JPS5928607A - Multi-dimensional measurement method of very small clearance - Google Patents

Multi-dimensional measurement method of very small clearance

Info

Publication number
JPS5928607A
JPS5928607A JP13850682A JP13850682A JPS5928607A JP S5928607 A JPS5928607 A JP S5928607A JP 13850682 A JP13850682 A JP 13850682A JP 13850682 A JP13850682 A JP 13850682A JP S5928607 A JPS5928607 A JP S5928607A
Authority
JP
Japan
Prior art keywords
signal
slider
scanning
brightness
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13850682A
Other languages
Japanese (ja)
Inventor
Seiichiro Terajima
寺島 精一郎
Katsuyuki Tanaka
勝之 田中
Yoshinori Takeuchi
芳徳 竹内
Toshio Akatsu
赤津 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13850682A priority Critical patent/JPS5928607A/en
Publication of JPS5928607A publication Critical patent/JPS5928607A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the multi-dimensional clearances of an object to be measured by scanning the change in the interference bands generated by an ordinary optical system multi-dimensionally in optional directions and periods, separating the signal for multi-dimensional brightness from the scanning signal and processing said signal. CONSTITUTION:The interference bands on the surface of a slider 4 by the monochromatic light generated with a light source 1 is projected on a photoelectrical conversion part 8. The top surface of a slider 4 is scanned by the signals from horizontal and vertical scanning signal generators 10, 11. A brightness signal is separated from the scanned signal by a signal sepn. circuit 20, and the voltages V1, V2, V1', V2' in the horizontal direction corresponding to the peak position in the dark part of the interference bands and the voltage V0 in the edge part of the slider 4 are determined and the min. value of the clearance between a disc 3 and the slider 4 is determined by the equation.

Description

【発明の詳細な説明】 本発明は二つの被測定物間の微小すき間を光学的に測定
する微小すき間の多次元測定法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multidimensional measurement method for a minute gap that optically measures a minute gap between two objects to be measured.

従来の光干渉法を利用して被測定物例えば磁気ディスク
装置のディスクとスライダとの間の微小すき間を測定す
る場合を第1図について説明する。
A case in which conventional optical interferometry is used to measure a minute gap between an object to be measured, such as a disk and a slider of a magnetic disk device, will be described with reference to FIG.

光源部IAで発生した波長λの単色光のビームはビーム
スプリッタ2により下方に屈曲され、一方の被測定物で
ある透明なディスク3を透過して、他方の被測定物であ
る不透明なスライダー4に入射する。この場合、前記ビ
ームはディスク3の表面3aと裏面3bで一部反射され
ると共に、スライダー4の表面4aでも反射される。そ
のディスク3とスライダー4で反射されたビームはビー
ムスプリッタ2を透過して光電変換素子5に入射する。
A monochromatic light beam of wavelength λ generated by the light source section IA is bent downward by the beam splitter 2, passes through a transparent disk 3 that is one object to be measured, and passes through a transparent slider 4 that is the other object to be measured. incident on . In this case, the beam is partially reflected by the front surface 3a and back surface 3b of the disk 3, and is also reflected by the surface 4a of the slider 4. The beam reflected by the disk 3 and slider 4 passes through the beam splitter 2 and enters the photoelectric conversion element 5.

ここでスライダー4の表面4aおよびディスク3の裏面
3bから反射したビームが重なり合って生ずる干渉光は
、スライダー4とディスク3とのすき間りの大小により
、その明るさが第2図に示すように変化する。すなわち
h−00ときには干λ 渉光の明るさは最も暗くなり、h=、のときには、干渉
光の明るさは最も明るくなる。したがって干渉光の明る
さの変化全光電変換素子5により電気信号に変換して測
定すれば、すき間hyその測定点についてだけ求めるこ
とができる。ところがこの方法では下記のような欠点が
ある。
Here, the brightness of the interference light generated when the beams reflected from the front surface 4a of the slider 4 and the back surface 3b of the disk 3 overlap, as shown in FIG. 2, changes depending on the size of the gap between the slider 4 and the disk 3. do. That is, when h-00, the brightness of the interference light is the darkest, and when h=, the brightness of the interference light is the brightest. Therefore, if the change in brightness of the interference light is converted into an electrical signal by the full photoelectric conversion element 5 and measured, the gap hy can be determined only for that measurement point. However, this method has the following drawbacks.

中 スライダーおよびディスクの対向面は2次元である
にもかかわらず1点のみの測定しかできない。このため
スライダーのローリング、ピッチングおよびヨーイング
などの測定はできない。
Medium Even though the opposing surfaces of the slider and disk are two-dimensional, only one point can be measured. Therefore, rolling, pitching, yawing, etc. of the slider cannot be measured.

(11)干渉光の明るさは光路差と共に、反射光の明る
さにも関係するので、光量の変動、ディスク3およびス
ライダー4の変動による反射光の明るさの変化により、
干渉光の明るさは変化するから測定精度が低下する。
(11) The brightness of the interference light is related to the brightness of the reflected light as well as the optical path difference, so due to changes in the brightness of the reflected light due to changes in the amount of light and changes in the disk 3 and slider 4,
Since the brightness of the interference light changes, measurement accuracy decreases.

本発明は上記にかんがみ二つの被測定物間に形成される
多次元にわたる微小すき間の平均すき間惜および時間的
に変化するすき間量を容易に測定し、かつその測定精度
を向上させることを目的とするものである。
In view of the above, it is an object of the present invention to easily measure the average gap and the time-varying gap amount of a multidimensional micro gap formed between two objects to be measured, and to improve the measurement accuracy. It is something to do.

上記目的を達成するために、本発明は被測定物間の微小
すき間ケ通常の光干渉法によシ干渉縞として発生させ、
この干渉縞を多次元にわたって任意方向および周期で走
査し、この走査信号から多次元の明るさ信号を分離し、
この信号を処理してうにしたことを特徴とするものであ
る。
In order to achieve the above object, the present invention generates interference fringes in minute gaps between objects to be measured using ordinary optical interferometry.
This interference pattern is scanned over multiple dimensions in arbitrary directions and periods, and a multidimensional brightness signal is separated from this scanning signal.
This signal is characterized by being processed.

以下本発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図において、1は波長λの重色光束を発生するモノ
クロメータ付光源、2はビームスプリッタ、3は一方の
被測定物である透明なディスク、4は透明ディスク3と
対設された他方の被測定物である不透明なスライダー、
7はビームスプリッタ2からの光路を変更するミラー、
8は前記ディスク3およびスライダー4で反射された反
射光によシ発生する干渉縞像を映出する光電変換部、9
は光電変換部8に結像した干渉縞をモニターするTVモ
ニタ、10は水平走査信号発生器、11は垂直走査信号
発生器、12は走査中心および走査周期、走査幅を設定
する設定回路、131−を設定後の走査信号を発生する
X−Y信号発生回路、14は光電変換部8の出力を増幅
し、かつ高周波雑音成分を除去するフィルタ回路、15
は分離した2次元信号からそれぞれ浮上量を決定するデ
ータ処理回路、20は多次元信号(ここでは2次元信号
)を分離する信号分離回路である。
In FIG. 3, 1 is a light source with a monochromator that generates a double-color beam with a wavelength λ, 2 is a beam splitter, 3 is a transparent disk that is one of the objects to be measured, and 4 is the other transparent disk that is opposite to the transparent disk 3. An opaque slider that is the object to be measured,
7 is a mirror that changes the optical path from the beam splitter 2;
8 is a photoelectric conversion unit for projecting an interference fringe image generated by the reflected light reflected by the disk 3 and the slider 4; 9;
10 is a horizontal scanning signal generator; 11 is a vertical scanning signal generator; 12 is a setting circuit for setting the scanning center, scanning period, and scanning width; 131; 14 is a filter circuit that amplifies the output of the photoelectric conversion unit 8 and removes high-frequency noise components; 15
20 is a data processing circuit that determines the flying height from each separated two-dimensional signal, and 20 is a signal separation circuit that separates a multidimensional signal (here, a two-dimensional signal).

