight alloy
US4421718A (en) Alloy for occlusion of hydrogen
JPH0471985B2 (en)
JPS5848481B2 (en) Hydrogen storage materials
JPH0784636B2 (en) Hydrogen storage alloy
CN115747608B (en) ZrCo-based multi-element intermetallic compound with high thermal stability and high structural stability and preparation and application thereof
JPS60155636A (en) Hydrogen storing material of ceni5-hmnh alloy
JPS5928624B2 (en) Manufacturing method for hydrogen storage alloy
JPS59136440A (en) Hydrogen occlusion alloy
JPS583025B2 (en) Metal materials for hydrogen storage
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS58217655A (en) Hydrogen occluding multi-component alloy
JP3670506B2 (en) Hydrogen or hydrogen isotope storage material
WO2018155400A1 (en) Hydrogen-occluding alloy
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy