JPS5927836A - Production of hydrocarbon - Google Patents

Production of hydrocarbon

Info

Publication number
JPS5927836A
JPS5927836A JP57137603A JP13760382A JPS5927836A JP S5927836 A JPS5927836 A JP S5927836A JP 57137603 A JP57137603 A JP 57137603A JP 13760382 A JP13760382 A JP 13760382A JP S5927836 A JPS5927836 A JP S5927836A
Authority
JP
Japan
Prior art keywords
thorium
ruthenium
catalyst
reaction
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57137603A
Other languages
Japanese (ja)
Inventor
Tomohiro Yoshinari
知博 吉成
「湧」井 正浩
Masahiro Wakui
Hiroaki Taniguchi
博昭 谷口
Hiroshi Fujiwara
寛 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP57137603A priority Critical patent/JPS5927836A/en
Publication of JPS5927836A publication Critical patent/JPS5927836A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

PURPOSE:To produce a higher hydrocarbon in high selectivity, by the catalytic reaction of CO with H2 using a catalyst containing ruthenium and thorium and having decreased sensitivity to the reaction temperature which is a weak point of conventional catalyst. CONSTITUTION:A higher hydrocarbon can be produced in high selectivity, by reacting CO with H2 in the presence of a catalyst containing 0.5-10wt% of ruthenium and 1.0-86.0wt% of thorium, e.g. obtained by supporting ruthenium and thorium on a carrier, supporting ruthenium on thorium oxide or a mixture of thorium oxide and other carrier, or homogeneously mixing ruthenium with thorium oxide. The catalyst is preferably prepared by conventional process such as coprecipitation process, evaporation to dryness, immersion, deposition, etc., and heat-treated at 400-500 deg.C for 1-5hr in reducing atmosphere.

Description

【発明の詳細な説明】 本発明は一酸化炭素と水素との接触反応による炭化水素
の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrocarbons by catalytic reaction of carbon monoxide and hydrogen.

一酸化炭素と水素の混合ガスを高めた温度および圧力下
で触媒と接触させることにより、−酸化炭素と水素の混
合物から炭化水素を製造することはフィッシャー・トロ
プシュ法による炭化水素の合成法としてよく知られてい
る。フィッシャー・トロプシュ合成法の触媒としてルテ
ニウム含有触媒は比較的活性が高いことが知られている
が、比較的高い反応温度領域ではメタンなど低級炭化水
素が多く生成してしまい自動車燃料等として有用な高級
炭化水素の生成が少ないといった難点がある。またフィ
ッシャー・トロプシュ反応は発熱反応であるが、ルテニ
ウム含有触媒は反応温度に敏感で反応のコントロールが
難しいといった難点がある。
The production of hydrocarbons from a mixture of carbon monoxide and hydrogen by contacting the mixture with a catalyst at elevated temperature and pressure is a popular Fischer-Tropsch method for hydrocarbon synthesis. Are known. It is known that ruthenium-containing catalysts have relatively high activity as catalysts for the Fischer-Tropsch synthesis process, but in the relatively high reaction temperature range, a large amount of lower hydrocarbons such as methane are produced, making them difficult to use as high-grade hydrocarbons useful as automobile fuels, etc. There are drawbacks such as low hydrocarbon production. Furthermore, although the Fischer-Tropsch reaction is an exothermic reaction, ruthenium-containing catalysts are sensitive to the reaction temperature, making it difficult to control the reaction.

本発明方法はフィッシャー・トロプシュ炭化水素合成法
の改良方法を提供するものであり、本発明者らはルテニ
ウムとトリウムとを含有する触媒をフィッシャー・トロ
プシュ法触媒として使用すると、高い選択性をもって高
級炭化水素例えば炭素数5以上の高級炭化水素が生成し
、メタンおよび低級炭化水素の生成が減少すること、ま
た反応温度に敏感といわれるルテニウム触媒の難点は改
良され広い反応温度条件下において生成炭化水素の生成
物組成(分布)の指標とされるシュルツ・フローリー則
の連鎖成長確率α値が高い値を示すという事実を発見し
て本発明を完成したものである。
The method of the present invention provides an improved Fischer-Tropsch hydrocarbon synthesis method, and the inventors have found that when a catalyst containing ruthenium and thorium is used as a Fischer-Tropsch catalyst, higher carbonization can be achieved with high selectivity. Hydrogen, for example, higher hydrocarbons with a carbon number of 5 or more are produced, and the production of methane and lower hydrocarbons is reduced.Also, the drawbacks of ruthenium catalysts, which are said to be sensitive to reaction temperature, have been improved, and the production of hydrocarbons can be improved over a wide range of reaction temperature conditions. The present invention was completed by discovering the fact that the chain growth probability α value of the Schulz-Flory law, which is an index of product composition (distribution), exhibits a high value.