上記信号分離回路20は第4図に示すような構成からな
る。すなわち20−1はフィルタ回路14の出力16を
一部ホールドする丈ンーブルホールト回路、2O−2V
iA/D変換器、20−3はA/D変換器20−2のデ
ィジタル信号を分離するス・イツチ回路、20−4 a
、 20−4 bはディジタル信号金一時記憶するラッ
チ回路、2〇−5a、2O−5bσラツチ後の信号をア
ナログ信号として出力するD/A変換器、2O−6a。
The signal separation circuit 20 has a configuration as shown in FIG. That is, 20-1 is a high voltage hold circuit that partially holds the output 16 of the filter circuit 14, and a 2O-2V
iA/D converter 20-3 is a switch circuit that separates the digital signal of A/D converter 20-2, 20-4 a
, 20-4b is a latch circuit for temporarily storing the digital signal; 20-5a, 2O-5b is a D/A converter for outputting the latched signal as an analog signal; 2O-6a;

2O−6bはラッチ後の信号とラッチ前の信号の差分の
符号を検出する比較回路である。
2O-6b is a comparison circuit that detects the sign of the difference between the signal after latching and the signal before latching.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

光源lで発生した波長λの単色光のビームはビームスプ
リッタ2により下方にJiN曲され、一方の被測定物で
ある透明ディスク3を透過して、他方の被測定物である
不透明なスライダー4に入射する。この場合、前記ビー
ムはディスク3の表面3aと斃面3bで一部反射される
と共に、スライダー4の表面4aでも反射される。その
ディスク3とスライダー4で反射された反射光はビーム
スプリッタ2を透過し、さらにミラー7により屈曲され
て光電変換部8に入射して干渉縞を結像する。
A monochromatic light beam of wavelength λ generated by a light source 1 is bent downward by a beam splitter 2, passes through a transparent disk 3 that is one object to be measured, and is transmitted to an opaque slider 4 that is the other object to be measured. incident. In this case, the beam is partially reflected by the surface 3a and the cutting surface 3b of the disk 3, and is also reflected by the surface 4a of the slider 4. The light reflected by the disk 3 and the slider 4 passes through the beam splitter 2, is further bent by the mirror 7, and enters the photoelectric converter 8 to form an image of interference fringes.

上記光電変換部8に結像した干渉縞の暗部または明部の
位置を検出し、これにより2つの被測定物3.4間の2
次元の微小すき間を求めることができる。この場合、明
部については暗部と同様に考えられてから一部についで
述べることにする。
The position of the dark or bright part of the interference fringes imaged on the photoelectric conversion unit 8 is detected, and the position of the
Dimensional minute gaps can be found. In this case, the bright areas will be considered in the same way as the dark areas, and then some of them will be discussed.

第5図において、同図(υのり、、h、はディスク3と
スライダー4のすき間を表わし、スライダー4は図示の
ように任意に傾!しているものとする。スライターー4
面上に(tま第5図(2)に示すよりに干渉縞が表われ
、この干渉縞は光電変換部8に映出でれる。光電変換部
8では、この干渉縞に対して走査を行うことにより、同
図(3)に示すような明る爆信号かえられる。例えば第
5図(2)のa位置で水平走査した時には、同図+3)
 −(a)の明るさ信号が得られ、同図(2)のb位置
で水平走査したときには、同図(3) −(b)の明る
さ信号が得られる。光電変換部8の位置に水平走査電圧
±Vxと垂直走査電圧±VyKより任意に決定できる。
In FIG. 5, h represents the gap between the disk 3 and the slider 4, and the slider 4 is assumed to be tilted arbitrarily as shown in the figure.Slider 4
Interference fringes appear on the surface (t) as shown in FIG. By doing this, a bright explosion signal as shown in Figure 5 (3) can be changed.For example, when horizontal scanning is performed at position a in Figure 5 (2), the brightness signal is changed by +3) in Figure 5 (2).
A brightness signal of -(a) is obtained, and when horizontal scanning is performed at position b in (2) of the same figure, a brightness signal of (3)-(b) of the same figure is obtained. The position of the photoelectric conversion unit 8 can be arbitrarily determined from the horizontal scanning voltage ±Vx and the vertical scanning voltage ±VyK.

