JPS6220483B2 - - Google Patents

Info

Publication number
JPS6220483B2
JPS6220483B2 JP6898681A JP6898681A JPS6220483B2 JP S6220483 B2 JPS6220483 B2 JP S6220483B2 JP 6898681 A JP6898681 A JP 6898681A JP 6898681 A JP6898681 A JP 6898681A JP S6220483 B2 JPS6220483 B2 JP S6220483B2
Authority
JP
Japan
Prior art keywords
measured
moire
double
signal
moiré
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6898681A
Other languages
Japanese (ja)
Other versions
JPS57184918A (en
Inventor
Yoshio Sakurai
Takeo Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKU UCHU GIJUTSU KENKYU SHOCHO
Original Assignee
KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKU UCHU GIJUTSU KENKYU SHOCHO filed Critical KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority to JP6898681A priority Critical patent/JPS57184918A/en
Publication of JPS57184918A publication Critical patent/JPS57184918A/en
Publication of JPS6220483B2 publication Critical patent/JPS6220483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は、被測定物体表面(平面)に等間隔
ピツチの格子じまを付け、これを光学系によつて
その結像面に格子じま像を結像させ、上記結像面
上に置かれた固体撮像素子(以下センサという)
の出力信号の周期的に変動する包絡線を検出し、
これを利用して被測定物体表面の微小変形を測定
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides grid stripes with equal pitches on the surface (plane) of an object to be measured, and forms an image of the grid stripes on the imaging plane using an optical system. A solid-state image sensor (hereinafter referred to as a sensor) placed on the above image forming plane
Detects the periodically varying envelope of the output signal of
The present invention relates to a method of measuring minute deformations on the surface of an object to be measured using this.

従来、金属材料の引張試験等における微小変形
(例えば金属材料の微小な伸び)の1つの測定方
法として、モアレじまを利用した第1図のような
原理が用いられてきた。すなわち、第1図aはこ
の原理を説明するための断面図で、1は被測定物
体に付けられた格子じま、2は光学系、3は基準
格子、4は補助光学系、5はフイルムである。第
1図bは格子じま1の平面図でpは前記格子じま
1のピツチであり、a,bはそれぞれ格子じま1
の濃淡部分の幅である。第1図cは基準格子3の
平面図であつて斜線の部分は光をさえぎる部分で
あり、これに囲まれた空白の部分は光を透過させ
る部分であつて、qは前記基準格子3のピツチで
ある。また、基準格子3の表面上に結像する格子
じま像の格子の並ぶ方向と基準格子3の格子の並
ぶ方向とは同じである。第1図bに示すような等
間隔ピツチpの格子じま1を光学系2により第1
図cに示すような等間隔のピツチqの基準格子3
の表面上に結像させ、この基準格子3の裏面上の
像を補助光学系4によりフイルム5の面上に結像
させる。
BACKGROUND ART Conventionally, as a method for measuring minute deformation (for example, minute elongation of a metal material) in a tensile test or the like of a metal material, a principle as shown in FIG. 1 using moire fringes has been used. That is, Fig. 1a is a cross-sectional view for explaining this principle, where 1 is a grating strip attached to the object to be measured, 2 is an optical system, 3 is a reference grating, 4 is an auxiliary optical system, and 5 is a film. It is. Figure 1b is a plan view of the grid strip 1, p is the pitch of the grid strip 1, and a and b are the grid strips 1, respectively.
It is the width of the shaded part of . FIG. 1c is a plan view of the reference grating 3, in which the shaded area is the area that blocks light, the blank area surrounded by this is the area that allows light to pass through, and q is the area of the reference grating 3. It's pitchy. Furthermore, the direction in which the gratings of the grating striped image formed on the surface of the reference grating 3 are arranged is the same as the direction in which the gratings of the reference grating 3 are arranged. The lattice fringes 1 with equally spaced pitches p as shown in FIG.
Reference grid 3 with equally spaced pitch q as shown in Figure c
An image on the back surface of the reference grating 3 is formed on the surface of the film 5 by an auxiliary optical system 4.

基準格子3の表面に結像する格子じま像のピツ
チをwとすると、wと基準格子3のピツチqとが
接近しているとフイルム5の面上には、例えば第
2図のような濃淡部分をもついわゆるモアレじま
を生じる。なお、第2図に示すようにモアレじま
の濃度の最大値から隣の濃度の最大値(又はモア
レじまの濃度の最小値から隣の濃度の最小値)ま
での長さをモアレじま周期Tとする。格子じま像
のピツチwと基準格子3のピツチqとの差はモア
レじま周期Tの変化となつて現れるので、被測定
物体に格子じま1を密着しておき、第1図aの方
法を用いると、被測定物体の伸縮、すなわち格子
じま1のピツチpの伸縮は格子じま像のピツチw
の伸縮となりフイルム5の面上のモアレじま周期
Tの変化となつて現れる。したがつて、この変化
を利用して被測定物体の微小変形が測定できる。
Let w be the pitch of the grating stripe image formed on the surface of the reference grating 3, and if w and the pitch q of the reference grating 3 are close to each other, on the surface of the film 5, for example, as shown in FIG. This results in so-called moire fringes with dark and light areas. As shown in Figure 2, the length from the maximum density of a moire fringe to the maximum value of the adjacent density (or from the minimum density of a moire fringe to the minimum value of the adjacent density) is defined as the moire fringe. Let the period be T. Since the difference between the pitch w of the grating stripe image and the pitch q of the reference grating 3 appears as a change in the moiré fringe period T, the grating stripe 1 is kept in close contact with the object to be measured, and the pitch q of the reference grating 3 is When using this method, the expansion and contraction of the object to be measured, that is, the expansion and contraction of the pitch p of lattice stripe 1, is equal to the pitch w of the lattice stripe image.
This expansion and contraction occurs as a change in the moire fringe period T on the surface of the film 5. Therefore, using this change, minute deformation of the object to be measured can be measured.