すなわち本発明の要旨は、−酸化炭素と水素との接触反
応による炭化水素の製造方法において、ルテニウムとト
リウムとを含有する触媒を用いて反応を行なうことを特
徴とする炭化水素の製造方法に存する。
That is, the gist of the present invention resides in - a method for producing hydrocarbons by a catalytic reaction between carbon oxide and hydrogen, characterized in that the reaction is carried out using a catalyst containing ruthenium and thorium; .

本発明方法に使用される触媒はルテニウムとトリウムの
両者を必須成分として含有する。触媒の例としてはルテ
ニウムとトリウムとを支持担体に担持したもの、ルテニ
ウムをトリウム酸化物上にまたはトリウム酸化物と他の
担体との混合物上に担持したもの、ルテニウムとトリウ
ム酸化物との均質混合物がある0使用できる担体の例と
してはアルミナ、シリカ、シリカアルミナ、カーボン、
各種の金属酸化物、あるいはこれらの混合物があげられ
る0金属酸化物としてはアルカリ金属例えばリチウム、
ナトリウム、カリウム、セシウム、アルカリ土類金属例
えばベリリウム、マグ木シウム、カルシウム、ストロン
チウム、バリウム、希土類元素例えばスカンジウム、イ
ツトリウム、ランタン、セリウム、ウラン、周期律表第
1B、I[B、III、■、v1■重元素例えば銅、銀
、亜鉛、カド苺つム、ガリウム、インジウム、チタン、
ジルコニウム、錫、鉛、バナジウム、アンチモン、ビス
マス、クロム、モリブデン、タングステンなどの金属の
酸化物がある。好ましい担体はアルミナ、シリカ、シリ
カアルdす、周期律表第■族、V族、■族の金属の酸化
物であシ、最も好適にはアルミナ、シリカ、シリカアル
ミナ、バナジウムの酸化物、クロムの酸化物であり、こ
れらを主体に他の金属酸化物を含有する混合物も好まし
い。混合物の例としてはAl2O3−ZrO2、Al2
O3−MgO1A1203−Ti02−に20、Al2
O3−T102−CaO1AI203− ZnO、5i
02−BeO、5102−Mg0 、5i02−CaO
X5i02−La203.5i02−Zr02.5i0
2−Ga203 、V2O5−C820、V2O5−A
gO−CuO。
The catalyst used in the process of the invention contains both ruthenium and thorium as essential components. Examples of catalysts include ruthenium and thorium supported on a support, ruthenium supported on thorium oxide or a mixture of thorium oxide and other supports, and homogeneous mixtures of ruthenium and thorium oxide. Examples of supports that can be used include alumina, silica, silica alumina, carbon,
Examples of metal oxides include alkali metals such as lithium,
Sodium, potassium, cesium, alkaline earth metals such as beryllium, argentium, calcium, strontium, barium, rare earth elements such as scandium, yttrium, lanthanum, cerium, uranium, Periodic Table IB, I [B, III, ■, v1 ■ Heavy elements such as copper, silver, zinc, gallium, indium, titanium,
There are oxides of metals such as zirconium, tin, lead, vanadium, antimony, bismuth, chromium, molybdenum, and tungsten. Preferred supports are alumina, silica, silica alumina, oxides of metals of Groups I, V and II of the periodic table, most preferably alumina, silica, silica alumina, oxides of vanadium, chromium. It is also preferable to use oxides and mixtures containing these as main oxides and other metal oxides. Examples of mixtures include Al2O3-ZrO2, Al2
O3-MgO1A1203-Ti02-20, Al2
O3-T102-CaO1AI203- ZnO, 5i
02-BeO, 5102-Mg0, 5i02-CaO
X5i02-La203.5i02-Zr02.5i0
2-Ga203, V2O5-C820, V2O5-A
gO-CuO.