[7たがって、例えば干渉縞の暗部のピーク位置に対応
した水平方向の電圧VI  * v2+ v、’ +V
2 ’およびスライダー4のエツジ部の電圧V0をそ′
t1.ぞれ求めt″I5ば、すき間の最小値は王妃(I
X2)式から求めることがでたる。
[7 Therefore, for example, the horizontal voltage VI * v2+ v,' +V corresponding to the peak position of the dark part of the interference fringe
2' and the voltage V0 at the edge of slider 4.
t1. If each calculation is t''I5, the minimum value of the gap is the queen (I
It can be obtained from the formula X2).

(k:干渉縞次数)・・・・・・(渇 し2斤がって、第5図(3)  (qlnlに示す明る
さ信号全同時に求めることができれば、スライダー4の
2次元な浮上量全判定することがでへる。
(k: Order of interference fringes) (2 lbs of starvation, Fig. 5 (3)) It is difficult to judge.

次に第5図(2)に示した走査体H: (at (b)
全同時に走査して多次元の走−i¥−を行う方法l・述
べる。ここでは平行な2つの位Sの走査について示すが
、走査方向、走査位置および走査位置の数は任意に選定
できるのは勿論である。
Next, the scanning body H shown in FIG. 5(2): (at (b)
A method for performing multidimensional scanning -i\- by scanning all at the same time will be described. Although scanning of two parallel positions S will be described here, it goes without saying that the scanning direction, scanning position, and number of scanning positions can be arbitrarily selected.

第6図に2つの走査方式を示す。FIG. 6 shows two scanning methods.

まず走査波形を示す。First, the scanning waveform will be shown.

第6図(1)(イフは鋸歯状波、(ロ)は一走査毎にY
方向走査位fit変化する矩形波を示す。e14−f、
水平−走査間隔を示すクロック信号である。
Figure 6 (1) (If is a sawtooth wave, (b) is Y for each scan.
It shows a rectangular wave that changes direction scanning position fit. e14-f,
A clock signal indicating the horizontal scan interval.

第6図(2]の(イ)は(1)と同様に鋸歯状波を示シ
2、(ハ)は水平−走査間隔を示すクロック信号である
。(口λは一水平走査期間を任意に分割して、短周期で
Y方向走査位置を変化させる矩形波を示す。
(A) in FIG. 6 (2) shows a sawtooth wave as in (1), and (C) is a clock signal showing the horizontal scanning interval. This shows a rectangular wave that changes the scanning position in the Y direction in short cycles.

第6図(1)はオルタネ−1・方式で、走査位置(a)
(b)を順次に繰返す走査方法である。同図(2)はチ
ョッパ一方式で、Y方法の走査電圧をチョップして2次
元の走査信号としてXY偏向躇から光電変換部に入力す
る走査方法である。第6図(2)の(イ)(0)に示す
信号は水平走査信号発生器10および垂直走査信号発生
器11(第3図参竪)によりそれぞれ発生される。その
両信号は設定回路12により光電変換面上の干渉縞を有
効に走査するために、走査振幅と走査中心および走査周
期全設定してXY偏向回路13に入力する。Y方向の走
査信号は走査周期に対して整数倍(例えば512etC
)の信号を基準ブロックとした方形波として入力する。
Figure 6 (1) shows the alternator 1 method, scanning position (a)
This is a scanning method in which (b) is sequentially repeated. Figure (2) is a chopper type scanning method in which the scanning voltage of the Y method is chopped and input as a two-dimensional scanning signal from the XY deflection to the photoelectric conversion unit. The signals shown in (a) and (0) of FIG. 6(2) are generated by a horizontal scanning signal generator 10 and a vertical scanning signal generator 11 (see FIG. 3), respectively. Both signals are inputted to the XY deflection circuit 13 with the scanning amplitude, scanning center, and scanning period fully set by the setting circuit 12 in order to effectively scan the interference fringes on the photoelectric conversion surface. The scanning signal in the Y direction is an integral multiple of the scanning period (for example, 512etC
) is input as a square wave using the reference block.