ところが、上述のモアレじまを利用した微小変
形測定方法には次のような欠点があつた。
However, the above-mentioned method for measuring minute deformation using moiré fringes has the following drawbacks.

(i) モアレじまをフイルム面上に作り、写真から
モアレじま周期Tを計測して微小変形を求める
ために時間がかかり、被測定物体の伸縮をほと
んどリアルタイムに近い状態で測定することは
困難である。
(i) It takes time to create moire stripes on the film surface, measure the moire stripe period T from a photograph, and find minute deformations, and it is difficult to measure the expansion and contraction of an object in almost real time. Have difficulty.

(ii) 被測定物体の伸縮を自動的に計測するのがむ
ずかしい。
(ii) It is difficult to automatically measure the expansion and contraction of the object to be measured.

(iii) 基準格子3が必要である。(iii) A reference grid 3 is required.

等である。etc.

この発明は、上述の欠点を除去するためになさ
れたものである。以下、この発明について説明す
る。
This invention has been made to eliminate the above-mentioned drawbacks. This invention will be explained below.

第3図に示すように被測定物体10の表面(平
面)に第1図bと同様な等間隔のピツチpを持つ
格子じま1(例えば白黒の格子じま)を付けてお
く。一方、光学系2によつてこの格子じま像11
をセンサ12の受光面(平面)に結像させる。な
お、センサ12は第4図aに示すように、センサ
12のx軸が格子じま像11の格子の並ぶ方向
(X軸方向)と平行になるように配置する。ここ
でセンサ12のx軸は第4図bに示すようにS個
の同じ大きさを持つ光電変換素子13(以下画素
という)が等間隔で、かつ直線状に並んでいる方
向であり、また、rは画素配列ピツチ(画素13
の中心から隣の画素13の中心までの距離)であ
る。
As shown in FIG. 3, lattice stripes 1 (for example, black and white lattice stripes) having equally spaced pitches p similar to those in FIG. 1b are provided on the surface (plane) of the object to be measured 10. As shown in FIG. On the other hand, this lattice striped image 11 is formed by the optical system 2.
is imaged on the light receiving surface (plane) of the sensor 12. As shown in FIG. 4a, the sensor 12 is arranged so that the x-axis of the sensor 12 is parallel to the direction in which the lattice of the lattice stripe image 11 is arranged (X-axis direction). Here, the x-axis of the sensor 12 is the direction in which S photoelectric conversion elements 13 (hereinafter referred to as pixels) having the same size are lined up at equal intervals and in a straight line, as shown in FIG. 4b, and , r is the pixel array pitch (pixel 13
(distance from the center of the pixel 13 to the center of the adjacent pixel 13).

センサ12からの出力信号は例えば第5図に示
すような時系列信号として得ることができる。こ
こに縦軸は各画素13に当つた光の強さに比例す
る電気量(電圧)であり、横軸は時間であつて、
波形の数字は第4図bの画素13につけた番号に
対応する。
The output signal from the sensor 12 can be obtained as a time series signal as shown in FIG. 5, for example. Here, the vertical axis is the amount of electricity (voltage) proportional to the intensity of light hitting each pixel 13, and the horizontal axis is time,
The numbers on the waveform correspond to the numbers assigned to pixel 13 in FIG. 4b.

光学系2は被測定物体10の表面の格子じま1
をセンサ12の受光面に結像させる働きだけでな
く、その倍率を変えることによつて格子じま像1
1のピツチwを画素配列ピツチrの2倍に近づ
け、あるいはまた一致させることのできる機能も
合わせ備えている。
The optical system 2 detects lattice fringes 1 on the surface of the object to be measured 10.
In addition to forming an image on the light-receiving surface of the sensor 12, by changing the magnification, the lattice striped image 1
It also has a function that can bring the pitch w of 1 closer to twice the pixel array pitch r, or even match it.

第6図はセンサ12の各画素13からの出力信
号をブラウン管オシロスコープによつて観測した
結果であつて、その観測画素は第5図の一部分で
ある。各画素13に対する出力信号レベルは上に
行くほどその画素13に強い光が当つていること
を表す。
FIG. 6 shows the results of observing the output signals from each pixel 13 of the sensor 12 using a cathode ray tube oscilloscope, and the observed pixels are a part of FIG. The higher the output signal level for each pixel 13 is, the more intense the light is hitting that pixel 13.

