JPS6095316A - Displacement measuring method - Google Patents

Displacement measuring method

Info

Publication number
JPS6095316A
JPS6095316A JP20533583A JP20533583A JPS6095316A JP S6095316 A JPS6095316 A JP S6095316A JP 20533583 A JP20533583 A JP 20533583A JP 20533583 A JP20533583 A JP 20533583A JP S6095316 A JPS6095316 A JP S6095316A
Authority
JP
Japan
Prior art keywords
elements
equal parts
phase
substrate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20533583A
Other languages
Japanese (ja)
Inventor
Yasuo Kita
喜多 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP20533583A priority Critical patent/JPS6095316A/en
Publication of JPS6095316A publication Critical patent/JPS6095316A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Abstract

PURPOSE:To simplify measurement, and also to raise its accuracy by placing in parallel a substrate which has arranged an element to a position for dividing a part between gauge marks into (n) equal parts, and a moving plate which has arranged an element to a position for dividing a part between the gauge marks into (n)+ or -(m) equal parts by using a specified real number (m). CONSTITUTION:A part between gauge marks on a substrate 10 is divided into (n) equal parts by an optional integer (n) and an optical sensor 11 functioning as an element is arranged, and a part between gauge marks of the same distance of the part between said gauge marks on a moving plate 20 is divided into (n)+ or -(m) equal parts by using (m) which is a real number smaller enough than (n) except an integer, and a small hole functioning as an element is provided. Subsequently, uniform light is irradiated from the upper face side of the plate 20 and photodetected by the sensor 11 through a small hole 21, and a large variation in phase of a wave of an arrangement order successive variation of outputs of the sensor 11 is measured by fixing the plate 10 and moving minutely the plate 20.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は微少変位の測定に適した変位測定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a displacement measuring method suitable for measuring minute displacements.

(ロ)従来技術 従来、応力ひずみ等の微少変位の測定方法として、モア
レ縞法やレーザ干渉法等の種々の方法が提案実施されて
いる。
(b) Prior Art Conventionally, various methods such as the Moiré fringe method and laser interferometry have been proposed and implemented as methods for measuring minute displacements such as stress strain.

ところで、本発明者は新規な微少変位測定方法を特願昭
57−163575号で提案している。即ち、前記提案
は、「標点間をn等分(nは任意整数)する位置に素子
Aを配列させた基板と、前記標点間と同一距離の標点間
をn+m等分(mはnより充分小さい整数)する位置に
素子Bを配列させた移動板とを平行に配置し、素子Aと
素子Bとの相互 。
By the way, the present inventor has proposed a new method for measuring minute displacements in Japanese Patent Application No. 163575/1983. In other words, the above-mentioned proposal is based on a board with elements A arranged at positions that divide the distance between the gauge points into n equal parts (n is an arbitrary integer), and a board on which the elements A are arranged at positions that divide the distance between the gauge points into n+m equal parts (m is an arbitrary integer). A movable plate on which elements B are arranged is placed in parallel to the position where elements A and B are arranged (an integer sufficiently smaller than n).

作用により素子A又は素子Bに生ずる情報量の配列順逐
次変化の波の位相をめ、前記位相の変化より基板と移動
板との相対的な変位を測定することを特徴とする変位測
定方法」である。
A displacement measuring method characterized by determining the phase of a wave of a sequential change in the arrangement order of the amount of information that occurs in element A or element B due to the action, and measuring the relative displacement between the substrate and the moving plate from the change in phase. It is.

しかして、その後の鋭意検討の結果、移動板における素
子Bの配列位置を定める条件rn+m等分(mはnより
充分小さい整数)j以外に、発明の実施上より好ましい
条件をめるに至った。
As a result of subsequent intensive studies, we came to find more favorable conditions for implementing the invention, in addition to the condition rn+m equal division (m is an integer sufficiently smaller than n) j, which determines the arrangement position of element B on the moving plate. .

(ハ)目的 この発明は、前述したごとき微少変位を測定するために
なされた新規な変位測定方法であって、比較的簡単に、
しかも、高精度に微少変位を測定し得る変位測定方法を
提供することを目的としている。
(C) Purpose The present invention is a novel displacement measuring method for measuring minute displacements as described above, which can be performed relatively easily.
Furthermore, it is an object of the present invention to provide a displacement measuring method that can measure minute displacements with high precision.