この方形波のDCレベルを変化することによりスライダ
4の中心部に合せ、さらに振幅を変化させることにより
スライダー4の上面を走査することが可能である。2つ
のスライダー上面が平行でないときには、振幅が直線的
に変化する方形波を入力することで同様に走査できる。
By changing the DC level of this square wave, it is possible to match it to the center of the slider 4, and by further changing the amplitude, it is possible to scan the top surface of the slider 4. When the top surfaces of the two sliders are not parallel, scanning can be performed in the same way by inputting a square wave whose amplitude changes linearly.

一方、X方向の走査信号は鋸歯状波全入力することによ
シ通常の1゛■走査と同じ水平走査を実行する。
On the other hand, by fully inputting the sawtooth wave as the scanning signal in the X direction, horizontal scanning, which is the same as normal 1'' scanning, is executed.

次に上記方法で走査した信号から、第5図(3)に示す
明るさ信号を信号分離回路20(第3,4図萎照)によ
り分離する方法について説明する。
Next, a method of separating the brightness signal shown in FIG. 5(3) from the signal scanned by the above method using the signal separation circuit 20 (shown in FIGS. 3 and 4) will be described.

第4図において、フィルタ回路14により波形整形され
た信号161−J:、サンプルホールド回路20−1に
入力し、ここで垂直走査信号発生器11からの垂直走査
信号の方形波に同期してサンプルホールドする。このサ
ンプルホールドした信号1−1:A/D変換器20−2
に入力してA/D変換され、この変換後のディジタル信
号にスイッチ回路20−3により11[次に分離される
。前記サンプルホールド回路20−1、A/D変換器2
0−2、スイッチ回路20−3の制御を方形波のタイミ
ングを基にして行うことにより、走査位置に応じた明る
さ信号を容易にうろことができる。
In FIG. 4, a signal 161-J whose waveform has been shaped by the filter circuit 14 is input to the sample and hold circuit 20-1, where it is sampled in synchronization with the square wave of the vertical scanning signal from the vertical scanning signal generator 11. Hold. This sampled and held signal 1-1: A/D converter 20-2
The converted digital signal is then separated into 11 signals by a switch circuit 20-3. The sample hold circuit 20-1 and the A/D converter 2
0-2, by controlling the switch circuit 20-3 based on the timing of the square wave, it is possible to easily change the brightness signal according to the scanning position.

スイッチ回路20−3で分離さ扛たディジタル信号がラ
ッチ回路20−4 a、 20−4 bで順次に保持さ
れ、これらの信号が第5図(3)の(a)(b)に対応
した明るさ信号となる。これらの信号’iD/A変換回
路20−5 a、 20−5 bi介しテD/A変換す
ることにより、明るさ信号となってオシロスコープなど
(図示せず)で観測するとともにフレームメモリーなど
に入力して処理することができ、第5図(3)に示す(
a)(b)の信号の対応関係を観測することにより、ス
ライダーの浮上の様子を多次元で把握することができる
The digital signals separated by the switch circuit 20-3 are sequentially held in the latch circuits 20-4a and 20-4b, and these signals correspond to (a) and (b) in FIG. 5(3). It becomes a brightness signal. By D/A converting these signals through the iD/A conversion circuits 20-5a and 20-5bi, they become brightness signals that can be observed with an oscilloscope (not shown) and input into a frame memory, etc. It can be processed as shown in Figure 5 (3) (
By observing the correspondence between the signals a) and (b), it is possible to understand the state of the slider's levitation in multiple dimensions.