V2O5−Ti 02− CuO、V2O5−Ti 0
2−MgO% V2O5−Ti 02−ZnO1V20
5− TLQz −Biz03、V2O5−ZrO2−
ccto XCr2O3−K2O、Cr203−Ago
−CuOXCr20B−Ti02−CuO、Cr2O3
−Ti02−8i02などがある。これら担体はルテニ
ウムおよびトリウムの触媒特性を著しくは阻害しないで
触媒表面積を大きくしたシ、あるいはルテニウムおよび
トリウムと共働して触媒活性を高めたりする。これら担
体はトリウム酸化物との混合−物として使用し、その混
合物上にルテニウムを担持することも好ましい。またこ
れら担体もしくは担体とトリウム酸化物との混合物には
ルテニウムおよびトリウムの触媒特性を著しくは阻害し
ないような他の難溶物質を混和してもよいし、また本発
明触媒にはその作用を高めるためにさらに活性化剤例え
ばアルカリ金属炭酸塩、酸化マグネシウム、酸化亜鉛あ
るいはこれらの混合物を担持しであるいは担体として添
加することもできる。ルテニウムとトリウムを担持する
担体、およびルテニウムを担持するトリウム酸化物もし
くはトリウム酸化物と担体との混合物は粉末、か粒、球
形、圧出形などいずれの形状でもよく、通常約1〜50
0tf?/7、好適には約10〜300 m”/f 、
最も好適には約25〜200イ/?のBET表面積を持
ちうる。
V2O5-Ti 02- CuO, V2O5-Ti 0
2-MgO% V2O5-Ti 02-ZnO1V20
5- TLQz -Biz03, V2O5-ZrO2-
ccto XCr2O3-K2O, Cr203-Ago
-CuOXCr20B-Ti02-CuO, Cr2O3
-Ti02-8i02, etc. These supports increase the catalyst surface area without significantly inhibiting the catalytic properties of ruthenium and thorium, or work together with ruthenium and thorium to enhance the catalytic activity. It is also preferable to use these supports as a mixture with thorium oxide and to support ruthenium on the mixture. In addition, other poorly soluble substances that do not significantly inhibit the catalytic properties of ruthenium and thorium may be mixed with these carriers or the mixture of the carrier and thorium oxide. For this purpose, activators such as alkali metal carbonates, magnesium oxide, zinc oxide or mixtures thereof can also be added as supports or carriers. The carrier carrying ruthenium and thorium, the thorium oxide carrying ruthenium, or the mixture of thorium oxide and the carrier may be in any form such as powder, granules, spheres, or extruded shapes, and usually about 1 to 50%
0tf? /7, preferably about 10-300 m”/f,
Most preferably about 25 to 200 i/? can have a BET surface area of

触媒中ルテニウムの含有量は約0.01〜45重量%、
好適には約0.1〜20重量%、最も好適には約0.5
〜10重量%である。触媒中トリウムの含有量は約0.
01〜99.9°9重量%、好適には約0.1〜87.
0重量%、最も好適には約1.0〜86.0重量%であ
る。触媒中のルテニウム含有量が低すぎるかまたはルテ
ニウムを含まないとほとんど反応が起らずまたルテニウ
ム含有量が多すぎるとメタンの生成が著大になったり高
温域で連鎖成長確率αが急速に低くなる。また触媒中ト
リウムの含有量が低すぎるかまたはトリウムを含まない
とメタンの生成が著大になったシ高温域の連鎖成長確率
が低くなってしまう。
The content of ruthenium in the catalyst is about 0.01 to 45% by weight,
Preferably about 0.1-20% by weight, most preferably about 0.5%
~10% by weight. The content of thorium in the catalyst is approximately 0.
01-99.9°9% by weight, preferably about 0.1-87.
0% by weight, most preferably about 1.0-86.0% by weight. If the ruthenium content in the catalyst is too low or does not contain ruthenium, almost no reaction will occur, and if the ruthenium content is too high, methane production will be significant or the chain growth probability α will rapidly decrease at high temperatures. Become. Furthermore, if the thorium content in the catalyst is too low or it does not contain thorium, the probability of chain growth in the high temperature range where methane production becomes significant will be low.