(ニ)構成 この発明に係る変位測定方法は、標点間をn等分(nは
任意整数)する位置に素子Aを配列させた基板と、前記
標点間と同一距離の標点間をn±m等分(mはnより充
分小さい任意の実数で整数を除()する位置に素子Bを
配列させた移動板とを平行に配置し、素子Aと素子Bと
の相互作用により素子A又は素子Bに生ずる情報量の配
列順逐次変化の波の位相をめ、前記位相の変化より基板
と移動板との相対的な変位を測定することを特徴として
いる。
(D) Configuration The displacement measuring method according to the present invention includes a substrate on which elements A are arranged at positions dividing the distance between the gauge points into n equal parts (n is an arbitrary integer), and a distance between the gauge points having the same distance as between the gauge points. A movable plate with elements B arranged in positions that are divided into n±m equal parts (where m is an arbitrary real number sufficiently smaller than n to divide an integer) is placed in parallel, and the interaction between elements A and B causes the elements to It is characterized in that the phase of the wave of the sequential change in the arrangement order of the amount of information occurring in A or B is determined, and the relative displacement between the substrate and the moving plate is measured from the change in the phase.

(ホ)実施例 第1図はこの発明に係る変位測定方法に用いられる基板
と移動板の一実施例を略示する斜視図、第2図は第1図
に示した実施例の動作波形図である。
(e) Embodiment FIG. 1 is a perspective view schematically showing an embodiment of the substrate and moving plate used in the displacement measuring method according to the present invention, and FIG. 2 is an operation waveform diagram of the embodiment shown in FIG. 1. It is.

第1図において、10は素子Aとしての例えば250個
の光センサllが25鰭の標点間に等間隔で配列された
基板、20は前記光センサ11の配列する標点間と同じ
距離の標点間に素子Bとしての例えば250.3128
9個の小孔21を等間隔に配設した移動板である。前記
素子Aおよび素子Bばいわゆる写真蝕刻法によって形成
される。それぞれのフォトマスクは同じフォトリソグラ
フィ(photo−1ithography)用原板を
用いて作成される。そして、素子Bを形成するフォトマ
スクは、素子Aを形成するフォトマスクよりも光学的縮
小率を若干小さくして作成される。前述の標点間に設け
られる素子Bの数250.31289は、この値をねら
って光学的縮小を行ったものではなく、若干の光学的縮
小の結果として、素子Bの数が250.31289にな
ったものである。
In FIG. 1, 10 is a substrate on which, for example, 250 photosensors 11 as elements A are arranged at equal intervals between the gauge points of 25 fins, and 20 is a substrate with the same distance between the gauge points arranged by the optical sensors 11. For example, 250.3128 as element B between gauge points
This is a moving plate with nine small holes 21 arranged at equal intervals. The elements A and B are formed by a so-called photolithography method. Each photomask is created using the same original plate for photolithography. The photomask forming element B is created with a slightly smaller optical reduction ratio than the photomask forming element A. The number of elements B provided between the gauge points mentioned above, 250.31289, is not the result of optical reduction aimed at this value, but as a result of slight optical reduction, the number of elements B is 250.31289. It has become.

基板10は固定されて設けられ一方、移動板2oは図示
しない移動体にとりつけられる。
The substrate 10 is fixedly provided, while the movable plate 2o is attached to a movable body (not shown).

そして、移動板20の上面側から一様な光を照射すれば
、移動板20の小孔21を通して、基tFilOの各セ
ンサ11が受光する。その結果、基板1oに配列された
光センサ11の配列順逐次変化は、第2図の黒丸印で表
されるように変化する。
Then, when uniform light is irradiated from the upper surface side of the moving plate 20, each sensor 11 of the substrate tFiIO receives the light through the small hole 21 of the moving plate 20. As a result, the sequential change in the arrangement order of the optical sensors 11 arranged on the substrate 1o changes as shown by the black circles in FIG.

次に、移動板20を小孔21の配列する方向に沿って、
若干移動させると、基板1oの光センサ11の受光量が
変化し、前記波は例えば、第2図の白丸印で表したよう
になる。すなわち、同図より明らがなように移動板20
の僅かな変化により、光センサ11の出力の配列順逐次
変化の波の位相が大きく変化する。
Next, move the moving plate 20 along the direction in which the small holes 21 are arranged.
When the substrate 1o is moved slightly, the amount of light received by the optical sensor 11 of the substrate 1o changes, and the wave becomes, for example, as shown by the white circle in FIG. That is, as is clear from the figure, the moving plate 20
A slight change in the output of the optical sensor 11 causes a large change in the phase of the wave of the sequential change in the arrangement order of the output of the optical sensor 11.

さらに、光センサ11の配列順逐次変化の波の位相は、
各光センサ11の出力を統計的に処理してその最尤度位
置をめることにより、変位測定の精度を一層向上し得る
Furthermore, the phase of the wave of the sequential change in the arrangement order of the optical sensors 11 is
By statistically processing the output of each optical sensor 11 and determining its maximum likelihood position, the accuracy of displacement measurement can be further improved.