またラッチ回路20−4 a、 20−4 bにおいて
、ラッチ前後の信号差分の正負を比較回路2O−6a、
2O−6bで判定することにより、明る爆信号の明部と
暗部のピーク位置を検出することができる。嘆らに図示
していないが、差分喰変化の最も大きい部分も検出可能
であり、これよりスライダーのエツジの検出も可能であ
る。方形波のタロツク数とピーク位置、エツジ位置が発
生したタイミングとをそれぞれカウントすることにより
、第5図(2) ノ(a)(b)で示したV O+ v
、 I V、 l v、# t■、′に対応した位置信
号として検出することができ、これにより(1)代金用
いてそれぞれの最小すき間を決定することができる。こ
れらの操作はデータ処理回路15で行われる。
Furthermore, in the latch circuits 20-4a and 20-4b, comparison circuits 2O-6a and 20-6a,
By making a determination using 2O-6b, it is possible to detect the peak positions of the bright and dark areas of the bright explosion signal. Although not shown in the figure, it is also possible to detect the portion with the largest differential feed change, and from this it is also possible to detect the edge of the slider. By counting the number of tallocks of the square wave and the timing at which the peak position and edge position occur, the V O+ v shown in Fig. 5 (2) (a) and (b) is calculated.
, IV, lv, #t■,', and thereby (1) the respective minimum gaps can be determined using the cost. These operations are performed by the data processing circuit 15.

以上説明したように本発明によれば、通常の光学系によ
り発生した干渉縞の変化f:多次元にわたって実時間で
杷握することが可能であるため、2つの被測定′肋間の
多次元の微小すき間の平均的すき間歇および時間的に変
化するすべ間量を容易に測定することができ、しかもそ
の測定精度の向上kfdかることができる。
As explained above, according to the present invention, it is possible to clamp the change in interference fringes f caused by a normal optical system in real time over multiple dimensions. It is possible to easily measure the average gap interval of minute gaps and the time-varying amount of clearance, and furthermore, the measurement accuracy can be improved kfd.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図に従来の微小すき間の光学的測定方
法の原理全説明する図、第3図は本発明に係わる微小す
き間の多次元測定方法の一実施例の構成図、第4図は第
3図の信号分離回路の構成図、第5図(1)〜(3)は
光電変換部に結像した干渉縞像と明るさ信号およびすき
間との関係を説明する図、第6図(1)、(2)は2次
元同時走査の説明図である。 2・・・ディスク、3・・・スライダー、8・・・光電
変換部、10・・・水平走査信号発信器、11・・・垂
直走査信号発振器、15・・・データ処理回路、20・
・・信号分離回路。 才1目 才3m 24  国 【1) 0 (3) 才5 菌
Figures 1 and 2 are diagrams illustrating the entire principle of the conventional optical measurement method for minute gaps, Figure 3 is a block diagram of an embodiment of the multidimensional measurement method for minute gaps according to the present invention, and Figure 4 is a block diagram of the signal separation circuit in Fig. 3, Figs. 5 (1) to (3) are diagrams explaining the relationship between the interference fringe image formed on the photoelectric conversion unit, the brightness signal, and the gap, and Fig. 6 (1) and (2) are explanatory diagrams of two-dimensional simultaneous scanning. 2... Disc, 3... Slider, 8... Photoelectric conversion unit, 10... Horizontal scanning signal oscillator, 11... Vertical scanning signal oscillator, 15... Data processing circuit, 20...
...Signal separation circuit. 1 year old 3m 24 countries [1] 0 (3) 5 years old Fungus

Claims (1)