第6図aは格子じま像11のピツチwが画素配
列ピツチrの2倍になり、しかも格子じま像11
の明るいしまの中心および暗いしまの中心がそれ
ぞれ画素13の中心に一致した状態を示す。第6
図bは格子じま像11のピツチwが画素配列ピツ
チrの2倍よりも少しずれた時の状態を示し、第
6図c,dは第6図bよりも更に格子じま像11
のピツチwがずれた状態を示す。
FIG. 6a shows that the pitch w of the lattice stripe image 11 is twice the pixel array pitch r, and the lattice stripe image 11
The center of the bright stripe and the center of the dark stripe respectively coincide with the center of the pixel 13. 6th
Figure b shows the state when the pitch w of the lattice stripe image 11 is slightly off by more than twice the pixel arrangement pitch r, and Figures 6c and d show the lattice stripe image 11 even further than in Figure 6b.
This shows a state in which the pitch w of is shifted.

次にモアレじまの説明を行う。説明を簡単にす
るために光学系2の倍率を1とすると、格子じま
像11のピツチwは格子じま1のピツチpと同じ
になる。今、画素配例ピツチrがp/2だとするとセ ンサ12の各画素13からの出力信号は第6図a
のようになり、その包絡線は2本の平行線とな
る。平行線の間隔は画素13に対する格子じま像
11の位置関係(位相関係)によつて0から最大
振幅まで変化する。次に被測定物体10の表面が
少し伸びて格子じま像11のピツチがpからp
(1+1/n)に伸びたとすると任意の画素13に対 する格子じま像11の位置関係はその画素13か
らn+1個離れた画素13と同じ状態になる。こ
の時のnは正の整数である。なお、nが整数でな
い場合でもnが1よりも十分大きい場合(例えば
10以上の場合)には画素13と格子じま像11と
の位置関係はnに近い整数の場合の状態に近似で
きる。センサ12からの出力信号は一般的に周期
性を示し、nが1よりも十分大きい場合には奇数
番目の画素13からの出力信号からなる包絡線と
偶数番目の画素13からの出力信号からなる包絡
線とは第6図b,c,dに示すように互におよそ
180度位相の異なる明瞭なモアレじまを生ずる。
そこでセンサ12からの出力信号を二重モアレ信
号と名づけ、また二重モアレ信号を奇数番目の画
素13からの出力信号(これをモアレA信号と名
づける)と偶数番目の画素13からの出力信号
(これをモアレB信号と名づける)とに分けて考
える。するとモアレA信号とモアレB信号とは周
期が近似的に等しく、この周期は第2図のモアレ
じま周期Tに相当する。二重モアレ信号は第6図
b,c,dに示すように節(振幅が0となる所)
を生ずるので、この節から隣の節までの長さを二
重モアレ周期TDと定義する。すると二重モアレ
周期TDはp(n+1)/2となり、これは第2図のモ
アレ じま周期Tの1/2に相当する。特にnが正の整数
の場合には二重モアレ信号は、n+1番目ごとに
同じ状態を繰り返す。例えば第6図cにおいては
n+1は近似的に24であるから第6図aに比べて
100/23≒4.3(%)伸びたことになる。
Next, we will explain moire edges. If the magnification of the optical system 2 is assumed to be 1 to simplify the explanation, then the pitch w of the lattice stripe image 11 will be the same as the pitch p of the lattice stripe 1. Now, if the pixel arrangement pitch r is p/2, the output signal from each pixel 13 of the sensor 12 is shown in Fig. 6a.
The envelope becomes two parallel lines. The interval between the parallel lines changes from 0 to the maximum amplitude depending on the positional relationship (phase relationship) of the grid striped image 11 with respect to the pixel 13. Next, the surface of the object to be measured 10 stretches a little, and the pitch of the lattice stripe image 11 changes from p to p.
If it extends to (1+1/n), the positional relationship of the lattice striped image 11 with respect to any pixel 13 will be the same as that of the pixel 13 located n+1 away from that pixel 13. In this case, n is a positive integer. Note that even if n is not an integer, if n is sufficiently larger than 1 (for example,
10 or more), the positional relationship between the pixel 13 and the lattice striped image 11 can be approximated to the state when the number is an integer close to n. The output signal from the sensor 12 generally exhibits periodicity, and when n is sufficiently larger than 1, it consists of an envelope consisting of the output signal from the odd-numbered pixels 13 and an output signal from the even-numbered pixels 13. Envelopes are approximately similar to each other as shown in Figure 6 b, c, and d.
Produces clear moire edges with a 180 degree phase difference.
Therefore, the output signal from the sensor 12 is named the double moire signal, and the double moire signal is the output signal from the odd-numbered pixel 13 (this is named the moiré A signal) and the output signal from the even-numbered pixel 13 ( This will be called the Moiré B signal). Then, the moire A signal and the moire B signal have approximately the same period, and this period corresponds to the moire edge period T in FIG. 2. The double moiré signal has nodes (where the amplitude becomes 0) as shown in Figure 6 b, c, and d.
Therefore, the length from this node to the next node is defined as the double moiré period T D . Then, the double moire period T D becomes p(n+1)/2, which corresponds to 1/2 of the moire edge period T in FIG. In particular, when n is a positive integer, the double moiré signal repeats the same state every (n+1)th time. For example, in Figure 6c, n+1 is approximately 24, which means that it has increased by 100/23≒4.3 (%) compared to Figure 6a.

