JPS592849B2 - How to measure weak light using an avalanche photodiode - Google Patents

How to measure weak light using an avalanche photodiode

Info

Publication number
JPS592849B2
JPS592849B2 JP13788677A JP13788677A JPS592849B2 JP S592849 B2 JPS592849 B2 JP S592849B2 JP 13788677 A JP13788677 A JP 13788677A JP 13788677 A JP13788677 A JP 13788677A JP S592849 B2 JPS592849 B2 JP S592849B2
Authority
JP
Japan
Prior art keywords
sec
avalanche photodiode
weak light
pulse
measure weak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13788677A
Other languages
Japanese (ja)
Other versions
JPS5471680A (en
Inventor
新太郎 中村
恵一 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP13788677A priority Critical patent/JPS592849B2/en
Publication of JPS5471680A publication Critical patent/JPS5471680A/en
Publication of JPS592849B2 publication Critical patent/JPS592849B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 本発明は、雪崩光ダイオードAPDの雪崩電流パルスノ
イズを計数して、微弱な入射光量を測定する方法に関す
るもので、そのパルスカウントレート(N/sec)と
入射光量(Pin)との間の直線性を向上させることを
目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the weak amount of incident light by counting avalanche current pulse noise of an avalanche photodiode APD. The purpose of this is to improve the linearity between the pin and the pin.

本発明者等は、雪崩光ダイオードを冷却し、その雪崩電
流パルスノイズの波高の全域にわたる(N/sec)を
調べた結果、(N/sec)値はパルス波高が比較的低
い所と比較的波高の高い所に極大値があることを明かに
した。しかも微弱光の情報は専ら前者の波高の低い領域
に豊富に含まれていることを見い出した。本発明はこの
事実を利用して微弱光の明確なる測定を行なうもので、
以下に具体例を図示して、その詳細なる説明をする。図
1のaは測定装置を示す。
The present inventors cooled an avalanche photodiode and investigated the (N/sec) of the avalanche current pulse noise over the entire wave height range. As a result, the (N/sec) value was found to be It was revealed that there is a maximum value at high wave heights. Moreover, we found that information about weak light is abundantly contained exclusively in the former region of low wave height. The present invention utilizes this fact to clearly measure weak light.
A detailed explanation will be given below by illustrating a specific example. Figure 1a shows the measuring device.

雪崩光ダイオードAPDは、これを一定温度に冷却する
と共に、逆バイアス電圧Vaを印加し、その雪崩領域に
おける暗電流Idを一定値に保つ。尚、冷却温度の一定
化は、図Ibに示すように、LN2等の冷媒1で冷却す
る一方、APDに接触させた温度検出素子3によりヒー
タ2の通電を制御して行なう。尚、APDには例えばN
e−Neガスレーザ4からガ10ラスフアイバー5を通
じて光量Pinを投入し、このとき得られるパルス電流
を負荷抵抗RLに流す。更にこれに接続した分布増幅器
6でこれを増幅し、次いでシングルチャネルアナライザ
ー□を通じてカウンタ8で計数する。アナライザー7は
分布増15幅器6より得られるパルス波高の或区間ΔV
だけをカウンタ8に送るいわゆる微分形波高弁別器、即
ち窓である。その窓はパルス波高の高低方向にシフトで
きるようになつている。尚、図1aでAPDとRLに並
列に入れたコンデンサCはパルスノイズの波形が非常に
鋭いのをなましてアナライザーTの応答速度に合せるた
めに設けたものである。また9はシンクロスコープで波
形観測に供する。入射光量Pinのパワー計測は、その
入力パワー25が小さくなるにつれて非常に困難となる
が、図Ibの如く、あらかじめ校正されたニユートラル
デインシテイーフイルタ(NDフィルタ)10をレーザ
発振器4とガラスファイバー5との間に挿入して行なう
The avalanche photodiode APD is cooled to a constant temperature, and a reverse bias voltage Va is applied to keep the dark current Id in the avalanche region at a constant value. The constant cooling temperature is achieved by cooling with a refrigerant 1 such as LN2 and controlling energization of the heater 2 using a temperature detection element 3 in contact with the APD, as shown in FIG. Ib. Note that the APD includes, for example, N
A light amount Pin is input from the e-Ne gas laser 4 through the glass fiber 5, and the pulse current obtained at this time is passed through the load resistor RL. Furthermore, this is amplified by a distributed amplifier 6 connected to this, and then counted by a counter 8 through a single channel analyzer □. The analyzer 7 detects a certain section ΔV of the pulse height obtained from the distributed amplifier 6.
This is a so-called differential wave height discriminator, ie, a window, which sends only the signal to the counter 8. The window can be shifted in the direction of pulse height. The capacitor C connected in parallel to APD and RL in FIG. 1a is provided to smooth the extremely sharp pulse noise waveform and match it to the response speed of the analyzer T. Further, 9 is used for waveform observation with a synchroscope. Power measurement of the incident light amount Pin becomes extremely difficult as the input power 25 decreases, but as shown in Figure Ib, a pre-calibrated neutral density filter (ND filter) 10 is connected to the laser oscillator 4 and the glass fiber 5. This is done by inserting it between.