本発明で使用するルテニウムとトリウムとを含有する触
媒は共沈法、蒸発乾固法、浸漬法、沈着法、混線法など
通常の触媒調製法(その詳細は例えば昭和46年7月3
1日発行、触媒学会編集「触媒実験マニュアル」305
〜340頁などの底置に詳述されている。)によシ調製
することができる。例えば触媒調製に用いるルテニウム
化合物の例としては塩化ルテニウム、硝酸ルテニウム、
酢酸ルテニウムのような塩、あるいは塩化力アンモニア
・ルテニウムRu(NHa)sc12など水に可溶なも
の、ルテニウムカルボニル(ルテニウムクラスターを含
む。)、ルテニウムアセチルアセトナートなど有機溶剤
に可溶なものがあり、これらの水溶液あるいは有機溶剤
溶液中にトリウム酸化物などの不溶性トリウム化合物、
トリウム金属、担体、またはこれらの混合物を浸漬して
ルテニウム化合物を吸着させたり、イオン交換で付着さ
せたり、沈殿剤を加えて沈着させたり、溶液を蒸発乾固
して付着させたりして担持できるしくルテニウム化合物
を担持する場合後述のトリウム化合物を同時に担持して
も、トリウム化合物を担持する前または燐に担持しても
よい。)、これらルテニウム化合物溶液に沈殿剤を加え
るかまたは蒸発乾固して得たルテニウム化合物を同様に
して調製したトリウム化合物と(必要なら担体を加え)
−緒にして混練したり、ルテニウム化合物溶液に後述の
水溶性あるいは有機溶剤可溶性トリウム化合物を(必要
なら担体もしくは担体前駆体を加えて)加えた混合溶液
に沈殿剤を加えて共沈させたシ、混合溶液を蒸発乾固し
たりして調製できる。ルテニウム金属粉末、酸化ルテニ
ウムなど不溶性ルテニウム化合物もトリウム化合物(必
要なら担体を加えて)と混練したり、水あるいは有機溶
剤に懸濁させて上記のルテニウム化合物溶液の蒸発乾固
による方法、吸着もしくは沈着による方法に準じて調製
したシすることができる。
The catalyst containing ruthenium and thorium used in the present invention can be prepared by conventional catalyst preparation methods such as coprecipitation method, evaporation-drying method, immersion method, deposition method, and crosstalk method (details of which can be found in, for example, July 3, 1971).
Published on the 1st, edited by the Catalysis Society of Japan, “Catalyst Experiment Manual” 305
It is detailed in the bottom page of pages 340 to 340. ). Examples of ruthenium compounds used for catalyst preparation include ruthenium chloride, ruthenium nitrate,
There are salts such as ruthenium acetate, salts such as ammonia chloride and ruthenium Ru (NHa) sc12, which are soluble in water, and those soluble in organic solvents, such as ruthenium carbonyl (including ruthenium clusters) and ruthenium acetylacetonate. , insoluble thorium compounds such as thorium oxide in these aqueous or organic solvent solutions,
Ruthenium compounds can be supported by adsorption by soaking thorium metal, a carrier, or a mixture thereof, by ion exchange, by adding a precipitant, or by evaporating the solution to dryness. When a ruthenium compound is specifically supported, a thorium compound (described later) may be supported at the same time, or it may be supported before the thorium compound is supported or on phosphorus. ), the ruthenium compound obtained by adding a precipitant to these ruthenium compound solutions or evaporating to dryness is combined with a thorium compound prepared in the same manner (adding a carrier if necessary).
- Co-precipitate by adding a precipitant to a mixed solution of a ruthenium compound solution and a water-soluble or organic solvent-soluble thorium compound (adding a carrier or carrier precursor if necessary). It can be prepared by evaporating a mixed solution to dryness. Insoluble ruthenium compounds such as ruthenium metal powder and ruthenium oxide can also be mixed with a thorium compound (adding a carrier if necessary), suspended in water or an organic solvent, and then evaporated to dryness of the above ruthenium compound solution, adsorbed or deposited. It can be prepared according to the method described by.

触媒調製に用いることので゛きるトリウム化合物として
は例えば塩化トリウムのような・・ロゲフ化物、硝酸ト
リウム、ぎ酸トリウム、これらの尿素錯塩など水あるい
は水性溶剤に溶ける水溶性化合物などがあり、これらは
上述ルテニウム化合物溶液あるいは懸濁液の処理と同様
にして担体に担持したシ、ルテニウム化合物と一緒に混
練したり、ルテニウム化合物と共沈、共析出させたシ、
蒸発乾固して触媒中に組みこむことができる。上述した
ようにトリウム酸化物、トリウム金属粉末などの不溶性
の金属トリウムまたはトリウム化合物は上記ルテニウム
化合物の溶液もしくは懸濁液中に浸漬してルテニウム化
合物を析出、沈殿、蒸発乾固などの方法でトリウム金属
もしくはトリウム化合物表面に析出させてもよい。本発
明の触媒は担体を含まずルテニウムとトリウムとのみか
らなるものでもよいが、担体にルテニウムとトリウムと
を担持させたものでも、担体とトリウムもしくはトリウ
ム化合物との混合物にルテニウムを担持させたものでも
、ルテニウムとトリウムと担体との均質混合物でもよく
、それらの調製法については上述した通りである。以上
のようにして調製した触媒は通常常法により成型しもし
くはすることなく、乾燥、焼成する。乾燥はたとえば約
80〜300℃好ましくは約100〜150℃で1o分
〜10時間保持することにより、焼成はたとえば約30
0〜700℃好ましくは約300〜500 ℃で30分
〜24時間保持することにょシ行なうことができる。
Examples of thorium compounds that can be used for catalyst preparation include thorium chloride, logefide, thorium nitrate, thorium formate, and water-soluble compounds that dissolve in water or aqueous solvents, such as urea complex salts of these compounds. In the same manner as in the treatment of the ruthenium compound solution or suspension described above, the silica supported on a carrier, the silica that is kneaded together with the ruthenium compound, or co-precipitated or co-precipitated with the ruthenium compound,
It can be evaporated to dryness and incorporated into the catalyst. As mentioned above, insoluble metal thorium or thorium compounds such as thorium oxide and thorium metal powder are immersed in a solution or suspension of the ruthenium compound and the ruthenium compound is precipitated, precipitated, evaporated to dryness, etc. to remove thorium. It may also be deposited on the surface of a metal or thorium compound. The catalyst of the present invention may be composed only of ruthenium and thorium without a carrier, but it may also be one in which ruthenium and thorium are supported on a carrier, or in which ruthenium is supported on a mixture of a carrier and thorium or a thorium compound. However, a homogeneous mixture of ruthenium, thorium, and a carrier may also be used, and the preparation method thereof is as described above. The catalyst prepared as described above is usually dried and calcined with or without molding by a conventional method. Drying is carried out by holding the temperature at about 80 to 300°C, preferably about 100 to 150°C, for 1 minute to 10 hours, and baking is carried out, for example, by holding at about 30 to 300 degrees Celsius.
It can be carried out by holding the temperature at 0 to 700°C, preferably about 300 to 500°C, for 30 minutes to 24 hours.