格子じま像11のピツチがpからp(1−1/n) に縮んだ場合には、nを2以上の整数とすると、
任意の画素13に対する格子じま像11の位置関
係はその画素13からn−1個離れた画素13と
同じ状態となる。なおnが整数でない場合でもn
が1より十分大きい場合には画素13と格子じま
像11との位置関係はnに近い整数の場合の状態
に近似できる。もしも第6図aの状態より格子じ
ま1のピツチpが縮んで第6図cの状態が作られ
たとするとn−1は近似的に24となるから、第6
図aに比べて第6図cはおよそ100/25=4(%)
縮 んだことになる。
When the pitch of the lattice stripe image 11 is reduced from p to p(1-1/n), if n is an integer of 2 or more, then
The positional relationship of the lattice striped image 11 with respect to any pixel 13 is the same as that of the pixel 13 that is n-1 away from that pixel 13. Note that even if n is not an integer, n
When n is sufficiently larger than 1, the positional relationship between the pixel 13 and the lattice striped image 11 can be approximated to the state when n is an integer close to n. If the pitch p of lattice stripe 1 is reduced from the state shown in Fig. 6a, and the state shown in Fig. 6c is created, n-1 becomes approximately 24, so the 6th
Compared to figure a, figure 6 c is approximately 100/25 = 4 (%)
It means it has shrunk.

このように二重モアレ周期TDを測定すること
により、被測定物体10の表面の伸びの割合(以
下伸び率という)又は縮まる割合(以下圧縮率と
いう)が非接触で測定できる。
By measuring the double moire period T D in this manner, the rate of elongation (hereinafter referred to as elongation rate) or the rate of contraction (hereinafter referred to as compression rate) of the surface of the object to be measured 10 can be measured without contact.

被測定物体10の表面の伸び率又は圧縮率を測
定する場合に最初の状態(基準の状態)を第6図
aのような状態、すなわちp=2rの状態としても
よいが、この場合にはセンサ12をx軸方向に微
動させ、格子じま像11の明るいしまの中心およ
び暗いしまの中心をそれぞれ画素13の中心にほ
ぼ一致させる必要がある。なぜならば格子じま像
11の明るいしまの中心および暗いしまの中心が
それぞれ画素13間のちようど中間に来た場合に
は二重モアレ信号の振幅が一定となり、変化がな
くて具合が悪いからである。したがつて、最初の
状態においてピツチpを2rより少しずらしておけ
ば最初からモアレじまを生ずるので、この二重モ
アレ周期TDを基準に伸び率又は圧縮率を求める
ようにすればセンサ12をx軸方向に微動する必
要がなくなり、また伸びたか縮んだかの判別もで
き、かつ装置も簡単になつて具合がよい。
When measuring the elongation or compression ratio of the surface of the object to be measured 10, the initial state (reference state) may be set as shown in FIG. 6a, that is, p = 2r, but in this case, It is necessary to move the sensor 12 slightly in the x-axis direction so that the centers of the bright stripes and the centers of the dark stripes of the lattice stripe image 11 approximately coincide with the center of the pixel 13, respectively. This is because when the center of the bright stripe and the center of the dark stripe of the lattice stripe image 11 respectively come to the middle between the pixels 13, the amplitude of the double moiré signal becomes constant and does not change, which is bad. It is. Therefore, if the pitch p is slightly shifted from 2r in the initial state, moire fringes will occur from the beginning, so if the elongation rate or compression rate is determined based on this double moire period T D , the sensor 12 There is no need to make slight movements in the x-axis direction, it is also possible to determine whether it has expanded or contracted, and the device is simple and convenient.

二重モアレ周期TDの測定は第6図c,dに示
すように、ブラウン管オシロスコープの波形観測
によつて節から節までの画素13の数を数えても
行えるが、これではあまり能率的でなく、かつ二
重モアレ周期TDが時間的に早く変化するような
場合には適用できない。
The double moiré period T D can be measured by counting the number of pixels 13 from node to node by observing the waveform of a cathode ray tube oscilloscope, as shown in Figures 6c and d, but this is not very efficient. This method cannot be applied in cases where the double moiré period T D changes rapidly over time.