【特許請求の範囲】 被測定物間の微小すき間を光干渉法により干渉縞として
発生させると共に、この干渉輪金光電変Ill管 換部に結像させて走査し、干渉縞の明部または骨部の明
るさに対応した出力信号から微小すき間を光学的に測定
する方法において、前記干渉縞を多次元にわたって任意
方向および周期で走査し、この走査信号から多次元の明
るさ信号を分離し、この信号を処理して被測定物間の多
次元にわたるすき間を測定するようにしたことを特徴と
する微小すき間多次元測定法。
[Claims] A minute gap between the objects to be measured is generated as interference fringes by optical interference method, and an image is formed on the interference ring gold photoelectric conversion section and scanned to detect the bright part of the interference fringes or the bones. In the method of optically measuring a minute gap from an output signal corresponding to the brightness of a part, the interference fringes are scanned in an arbitrary direction and period over multiple dimensions, and a multidimensional brightness signal is separated from this scanning signal, A micro gap multidimensional measurement method characterized in that this signal is processed to measure multidimensional gaps between objects to be measured.
JP13850682A 1982-08-11 1982-08-11 Multi-dimensional measurement method of very small clearance Pending JPS5928607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13850682A JPS5928607A (en) 1982-08-11 1982-08-11 Multi-dimensional measurement method of very small clearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13850682A JPS5928607A (en) 1982-08-11 1982-08-11 Multi-dimensional measurement method of very small clearance

Publications (1)

Publication Number Publication Date
JPS5928607A true JPS5928607A (en) 1984-02-15

Family

ID=15223720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13850682A Pending JPS5928607A (en) 1982-08-11 1982-08-11 Multi-dimensional measurement method of very small clearance

Country Status (1)

Country Link
JP (1) JPS5928607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118205A (en) * 1985-11-18 1987-05-29 Sony Corp Measuring method for head floating quantity
JPS63205503A (en) * 1987-02-20 1988-08-25 Mitsubishi Electric Corp Optical measuring instrument for fine gap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118205A (en) * 1985-11-18 1987-05-29 Sony Corp Measuring method for head floating quantity
JPS63205503A (en) * 1987-02-20 1988-08-25 Mitsubishi Electric Corp Optical measuring instrument for fine gap

Similar Documents

Publication Publication Date Title
JPS5928607A (en) Multi-dimensional measurement method of very small clearance
JPH0227226A (en) Data processing system for fourier transform spectroscope
US4902135A (en) Object movement measuring apparatus
JPS6220483B2 (en)
JP2889248B2 (en) Optical interferometer for optical spectrum analyzer
JPH03102249A (en) Method and apparatus for detecting foreign matter
JPH10221159A (en) Laser doppler type vibration distribution measuring apparatus
JP5061049B2 (en) Fine shape measuring device
JPH028732A (en) Cyclic signal recording method and apparatus
JPH03229179A (en) Charged beam device
JPS63140934A (en) Analyzing method for shearing interference fringes
Arai et al. High-speed two-dimensional fringe analysis using frequency demodulation
JPS58184504A (en) Optical measuring method for minute gap
RU1835485C (en) Determination method for objectъs cross-section profile
JP2946675B2 (en) High-speed phase difference measuring device for heterodyne interferometer
RU2157963C1 (en) Method for monitoring article border position and device which implements said method
SU547633A1 (en) Automatic Stereophotogrammetric Device
RU2066870C1 (en) Remote-control electro-optical instrument for very high-speed testers of integral circuits
Furnish Resolution comparison of continuous and multipoint line ORVIS for periodic and aperiodic features
SU1392366A1 (en) Device for measuring linear dimensions of specimen
RU1711554C (en) Device for measuring the surface relief
RU2065149C1 (en) Method of registration of changes of order of interference
JPH0414283B2 (en)
JPH0719964A (en) Light wavemeter
JPS59153151A (en) Apparatus for inspecting defect of regular pattern