第3図は波の位相の最尤度位置をめる方法を示す説明図
である。すなわち、光センサ11の配列順逐次変化の最
も確立高く表れるパターン(例えば、第3図に鎖線で示
した波形)を予めめておく。そして、位相を測定すべき
光センサ11の配列順逐次変化の波を前記予めめておい
たパターンに適合すると光センサ11間の波の形や、正
しい波の形を指定することができる。例えば、波のピー
クが光センサの配列iとi+l (iは整数)との間に
表れる場合であっても、鎖線で示した前記予メ求められ
たパターンを適合することにより、ピークの表れる位置
を光センサ11の1o分の1以上の精度で算出すること
ができることになる。
FIG. 3 is an explanatory diagram showing a method of determining the maximum likelihood position of the wave phase. That is, a pattern (for example, the waveform shown by a chain line in FIG. 3) that most likely shows a sequential change in the arrangement order of the optical sensors 11 is prepared in advance. Then, if the wave of the sequential change in the arrangement order of the optical sensors 11 whose phase is to be measured is adapted to the predetermined pattern, the wave shape between the optical sensors 11 and the correct wave shape can be specified. For example, even if the peak of a wave appears between optical sensor arrays i and i+l (i is an integer), the position where the peak appears can be determined by adapting the predetermined pattern indicated by the chain line. can be calculated with an accuracy of 1/1o or more of the optical sensor 11.

また、前述した如く光センサ11の出力を統計処理する
ことにより、例えば、第3図において示すように、配列
i−2の光センサ11の1が機械的誤差のためにずれた
ため、その出力が正常値より大きくなっても、該正常値
を推定し得るから、機械的誤差に基づく位相の算出値の
誤差を少なくできる。
Furthermore, by statistically processing the output of the optical sensor 11 as described above, it is possible to find out that, for example, as shown in FIG. Since the normal value can be estimated even if it is larger than the normal value, errors in the calculated phase value based on mechanical errors can be reduced.

以下に、具体的数値例をあげて変位の読み取り精度を説
明する。
The displacement reading accuracy will be explained below using specific numerical examples.

標点間距離25鶴、m =0.31289として、基板
10にn=250個の光センサ11、移動板20に25
0.31289の小孔21を設けた場合、波の位相の移
動は、移動板20の変位の拡大率は(n十m)/mで表
されから、800倍に拡大される。しかも、基板1oに
おける位相の正確な位置は250個の光センサ11の出
力から統計的に最尤度位置をめ得るので、25fl/ 
(250xlO)以上の精度となる。従って、基板10
と移動板20の相対的な変位は、 5 より判るように、0.0125μm以上の精度で得るこ
とができる。
The distance between gauges is 25, m = 0.31289, n = 250 optical sensors 11 on the substrate 10, 25 on the moving plate 20
When the small hole 21 of 0.31289 is provided, the wave phase movement is magnified 800 times since the magnification rate of the displacement of the moving plate 20 is expressed as (n 10 m)/m. Moreover, since the accurate position of the phase on the substrate 1o can be determined statistically from the outputs of the 250 optical sensors 11, 25 fl/
(250xlO) or higher accuracy. Therefore, the substrate 10
As can be seen from 5, the relative displacement of the movable plate 20 can be obtained with an accuracy of 0.0125 μm or more.

しかも、上述の実施例によれば、素子Aおよび素子Bの
フォトマスクを形成する原板のピンチ等に誤差があって
も、配列の1ピッチ以内で変位を測定する限り、前記誤
差は相殺される。これは、素子A及びBが同じ原板から
光学的に縮小等されて形成されるため、原板の誤差が画
素子のフォトマスクに表れることにより、光センサ11
の出力の波の位相変化には前記誤差が影響しないことに
よる。
Moreover, according to the above-mentioned embodiment, even if there is an error in the pinch of the original plates forming the photomasks of elements A and B, the error is canceled out as long as the displacement is measured within one pitch of the array. . This is because elements A and B are formed from the same original plate by optical reduction, etc., and errors in the original plate appear on the photomask of the pixel element, causing the optical sensor 11
This is because the error does not affect the phase change of the output wave.

また、基板10と移動板20の熱膨張係数を等しくすれ
ば、温度変化に基づく変位の測定誤差を少なくできるの
で、さらに精度を上げることもできる。
Moreover, if the coefficients of thermal expansion of the substrate 10 and the moving plate 20 are made equal, errors in measuring displacement due to temperature changes can be reduced, and therefore accuracy can be further improved.