こうして調製した触媒はそのまま反応に供してもよいが
、水素ガスのような還元雰囲気下に前処理することが好
ましい。前処理は約3oo℃以上好オしくは約400〜
500 ℃で常圧ないし加圧(約300atm以下)の
水素圧力下に約1゜分〜8時間好ましくは約1〜5時間
処理することが好ましい。前処理はフィッシャー・トロ
プシュ反応塔において反応に先立ち行なえばよく、別の
工程で行なう必要はない。還元ガスでの処理によシ触媒
中のルテニウムは(焼成段階では一部酸化物となってい
る。)−f!:のほとんどがルテニウム金属単体となシ
、1リウムは(焼成段階でそのほとんどが酸化物となっ
ている。)そのほとんどが酸化物でとどまっている。
Although the catalyst thus prepared may be subjected to the reaction as it is, it is preferably pretreated in a reducing atmosphere such as hydrogen gas. Pretreatment is performed at a temperature of about 30°C or more, preferably about 400°C or more.
The treatment is preferably carried out at 500°C under hydrogen pressure of normal pressure to increased pressure (approximately 300 atm or less) for about 1 minute to 8 hours, preferably about 1 to 5 hours. The pretreatment may be carried out in the Fischer-Tropsch reaction column prior to the reaction and does not need to be carried out in a separate step. By treatment with a reducing gas, ruthenium in the catalyst (partially converted into oxide during the calcination stage) -f! : Most of ruthenium is a simple metal, and 1 lium (most of it becomes an oxide during the firing stage) remains an oxide.

反応は通常のフィッシャー・トロプシュ反応条件゛下に
行なうことができる。たとえば水素と一酸化炭素とのモ
ル比(■(2/coモル比)約0.1〜10好適には約
0.5〜4最も好適には0.5〜2の水素と一酸化炭素
との混合ガスを原料として、反応温度約100〜500
℃好適には約150〜400℃最も好適には約200〜
360℃、反応圧力約1〜300atm好適には約10
〜100 atm最も好適には約10〜60 atm 
、触媒容量当シ単位時間当シの供給ガス速度(空間速度
、SV)約100〜50,000 hr−’特に約30
0〜2000hr−”の条件で原料ガスを上記触媒に接
触させて実施できる。反応は流通式固定触媒床、流動床
、懸濁床などの反応形式により行なうことができ、その
場合触媒粒直径が例えばそれぞれ約1〜5 mm 。
The reaction can be carried out under conventional Fischer-Tropsch reaction conditions. For example, the molar ratio of hydrogen to carbon monoxide (2/co molar ratio) is about 0.1 to 10, preferably about 0.5 to 4, and most preferably 0.5 to 2. Using a mixed gas of
°C preferably about 150-400 °C, most preferably about 200-400 °C
360°C, reaction pressure of about 1 to 300 atm, preferably about 10
~100 atm, most preferably about 10-60 atm
, the feed gas velocity per unit time per catalyst capacity (space velocity, SV) of about 100 to 50,000 hr-', especially about 30
The reaction can be carried out by bringing the raw material gas into contact with the above-mentioned catalyst under the conditions of 0 to 2000 hr-''.The reaction can be carried out using a flow-type fixed catalyst bed, a fluidized bed, a suspended bed, etc. In this case, the catalyst particle diameter is For example, about 1-5 mm each.