二重モアレ周期TDをほとんどリアルタイムに
近い状態で測定するためには第7図に示すような
方法が考えられる。すなわち、第7図においてセ
ンサ12からの二重モアレ信号P1をまずスイツチ
ング回路21に入れてモアレA信号P2Aとモアレ
B信号P2Bとに分離する。なお、現在市販されて
いる一次元センサには1024画素、1728画素、2048
画素等があり、これらには最初からこのように別
れて出力信号が出されているものが多くあるの
で、この場合にはスイツチング回路21は不要で
ある。スイツチング回路21から出されるモアレ
A信号P2AおよびモアレB信号P2Bはそれぞれ独
立したA/D変換回路(アナログ信号をデイジタ
ル信号に変換する回路)22A,22Bに加えら
れ、基準レベル(二重モアレ信号の節となる電圧
レベルにほぼ一致する一定の電圧レベル)で2値
のデイジタル量に変換される。A/D変換回路2
2A、A/D変換回路22Bのそれぞれの出力を
信号P3A、信号P3Bとする。信号P3A,P3Bにお
ける基準レベル付近でA/D変換されたパルスは
例えば第8図に示すように雑音Nのために必ずし
も正しくA/D変換されているとは限らない。そ
こでこの雑音部分を取り除くためにA/D変換回
路22A,22Bの各出力をそれぞれ独立したデ
イジタルフイルタ回路23A,23Bに入れる。
なお、第8図のクロツクパルスCLは二重モアレ
信号P1と同期している。
In order to measure the double moiré period T D almost in real time, a method as shown in FIG. 7 can be considered. That is, in FIG. 7, the double moiré signal P 1 from the sensor 12 is first input to the switching circuit 21 and separated into a moiré A signal P 2A and a moiré B signal P 2B . The one-dimensional sensors currently on the market include 1024 pixels, 1728 pixels, and 2048 pixels.
In this case, the switching circuit 21 is not necessary because there are pixels and the like, and since there are many of them to which output signals are output separately in this way from the beginning. The moire A signal P 2A and the moire B signal P 2B output from the switching circuit 21 are added to independent A/D conversion circuits (circuits that convert analog signals to digital signals) 22A and 22B, respectively, to generate a reference level (double moiré signal). It is converted into a binary digital quantity at a constant voltage level that almost matches the voltage level at the node of the signal. A/D conversion circuit 2
The outputs of the A/D conversion circuit 2A and the A/D conversion circuit 22B are designated as a signal P 3A and a signal P 3B , respectively. The A/D converted pulses near the reference level in the signals P 3A and P 3B are not necessarily correctly A/D converted due to noise N, as shown in FIG. 8, for example. Therefore, in order to remove this noise portion, the outputs of the A/D conversion circuits 22A and 22B are input to independent digital filter circuits 23A and 23B, respectively.
Note that the clock pulse CL in FIG. 8 is synchronized with the double moiré signal P1 .

デイジタルフイルタ回路23A,23Bの一例
を第9図に示す。ここで遅延回路D1〜Dnはシフ
トレジスタで構成され、例えば遅延回路D1では
2クロツク(1画素分)遅延し、遅延回路D2
は4クロツク遅延し、同様に遅延回路Dnでは2m
クロツク遅延するようにし、遅延回路D1〜Dn
での各出力をAND回路GAに入れれば、AND回路
Aの出力はA/D変換回路22A,22Bから
の出力が連続してm個“1”になつた時に初めて
“1”と判断することになり、各デイジタルフイ
ルタ回路23A,23Bの出力は第10図の信号
4A,P4Bで示すようになり第8図の雑音Nを除
くことが可能である。
An example of the digital filter circuits 23A and 23B is shown in FIG. Here, the delay circuits D 1 to D n are composed of shift registers. For example, delay circuit D 1 delays by 2 clocks (one pixel), delay circuit D 2 delays by 4 clocks, and similarly, delay circuit D n delays by 2 m.
If the clock is delayed and each output from the delay circuits D 1 to D n is input to the AND circuit G A , the output of the AND circuit G A will be m outputs from the A/D conversion circuits 22A and 22B. It is judged as "1" only when it becomes "1", and the output of each digital filter circuit 23A, 23B becomes as shown by the signals P 4A , P 4B in FIG. 10, and the noise N in FIG. It is possible to remove it.

モアレA信号P2AとモアレB信号P2Bとはその
包絡線の位相がほぼ180度ずれているために、信
号P4Aと信号P4Bとは第10図に示すように信号
4Aの前縁パルス(パルス列の最初のパルス)が
出始める時刻と信号P4Bの後縁パルス(パルス列
の最後のパルス)が終る時刻とがほぼ一致し、ま
た、同様に信号P4Bの前縁パルスが出始める時刻
と信号P4Aの後縁パルスが終る時刻とがほぼ一致
する。そこで第7図および第10図において、カ
ウンタ24Aを信号P4Aの前縁パルスでリセツト
してクロツクパルス発生回路25からのクロツク
パルスCLを数え始め、次に信号P4Bの前縁パル
スでカウンタ24Aのゲートを閉じてカウンタ2
4Aのカウント数を出力し、同様にカウンタ24
Bを信号P4Bの前縁パルスでリセツトしてクロツ
クパルス発生回路25からのクロツクパルスCL
を数え始め、次に信号P4Aの前縁パルスでカウン
タ24Bのゲートを閉じてカウンタ24Bのカウ
ント数を出力するようにすれば、各カウンタ24
A,24Bのカウント数が二重モアレ周期TD
比例するのでほとんどリアルタイムに近い状態で
被測定物体10の表面の伸び率又は圧縮率が測定
できる。
Since the envelopes of the moiré A signal P 2A and the moiré B signal P 2B are out of phase by almost 180 degrees, the signals P 4A and P 4B are different from the leading edge of the signal P 4A as shown in FIG. The time at which the pulse (the first pulse of the pulse train) begins to appear almost coincides with the time at which the trailing edge pulse (the last pulse of the pulse train) of the signal P 4B ends, and similarly the leading edge pulse of the signal P 4B begins to appear. The time and the time at which the trailing edge pulse of the signal P 4A ends almost match. Therefore, in FIGS. 7 and 10, the counter 24A is reset with the leading edge pulse of the signal P4A to start counting the clock pulses CL from the clock pulse generating circuit 25, and then the counter 24A is reset with the leading edge pulse of the signal P4B. Close the counter 2
Outputs the count number of 4A and similarly outputs the counter 24.
The clock pulse CL from the clock pulse generation circuit 25 is reset by the leading edge pulse of the signal P4B .
If the count number of the counter 24B is output by closing the gate of the counter 24B with the leading edge pulse of the signal P4A , each counter 24
Since the counts of A and 24B are proportional to the double moiré period T D , the elongation or compression ratio of the surface of the object to be measured 10 can be measured almost in real time.