30図2は試料イ(商品名APD200B)を一190
℃に冷却し、波高弁別器の窓を△V■O、1(V)に設
定し、これをパルス波高ゼロから3(V)まで順次高い
方へシフトさせた場合の(N/sec)の値を縦軸に取
つたものである。
30 Figure 2 shows sample A (product name APD200B) at 190°C.
℃, the window of the pulse height discriminator is set to △V■O, 1 (V), and the pulse height is shifted sequentially from zero to 3 (V) in (N/sec). The value is plotted on the vertical axis.

図35から明かなようにPinが10−12〜10−1
3(W)以下のときには、比較的波高の高い所と低い所
、2箇所で(N/sec)の最大値が現われる。このご
ιフーうち波高の高い所での(N/Sec)の最大点は
、光量Pinの増加と共に、波高の低い方へ移動するが
、波高の低い約0.2(V)での(N/Sec)の最大
点は、光量Pinの増加と共に、その(N/Sec)の
値のみが比例的に増加し、その最大点の存する波高値は
移動しない。
As is clear from Figure 35, Pin is 10-12 to 10-1
When the wave height is 3 (W) or less, the maximum value of (N/sec) appears at two locations, one where the wave height is relatively high and one where the wave height is relatively low. In this case, the maximum point of (N/Sec) at a high wave height moves to a lower wave height as the light amount Pin increases, but at a low wave height of approximately 0.2 (V), the maximum point of (N/Sec) /Sec), as the light amount Pin increases, only the value of (N/Sec) increases proportionally, and the peak value where the maximum point exists does not move.

即ち、波高の高い所で生ずる最大値はPN接合部におけ
るマイクロプラズマによる(N/Sec)と考えられ、
波高の低い所での(N/Sec)の最大値は光の情報に
よる過剰雑音であると思われる。本発明は、パルスの波
高ゼロから最初の最大値附近の間に、波高弁別器の窓、
即ち微分形弁別器を設定して微弱光量(Pin)とパル
スカウントレート(N/Sec)との間の直線性を向上
させたものである。
In other words, the maximum value that occurs at high wave heights is thought to be due to microplasma (N/Sec) at the PN junction,
The maximum value of (N/Sec) at low wave heights is considered to be excessive noise due to optical information. The present invention provides a window of the pulse height discriminator between the pulse height zero and the first maximum value.
That is, a differential type discriminator is set to improve the linearity between the weak light amount (Pin) and the pulse count rate (N/Sec).

図3イ,口,ハは3個の資料に対する結果で、横軸(P
in)と縦軸(N/Sec)は比例関係にあることが判
る。
Figure 3 A, C, and C are the results for three materials, and the horizontal axis (P
It can be seen that there is a proportional relationship between the vertical axis (N/Sec) and the vertical axis (N/Sec).