約0.5〜2.5 mmおよび約20〜150ミクロン
の触媒粒子で反応を行なうことができる。
The reaction can be carried out with catalyst particles of about 0.5-2.5 mm and about 20-150 microns.

本発明方法の生成炭化水素はほとんどがパラフィン類と
オレフィン類よpなる脂肪族炭化水素混合物である。本
発明方法によると特異な触媒の使用により、従来の典型
的なルテニウム触媒に比べてメタンの生成が少なく、ま
た巾広い反応温度条件下において高級炭化水素(例えば
炭素数5以上のもの)の製造に高い選択性を示すという
効果がある。
The hydrocarbons produced by the process of the present invention are mostly aliphatic hydrocarbon mixtures consisting of paraffins and olefins. Due to the use of a unique catalyst, the method of the present invention produces less methane than conventional typical ruthenium catalysts, and can produce higher hydrocarbons (e.g., carbon atoms of 5 or more) under a wide range of reaction temperature conditions. It has the effect of showing high selectivity.

以下実施例によυ本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 γ−アルミナにルテニウムとトリウムを担持した触媒A
を調製した。すなわち硝酸トリウム10.26F、尿素
6.69Fを水とエチルアルコールとの等容量混合溶剤
20mL中に溶解させてつくった硝酸トリウム−尿素塩
の溶液と、塩化ルテニウムRuCl3 ・nH2O2,
282Y ’e水とエチルアルコールとの等容量混合溶
剤40mt中溶解させた溶液の2液を混合し、この中に
450℃にて真窒乾燥したγ−アルミナ190vを浸漬
し、蒸発乾固してγ−アルミナ上にRuCl3− Th
(N03)4 ’ 6(NH2)2 Co ’2H20
’i担持した。生成物を110℃で乾燥し、次に電気炉
により空気中450℃で5時間焼成し、その後打錠成形
し、さらに20〜32メツシユに粉砕し、触媒Aとした
Example 1 Catalyst A with ruthenium and thorium supported on γ-alumina
was prepared. That is, a solution of thorium nitrate-urea salt prepared by dissolving 10.26 F of thorium nitrate and 6.69 F of urea in 20 mL of an equal volume mixed solvent of water and ethyl alcohol, and ruthenium chloride RuCl3 .nH2O2,
282Y'e Two solutions dissolved in 40 mt of a mixed solvent of equal volume of water and ethyl alcohol were mixed, and 190v of γ-alumina dried with pure nitrogen at 450°C was immersed in the mixture, and evaporated to dryness. RuCl3-Th on γ-alumina
(N03)4'6(NH2)2Co'2H20
'I carried it. The product was dried at 110° C., then calcined in air at 450° C. for 5 hours in an electric furnace, then compressed into tablets, and further ground into 20 to 32 meshes to obtain catalyst A.

この触媒2mt(1,0′?)を反応容器に充填し、水
素ガスを通じ300℃で3時間前処理した。続いて水素
ガスを通じながら反応温度以下(100℃)に冷却した
後、水素と一酸化炭素の混合ガスを触媒層に通じた。反
応条件および生成物組成を第1表に示した。なお担体と
してγ−アルミナに替えてγ−アルミナと酸化ジルコニ
ウムとの混合物を使用した触媒についても類似の結果が
得られた。
2 mt (1,0'?) of this catalyst was charged into a reaction vessel and pretreated at 300°C for 3 hours through hydrogen gas. Subsequently, the mixture was cooled to below the reaction temperature (100° C.) while passing hydrogen gas therethrough, and then a mixed gas of hydrogen and carbon monoxide was passed through the catalyst layer. The reaction conditions and product composition are shown in Table 1. Similar results were obtained with a catalyst using a mixture of γ-alumina and zirconium oxide instead of γ-alumina as a carrier.

第1表にみられるように、トリウムを含有しない以外触
媒Aと同じくγ−アルミナにルテニウムのみを担持した
比較触媒A′を用いて反応を行なった後述比較例1に較
べてメタンの生成がかなり少なく、かつ高級炭化水素合
成に優れる連鎖成長確率の高いことがわかる。
As can be seen in Table 1, methane production was considerably greater than in Comparative Example 1, which will be described later, in which the reaction was carried out using Comparative Catalyst A', in which only ruthenium was supported on γ-alumina, similar to Catalyst A except that it did not contain thorium. It can be seen that the chain growth probability is low and has a high probability of chain growth, which is excellent for synthesizing higher hydrocarbons.