さらに、光センナ等の素子の情報量の配列順逐次変化は
各素子の情報量を統計処理して、例えば、回帰直線を用
いることにより、各素子の位置的バラツキ等の機械的精
度の悪さや各素子の感度のバラツキをデータ処理で補う
ことができる。
Furthermore, sequential changes in the amount of information of elements such as optical sensors in the order of arrangement can be achieved by statistical processing of the information amount of each element and, for example, by using a regression line. Data processing can compensate for variations in sensitivity of each element.

尚、実施例において、基板に配列される素子Aは光セン
サであり、また移動板に配列される素子Bは小孔である
として説明したが、この発明はこれに限られるものでは
ない。例えば、素子A及び素子Bとして電極を形成し、
これらの間の静電容量を計測するものであってもよい。
In the embodiment, the elements A arranged on the substrate are optical sensors, and the elements B arranged on the movable plate are small holes, but the present invention is not limited to this. For example, forming electrodes as element A and element B,
It may be possible to measure the capacitance between these.

また、素子Aをホール素子等の磁気センサとし、素子B
をN極またはS極とするものであっても実施例で説明し
たと同様の効果を奏する。このように、この発明に用い
られる素子A及び素子Bは相互作用の及ぼし合う組み合
わせであればよいから、種々の変形を取りうるもである
In addition, element A is a magnetic sensor such as a Hall element, and element B is a magnetic sensor such as a Hall element.
The same effects as those described in the embodiments can be obtained even if the polarity is N-pole or S-pole. As described above, the elements A and B used in the present invention may be a combination of elements that interact with each other, and therefore various modifications can be made.

また、実施例において、光センサと小孔の数の差mは0
.31289であるとしている。しかし、この発明はこ
れに限られるものでなく、前記mは整数を除く任意の実
数を取りうるちのである。そして、このmの値によって
、変位計測の倍率を変えることができる。
In addition, in the example, the difference m between the number of optical sensors and small holes is 0.
.. 31289. However, the present invention is not limited thereto, and m can take any real number other than an integer. The magnification of displacement measurement can be changed depending on the value of m.

(へ)効果 この発明は上述のように構成されるから、移動体の微少
な変位を比較的簡単に、しがも精度よ(測定することが
できる。
(f) Effects Since the present invention is constructed as described above, minute displacements of a moving body can be measured relatively easily and with high accuracy.

また、標点間に設けられる素子Aと素子Bの数の差であ
るmは、任意の実数を取り得るから、素子の形成が容易
で、この方法を使用する装置の製作コストを低減しij
lるものである。
In addition, since m, which is the difference in the number of elements A and B provided between the gauge points, can take any real number, it is easy to form the elements, and the manufacturing cost of the device using this method is reduced.
It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る変位測定方法に用いられる基板
と移動板の=実施例を略示する斜視図、第2図は第1図
に示した実施例の動作波形図、第3図は波の位相の最尤
度位置をめる方法を示す説明図である。 10・・・基板、11・・・光センサ、20・・・移動
板、21・・・小孔。 特許出願人 株式会社 島津製作所 代理人 弁理士 大 西 孝 治 第3図 i−3i−2i−1i i+1 i+2 i+3 i+4
FIG. 1 is a perspective view schematically showing an embodiment of the substrate and moving plate used in the displacement measuring method according to the present invention, FIG. 2 is an operation waveform diagram of the embodiment shown in FIG. 1, and FIG. FIG. 3 is an explanatory diagram showing a method of determining the maximum likelihood position of the phase of a wave. DESCRIPTION OF SYMBOLS 10... Substrate, 11... Optical sensor, 20... Moving plate, 21... Small hole. Patent applicant Shimadzu Corporation Representative Patent attorney Takaharu Ohnishi Figure 3 i-3i-2i-1i i+1 i+2 i+3 i+4

Claims (4)