なお、第7図においては、モアレA信号P2A
モアレB信号P2Bとの2つの信号を用いて二重モ
アレ周期TDを求めたが、原理的にはいずれか一
方の信号だけで二重モアレ周期TDが求まること
はいうまでもない。また第7図において原理的に
はデイジタルフイルタ回路23A,23Bがなく
ても二重モアレ周期TDが求まることはいうまで
もない。
In addition, in FIG. 7, the double moire period T D was determined using two signals, the moire A signal P 2A and the moire B signal P 2B , but in principle, only one of the signals can be used to calculate the double moire period T D. It goes without saying that the heavy moiré period T D can be found. Furthermore, in FIG. 7, it goes without saying that in principle, the double moiré period T D can be determined even without the digital filter circuits 23A and 23B.

また、上記では一次元のセンサ12について述
べたが、第11図bに示すような二次元のセンサ
12A(エリアセンサ)についても同様なことが
いえる。第11図bにおいては同じ大きさの画素
13が横方向に等間隔にu個、また、縦方向に等
間隔にv個並んだものである。今、第11図aが
格子じま像11であると仮定すると、そこに第1
1図bのエリアセンサ12Aの受光面を重ねて置
けば、第4図のようなu個の画素数を持つ一次元
のセンサ12を並列にv個置いたのと等価にな
る。したがつて最大v個の二重モアレ信号P1を得
ることが可能である。また、第11図aの格子じ
ま像11のかわりに第12図のような格子じま像
11Aと11Bを作れば縦方向の微小変形と横方
向の微小変形が同時に測定できることはいうまで
もない。
Moreover, although the one-dimensional sensor 12 has been described above, the same can be said about the two-dimensional sensor 12A (area sensor) as shown in FIG. 11b. In FIG. 11b, u pixels 13 of the same size are arranged at equal intervals in the horizontal direction, and v pixels are arranged at equal intervals in the vertical direction. Now, assuming that Figure 11a is the lattice stripe image 11, there is a first
If the light-receiving surfaces of the area sensors 12A shown in FIG. 1B are placed one on top of the other, it will be equivalent to placing v one-dimensional sensors 12 having u pixels in parallel as shown in FIG. 4. Therefore, it is possible to obtain a maximum of v double moiré signals P1 . Furthermore, it goes without saying that by creating lattice stripe images 11A and 11B as shown in FIG. 12 instead of the lattice stripe image 11 in FIG. do not have.

以上詳細に説明したように、この発明は被測定
物体の表面に等間隔ピツチの格子じまを付け、こ
の格子じまを固体撮像素子の受光面上に結像させ
て固体撮像素子上に二重モアレ信号を生ぜしめ、
被測定物体表面の伸縮により変化する二重モアレ
周期を測定することによつて微小変形を測定する
ようにしたので下記のような特徴がある。
As explained in detail above, the present invention attaches lattice fringes with equidistant pitches to the surface of an object to be measured, forms an image of the lattice fringes on the light-receiving surface of a solid-state image sensor, and displays a double image on the solid-state image sensor. Produces a heavy moiré signal,
Since minute deformations are measured by measuring the double moiré period that changes due to expansion and contraction of the surface of the object to be measured, the following features are achieved.

(i) 非接触で微小変形が測定できる。(i) Small deformations can be measured without contact.

(ii) ほとんどリアルタイムに近い状態で微小変形
が測定できる。
(ii) Small deformations can be measured almost in real time.

(iii) 基準格子が不要である。(iii) No reference grid is required.

(iv) エリアセンサを使えば面の微小変形が測定で
きる。
(iv) Using area sensors, minute deformations on surfaces can be measured.