比較例1 トリウムを含有させなかった以外実施例1の触媒Aと全
く同様にしてγ−アルミナにルテニウムのみを担持した
触媒A′ヲ調製した。この触媒を用いて実施例1と同様
にして反応を行なった。反応条件と結果を第1表に示す
。第1表にみられるようにトリウムを含まない触媒A′
を使用して反応を行なった場合、実施例1に較べてメタ
ンの生成が多く、また高級炭化水素の生成も少ない。
Comparative Example 1 Catalyst A', in which only ruthenium was supported on γ-alumina, was prepared in exactly the same manner as Catalyst A of Example 1, except that thorium was not contained. A reaction was carried out in the same manner as in Example 1 using this catalyst. The reaction conditions and results are shown in Table 1. As seen in Table 1, thorium-free catalyst A'
When the reaction was carried out using , more methane was produced than in Example 1, and less higher hydrocarbons were produced.

実施例2 γ−アルミナの代)にシリカ全使用した以外実施例1と
全く同様にしてシリカにルテニウムとトリウムとを担持
した触媒Bを調製した。この触媒を用い実施例1と同様
にして反応を行なった。反応条件と結果を第1表に示す
。なお担体としてシリカに替えてシリカと酸化マグネシ
ウムとの混合物を使用した触媒、シリカに替えてシリカ
と酸化ランタンとの混合物を使用した触媒についても類
似の結果が得られた。
Example 2 Catalyst B, in which ruthenium and thorium were supported on silica, was prepared in exactly the same manner as in Example 1, except that silica was entirely used in place of γ-alumina. A reaction was carried out in the same manner as in Example 1 using this catalyst. The reaction conditions and results are shown in Table 1. Similar results were obtained with catalysts in which a mixture of silica and magnesium oxide was used instead of silica as a carrier, and a catalyst in which a mixture of silica and lanthanum oxide was used instead of silica.

比較例2 γ−アルミナの代りにシリカを使用しかつトリウムを含
有させなかった以外実施例2の触媒Bと全く同様にして
触媒B′を調製した。この触媒を用いて実施例1と全く
同様にして反応を行なった。反応条件と結果を第1表に
示す。
Comparative Example 2 Catalyst B' was prepared in exactly the same manner as Catalyst B of Example 2, except that silica was used instead of γ-alumina and thorium was not contained. A reaction was carried out in exactly the same manner as in Example 1 using this catalyst. The reaction conditions and results are shown in Table 1.

実施例3 粉末酸化クロムCr2O3を打錠成形後、20〜32メ
ツシユに粉砕し、次いで450℃で真空乾燥した担体8
7.4fを、塩化トリウムThe1.9.3451と塩
化ルテニウムRuCl3・nH2O2,284fとを水
40m1.に溶解した溶液に浸漬した。1昼夜放置後水
アスピレータ−で脱溶剤して酸化クロム上にルテニウム
とトリウムを担持させた。生成物を100〜120℃の
オープン中で乾燥し、次いで電気炉により空気中450
℃で3時間焼成して触媒Cを調製した。
Example 3 Powdered chromium oxide Cr2O3 was tablet-molded, pulverized into 20 to 32 meshes, and then vacuum-dried at 450°C to obtain carrier 8.
7.4f, thorium chloride The1.9.3451 and ruthenium chloride RuCl3.nH2O2, 284f were added to 40ml of water. immersed in a solution dissolved in After standing for one day and night, the solvent was removed using a water aspirator to support ruthenium and thorium on the chromium oxide. The product was dried in the open at 100-120°C and then heated in an electric furnace at 450°C in the air.
Catalyst C was prepared by calcining at ℃ for 3 hours.

この触媒を用い実施例1と同様にして反応を行なった。A reaction was carried out in the same manner as in Example 1 using this catalyst.

反応条件と結果を第2表に示す0なお担体として酸化ク
ロムに替えて、酸化クロムと酸化カリウムとの混合物を
使用した触媒、酸化クロムと二酸化チタンと酸化銅との
混合物を使用した触媒についても類似の結果が得られた
0 比較例3 トリウムを含有させなかった以外実施例3の触媒Cと全
く同様にして触媒C′を調製した。この触媒を用い実施
例1と同様にして反応を行なった。反応条件と結果を第
2表に示す。
The reaction conditions and results are shown in Table 2.In addition, catalysts using a mixture of chromium oxide and potassium oxide as a carrier instead of chromium oxide, and catalysts using a mixture of chromium oxide, titanium dioxide, and copper oxide as a carrier were also used. Similar results were obtained.0 Comparative Example 3 Catalyst C' was prepared in exactly the same manner as Catalyst C of Example 3 except that thorium was not contained. A reaction was carried out in the same manner as in Example 1 using this catalyst. The reaction conditions and results are shown in Table 2.