【特許請求の範囲】[Claims] (1)標点間をn等分(nは任意整数)する位置に素子
Aを配列させた基板と、前記標点間と同一距離の標点間
をn+m等分(mはnより充分小さい任意の実数で整数
を除く)する位置に素子Bを配列させた移動板とを平行
に配置し、素子Aと素子Bとの相互作用により素子A又
は素子Bに生ずる情報量の配列順逐次変化の波の位相を
め、前記位相の変化より基板と移動板との相対的な変位
を測定することを特徴とする変位測定方法。
(1) A board with elements A arranged at positions that divide the distance between the gauge points into n equal parts (n is an arbitrary integer), and divide the distance between the gauge points with the same distance as the distance between the gauge points into n + m equal parts (m is sufficiently smaller than n). A movable plate on which elements B are arranged at positions of arbitrary real numbers (excluding integers) is arranged in parallel, and the amount of information generated in elements A or B due to the interaction between elements A and B changes sequentially in the arrangement order. A displacement measuring method comprising: determining the phase of the wave, and measuring the relative displacement between the substrate and the moving plate based on the change in the phase.
(2)前記情報量の配列順逐次変化の波の位相は、素子
の情報量を統計処理することにより、その最尤度位置が
められるものであることを特徴とする特許請求の範囲第
1項記載の変位測定方法。
(2) The phase of the wave of the sequential change in the arrangement order of the amount of information is such that its maximum likelihood position can be determined by statistical processing of the amount of information of the element. Displacement measurement method described.
(3)前記素子Aは光センサであり、素子Bは小孔であ
ることを特徴とする特許請求の範囲第1項記載の変位測
定方法。
(3) The displacement measuring method according to claim 1, wherein the element A is an optical sensor and the element B is a small hole.
(4)前記素子Aおよび素子Bは、同じフォトリソグラ
フィ用の原板から作成されたフォトマスクを使用して形
成されるものであることを特徴とする特許請求の範囲第
1項記載の変位測定方法。
(4) The displacement measuring method according to claim 1, wherein the element A and the element B are formed using photomasks made from the same original plate for photolithography. .
JP20533583A 1983-10-31 1983-10-31 Displacement measuring method Pending JPS6095316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20533583A JPS6095316A (en) 1983-10-31 1983-10-31 Displacement measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20533583A JPS6095316A (en) 1983-10-31 1983-10-31 Displacement measuring method

Publications (1)

Publication Number Publication Date
JPS6095316A true JPS6095316A (en) 1985-05-28

Family

ID=16505211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20533583A Pending JPS6095316A (en) 1983-10-31 1983-10-31 Displacement measuring method

Country Status (1)

Country Link
JP (1) JPS6095316A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148350A (en) * 1974-10-09 1976-04-26 Fuetsusoo Ltd SHAFUTOICHIKEN SHUTSUSOCHI
JPS5436755A (en) * 1977-08-26 1979-03-17 Ricoh Co Ltd Photoelectric type angle and position detector
JPS5638876A (en) * 1979-09-06 1981-04-14 Tokyo Electric Co Ltd Photoelectric converter for photoelectric scale
JPS57184918A (en) * 1981-05-08 1982-11-13 Natl Aerospace Lab Measurement of fine displacement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148350A (en) * 1974-10-09 1976-04-26 Fuetsusoo Ltd SHAFUTOICHIKEN SHUTSUSOCHI
JPS5436755A (en) * 1977-08-26 1979-03-17 Ricoh Co Ltd Photoelectric type angle and position detector
JPS5638876A (en) * 1979-09-06 1981-04-14 Tokyo Electric Co Ltd Photoelectric converter for photoelectric scale
JPS57184918A (en) * 1981-05-08 1982-11-13 Natl Aerospace Lab Measurement of fine displacement

Similar Documents

Publication Publication Date Title
KR102277746B1 (en) Position detection apparatus, position detection method, imprint apparatus, and method of manufacturing article
JP2695623B2 (en) Optical encoder
JP6400036B2 (en) Position detection device, machine tool, and exposure device
JPS60235424A (en) Overlay error measuring device between wafer pattern and mask pattern projected on same wafer
KR100581210B1 (en) Position sensor and circuit for optical encoder
CN1979096B (en) Optical-electricity encoder
JPH06258102A (en) Measuring device
JP3083123B2 (en) A device that generates a periodic signal that does not include harmonics
CN101201548B (en) Measuring system and method for focusing and leveling
JPH09113213A (en) Device for filtering higher-harmonic signal component
JPH08178613A (en) Photodetector for interferometer
JP5154072B2 (en) Photoelectric encoder
JPS6095316A (en) Displacement measuring method
JPH0736252Y2 (en) Length measuring device
JP2732488B2 (en) Length measuring or angle measuring device
US7184149B2 (en) Methods and apparatus for reducing error in interferometric imaging measurements
JP7079670B2 (en) Optical encoder
JP3124972B2 (en) Linear encoder
JP2547334B2 (en) Position detection device
JP3105565B2 (en) Manufacturing method of linear encoder and scale for linear encoder
JPS5952706A (en) Displacement measuring method
JPH02188907A (en) Face-position detection apparatus
JP5744446B2 (en) Photodetector array and optical encoder using the same
KR100292806B1 (en) Encoder using diffraction gratings
JPS63115011A (en) Displacement measuring instrument