【図面の簡単な説明】[Brief explanation of the drawing]

図1のaは本発明の測定方法を実施するための回路図、
bはその冷却装置及び光量入射装置の説明図、図2は図
1aの回路で測定したパルスノイズの波高とパルスカウ
ントレート(N/Sec)との関係を示したグラフ、図
3は3個の雪崩光ダイオードについての光量(Pin)
に対するパルスカウントレート(N/Sec)の直線性
を示すグラフである。 APD・・・・・・雪崩光ダイオード、6・・・・・・
分布増幅器、7・・・・・・シングルチャネルアナライ
ザ(微分形波高弁別器)、8・・・・・・カウンタ。
FIG. 1a is a circuit diagram for implementing the measurement method of the present invention,
b is an explanatory diagram of the cooling device and light intensity input device, FIG. 2 is a graph showing the relationship between the pulse height of pulse noise measured with the circuit of FIG. 1a and the pulse count rate (N/Sec), and FIG. Light intensity for avalanche photodiode (Pin)
It is a graph which shows the linearity of the pulse count rate (N/Sec) with respect to FIG. APD...Avalanche photodiode, 6...
Distributed amplifier, 7... Single channel analyzer (differential wave height discriminator), 8... Counter.

Claims (1)

【特許請求の範囲】[Claims] 1 雪崩光ダイオードを冷却し、光を投入した場合の雪
崩電流パルスノイズのパルス波高の比較的低い領域を波
高弁別器で取り出して計数することを特徴とする微弱光
の測定方法。
1. A method for measuring weak light, which is characterized in that when an avalanche photodiode is cooled and light is applied, a region in which the pulse height of the avalanche current pulse noise is relatively low is extracted and counted using a pulse height discriminator.
JP13788677A 1977-11-18 1977-11-18 How to measure weak light using an avalanche photodiode Expired JPS592849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13788677A JPS592849B2 (en) 1977-11-18 1977-11-18 How to measure weak light using an avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13788677A JPS592849B2 (en) 1977-11-18 1977-11-18 How to measure weak light using an avalanche photodiode

Publications (2)

Publication Number Publication Date
JPS5471680A JPS5471680A (en) 1979-06-08
JPS592849B2 true JPS592849B2 (en) 1984-01-20

Family

ID=15208970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13788677A Expired JPS592849B2 (en) 1977-11-18 1977-11-18 How to measure weak light using an avalanche photodiode

Country Status (1)

Country Link
JP (1) JPS592849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003918A1 (en) * 1984-12-26 1986-07-03 Nippon Hoso Kyokai Solid image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003918A1 (en) * 1984-12-26 1986-07-03 Nippon Hoso Kyokai Solid image pickup device

Also Published As

Publication number Publication date
JPS5471680A (en) 1979-06-08

Similar Documents

Publication Publication Date Title
CN111609918A (en) Optical fiber distributed vibration sensing system based on envelope detection circuit
Höbel et al. High-resolution distributed temperature sensing with the multiphoton-timing technique
GB2475235A (en) A photon detector
CN105973277A (en) Realization apparatus and method for distributed optical fiber sensing system based on single photon detection
CN112378430A (en) Distributed optical fiber Raman sensing device and method based on chaotic laser
JPS6116009B2 (en)
Fleming et al. Measurement of erythrocyte velocity by use of a periodic differential detector
JPS592849B2 (en) How to measure weak light using an avalanche photodiode
Hughes et al. Long range anemometry using a CO 2 laser
JPS6126240B2 (en)
US3487225A (en) Linearized radiation sensitive transducer apparatus
Ripamonti et al. No dead-space optical time-domain reflectometer
CN113091783B (en) High-sensitivity sensing device and method based on two-stage Brillouin scattering
US3610931A (en) Thermistor circuit for detecting infrared radiation
JP2763586B2 (en) Optical fiber fault point searching method and apparatus
JPS58113831A (en) Measuring device for loss distribution
CN219914342U (en) Strain monitoring system for long-distance single-multimode hybrid fiber engineering
US3493859A (en) Device for measuring pulse jitter
JPS568841A (en) Measuring method of micro probe deep level
JPS5456884A (en) Minute light power meter
SU1100588A1 (en) Device for measuring volt-farad characteristics
JPH0894475A (en) Gas pressure measuring apparatus employing light scattering
Adamovsky Amplitude spectrum modulation technique for analog data processing in fiber optic sensing system with temporal separation of channels
SU1083137A1 (en) Device for avalanche protodiode quality control
Collins et al. Circuits to eliminate the voltage spikes caused by cosmic rays in germanium PIN-diode infrared detectors