(v) センサの出力を2値のデイジタル量に変換し
て使うので、格子じまのピツチのバラツキ、格
子じまの濃淡のバラツキ、センサの感度のバラ
ツキ等によつて生ずる二重モアレ周期の測定誤
差を大幅に小さくすることができる。
(v) Since the output of the sensor is converted into a binary digital quantity, it is possible to avoid double moiré periods caused by variations in the pitch of grid stripes, variations in the shading of grid stripes, variations in sensor sensitivity, etc. Measurement errors can be significantly reduced.

(vi) 二重モアレ信号をモアレA信号とモアレB信
号に分離し、2つの信号から二重モアレ周期を
算出する方法であるから、A/D変換する際の
基準レベルの変動を二重モアレ周期の測定誤差
と無関係にすることができる。
(vi) This method separates the double moire signal into moire A signal and moire B signal and calculates the double moire period from the two signals. It can be made independent of period measurement errors.

この発明は上記のような特徴を有するため、高
温でストレンゲージが貼れないような場合の材料
の引張試験でも、試験片に格子じまが付けられれ
ば、試験片の伸びの状態がほとんどリアルタイム
に近い状態で測定できる等広い利用が期待できる
ものである。
Since this invention has the above-mentioned features, even in tensile tests of materials where strain gauges cannot be attached at high temperatures, if lattice stripes are attached to the test piece, the state of elongation of the test piece can be monitored almost in real time. It is expected that it will be widely used as it can be measured in close conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cはモアレじまを利用した従来
の測定方法の原理を説明するための断面略図、格
子じまの平面図、および基準格子の平面図、第2
図は格子じま像のピツチ方向に対するモアレじま
の濃淡を示す図、第3図はこの発明の原理を説明
するための斜視略図、第4図a,b、は格子じま
像とセンサとの関係を示す図、およびセンサの拡
大正面図、第5図はセンサから得られる出力信号
の一例を示す波形図、第6図a〜dはセンサの各
画素からの出力信号の波形例を示す図、第7図は
二重モアレ周期の測定回路を示す図、第8図は第
7図の回路の動作説明のための要部の波形図、第
9図は第7図におけるデイジタルフイルタの構成
例を示すブロツク図、第10図は第9図のデイジ
タルフイルタの動作説明のための波形図、第11
図a,bは二次元センサ用の格子じま像の平面
図、および二次元センサの平面図、第12図は格
子じま像の他の例を示す平面図である。 図中、1は格子じま、2は光学系、10は被測
定物体、11は格子じま像、12はセンサ、13
は画素、22A,22BはA/D変換回路、23
A,23Bはデイジタルフイルタ回路、24A,
24Bはカウンタ、25はクロツクパルス発生回
路である。
Figures 1a, b, and c are schematic cross-sectional views for explaining the principle of the conventional measurement method using moiré fringes, a plan view of the grating fringes, a plan view of the reference grating, and Fig. 2.
The figure shows the shading of the moiré stripe in the pitch direction of the grid stripe image, FIG. 3 is a schematic perspective view for explaining the principle of this invention, and FIGS. FIG. 5 is a waveform diagram showing an example of the output signal obtained from the sensor, and FIGS. 6 a to 6 d are waveform examples of the output signal from each pixel of the sensor. 7 is a diagram showing a double moiré period measurement circuit, FIG. 8 is a waveform diagram of the main part to explain the operation of the circuit in FIG. 7, and FIG. 9 is a configuration of the digital filter in FIG. 7. A block diagram showing an example, FIG. 10 is a waveform diagram for explaining the operation of the digital filter in FIG. 9, and FIG.
Figures a and b are a plan view of a lattice stripe image for a two-dimensional sensor, and a plan view of the two-dimensional sensor, and FIG. 12 is a plan view showing another example of a lattice stripe image. In the figure, 1 is a grid stripe, 2 is an optical system, 10 is an object to be measured, 11 is a grid stripe image, 12 is a sensor, and 13
is a pixel, 22A and 22B are A/D conversion circuits, 23
A, 23B are digital filter circuits, 24A,
24B is a counter, and 25 is a clock pulse generation circuit.

Claims (1)

【特許請求の範囲】 1 被測定物体表面に等間隔ピツチの格子じまを
付け、前記格子じま像の格子の並ぶ方向と格子状
に配列された画素を有する固体撮像素子の各画素
の並ぶ方向とが平行になるように配置した前記固
体撮像素子の受光面上に前記格子じま像のピツチ
が前記画素の配列ピツチの2倍またはそれに近似
する倍率を持つ光学系により、前記格子じま像を
結像させて前記固体撮像素子に二重モアレ信号を
生ぜしめ、前記被測定物体表面の伸縮によつて変
わる二重モアレ周期を電気的に測定することによ
つて前記被測定物体表面の微小変形を測定するこ
とを特徴とする微小変形測定方法。 2 二重モアレ信号を交互に2つのモアレA信号
とモアレB信号とに分離し、それぞれ独立して一
定レベルで2値のA/D変換を行い、それらを用
いて二重モアレ周期を測定することにより被測定
物体表面の微小変形を測定することを特徴とする
特許請求の範囲第1項記載の微小変形測定方法。 3 A/D変換出力をそれぞれ独立したデイジタ
ルフイルタ回路に通してそれらの出力パルスによ
り、クロツクを数える各カウンタを制御し、前記
各カウンタのカウント数から被測定物体表面の微
小変形を測定することを特徴とする特許請求の範
囲第2項記載の微小変形測定方法。
[Scope of Claims] 1. Grid stripes with equally spaced pitches are formed on the surface of the object to be measured, and each pixel of a solid-state image sensor having pixels arranged in a grid pattern is aligned in the direction in which the grid of the grid stripe image is arranged. The lattice stripes are formed on the light-receiving surface of the solid-state image pickup device, which is arranged parallel to the direction of the lattice stripes, by an optical system in which the pitch of the lattice stripes is twice the array pitch of the pixels, or a magnification close to that. The surface of the object to be measured is determined by forming an image to generate a double moiré signal on the solid-state imaging device, and electrically measuring the double moiré period that changes depending on the expansion and contraction of the surface of the object to be measured. A method for measuring minute deformation characterized by measuring minute deformation. 2 Separate the double moire signal alternately into two moire A signals and moire B signals, perform binary A/D conversion on each independently at a constant level, and use them to measure the double moire period. 2. A method for measuring minute deformation according to claim 1, wherein minute deformation on the surface of an object to be measured is measured. 3 The A/D conversion outputs are passed through independent digital filter circuits, and the output pulses control each counter that counts the clock, and the minute deformation of the surface of the object to be measured is measured from the count number of each counter. A method for measuring minute deformation according to claim 2.
JP6898681A 1981-05-08 1981-05-08 Measurement of fine displacement Granted JPS57184918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6898681A JPS57184918A (en) 1981-05-08 1981-05-08 Measurement of fine displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6898681A JPS57184918A (en) 1981-05-08 1981-05-08 Measurement of fine displacement

Publications (2)

Publication Number Publication Date
JPS57184918A JPS57184918A (en) 1982-11-13
JPS6220483B2 true JPS6220483B2 (en) 1987-05-07

Family

ID=13389488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6898681A Granted JPS57184918A (en) 1981-05-08 1981-05-08 Measurement of fine displacement

Country Status (1)

Country Link
JP (1) JPS57184918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784266B2 (en) 2021-09-10 2023-10-10 Shanghai Jinko Green Energy Enterprise Management Co., Ltd. Solar cell, method for preparing same and solar cell module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095316A (en) * 1983-10-31 1985-05-28 Shimadzu Corp Displacement measuring method
EA001531B1 (en) * 1996-02-09 2001-04-23 Тетра Лаваль Холдингс Энд Файнэнс С.А. Device and method for checking patternsdisposed on a material strip
US6188058B1 (en) * 1998-09-17 2001-02-13 Agilent Technologies Inc. System for taking displacement measurements having photosensors with imaged pattern arrangement
WO2000043734A1 (en) * 1999-01-22 2000-07-27 Citizen Watch Co., Ltd. Optical instrument for measuring displacement
JP5098067B2 (en) * 2007-03-06 2012-12-12 有限会社 ミクロデント Quantification standardized microscope equipment
JP5339127B2 (en) * 2008-12-10 2013-11-13 株式会社ニコン Absolute encoder, encoder, and mobile device
JP2015184059A (en) * 2014-03-20 2015-10-22 旭硝子株式会社 Transparent plate body inspection method and transparent plate body inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784266B2 (en) 2021-09-10 2023-10-10 Shanghai Jinko Green Energy Enterprise Management Co., Ltd. Solar cell, method for preparing same and solar cell module

Also Published As

Publication number Publication date
JPS57184918A (en) 1982-11-13

Similar Documents

Publication Publication Date Title
GB1575240A (en) Colour imaging devices
EP0039082A2 (en) Method and apparatus for measuring the displacement between a code plate and a sensor array
JPH0739935B2 (en) Image sensor
WO1992009000A1 (en) Device for sensing in-focus position
CN104581137A (en) Detection apparatus, image pickup apparatus, image pickup system, and control method of the detection apparatus
JPS6220483B2 (en)
CN108061517A (en) Area-structure light solution phase method based on More's sequence grating
JP2809133B2 (en) Solid-state imaging device
GB2029153A (en) Focus detecting device
US5568249A (en) Phase difference detection type rangefinder and method of measuring subject distance
JPH0588077A (en) Device and method for detecting distance
JP3642666B2 (en) Photometric system
JPS59160109A (en) Detector for light image
JPH09126818A (en) Device for photoelectric length measurement or angle measurement
JP3500430B2 (en) Shape measuring method and shape measuring device using monochromatic rectangular wave grating
JPS61221616A (en) Optical measuring method for fine displacement
JP3152523B2 (en) CCD position recognition method using interference fringes
JP2522706B2 (en) Line sensor connection deviation detection method
JPH0244188B2 (en)
JPS6029086B2 (en) Focused point detection method
JPH0225130B2 (en)
JPS5928607A (en) Multi-dimensional measurement method of very small clearance
JPH02263103A (en) Optical image detecting device
SU916983A1 (en) Photoelectric device for measuring article linear dimensions
JP2765285B2 (en) Displacement gauge