実施例4 粉末五酸化バナジウムV2O5ヲ打錠成形後20〜32
メツシュに粉砕した担体30.Orを、硝酸トリウム9
.11fと尿素5.94fとを水とエチルアルコールと
の等容量混合液40m1に溶解して硝酸トリウム−尿素
塩を形成させた溶液中に含浸した。その抜水アスピレー
タ−で脱溶剤し、生成物を空気中100〜110℃で乾
燥し、次いで電気炉により空気中550℃で3時間焼成
した。
Example 4 Powdered vanadium pentoxide V2O5 after tableting 20-32
30. Or, thorium nitrate 9
.. 11f and 5.94f of urea were dissolved in 40 ml of an equal volume mixture of water and ethyl alcohol to form a thorium nitrate-urea salt. The solvent was removed using the water removal aspirator, and the product was dried in the air at 100 to 110°C, and then calcined in the air at 550°C for 3 hours in an electric furnace.

得られた生成物34.4fを−3つロフラスコに入れ、
窒素・雰囲気とし、この系に窒素雰囲気下50℃におい
てルテニウムカルボニル溶液50(1mtスなわちルテ
ニウムカルボニルRu3(CO)122.14 yをテ
トラヒドロフラン500−mtに溶解した溶液を5回に
分けて注入し、毎回減圧蒸留でテトラヒドロフランを留
出させる操作ヲ<シ返してルテニウムカルボニルを担体
上に担持させた。得られたものを氷水で冷却後、系内勢
囲気を徐々に空気に置換した。その後生成物を空気中1
00℃で乾燥し、触媒りを調製した。
-3 of the obtained product 34.4f was placed in a flask,
A ruthenium carbonyl solution (1 mt, that is, a solution of 500 mt of ruthenium carbonyl Ru3(CO) dissolved in 500 mt of tetrahydrofuran, was injected into the system in 5 portions at 50°C under a nitrogen atmosphere. Ruthenium carbonyl was supported on the carrier by repeating the operation of distilling tetrahydrofuran by vacuum distillation each time.After cooling the obtained product with ice water, the atmosphere inside the system was gradually replaced with air. things in the air 1
It was dried at 00°C to prepare a catalyst.

この触媒を用い実施例1と同様にして反応を行なった。A reaction was carried out in the same manner as in Example 1 using this catalyst.

反応条件と結果を第2表に示す。なお担体として五酸化
バナジウムに替えて五酸化バナジウムと二酸化チタンと
酸化亜鉛との混合物を使用した触媒についても類似の結
果が得られた。
The reaction conditions and results are shown in Table 2. Similar results were obtained with a catalyst using a mixture of vanadium pentoxide, titanium dioxide, and zinc oxide instead of vanadium pentoxide as a carrier.

比較例4 トリウムを含有させなかった以外実施例4の触媒りと全
く同様にして触媒D′を調製した。この触媒を用い実施
例1と同様にして反応を行なった。反応条件と結果を第
2表に示す。
Comparative Example 4 Catalyst D' was prepared in exactly the same manner as in Example 4 except that thorium was not contained. A reaction was carried out in the same manner as in Example 1 using this catalyst. The reaction conditions and results are shown in Table 2.

実施例5 粉末酸化トリウムThO2を打錠成形後20〜32メツ
シユに粉砕し、次いで450℃で真空乾燥した酸化トリ
ウム87.4tを、塩化ルテニウムRuC1B・nH2
O2,284fを水40 mlに溶解した溶液に浸漬し
た。1昼夜放置後水アスピレータ−で脱溶剤して酸化ト
リウム上にルテニウムを担持させた。
Example 5 Powdered thorium oxide ThO2 was compressed into 20 to 32 meshes, and then 87.4 tons of thorium oxide was vacuum-dried at 450°C, and ruthenium chloride RuC1B.nH2
It was immersed in a solution of O2,284f dissolved in 40 ml of water. After standing for one day and night, the solvent was removed using a water aspirator to support ruthenium on the thorium oxide.

生成物を100〜120℃のオープン中で乾燥し、次い
で電気炉によシ空気中450℃で3時間焼成して触媒E
を調製した。
The product was dried in the open at 100-120°C and then calcined in an electric furnace in air at 450°C for 3 hours to prepare catalyst E.
was prepared.

この触媒を用い実施例1と同様にして反応を行なった。A reaction was carried out in the same manner as in Example 1 using this catalyst.

反応条件と結果を第2表に示す。The reaction conditions and results are shown in Table 2.

上述のようにフィッシャー・トロプシュ合成反応におい
て上記実施例で述べたルテニウムとトリウムとを含有す
る触媒は、トリウムを含有しない以外は組成が同じであ
る比較例の対応触媒に較べてメタンの生成が少なく、巾
広い反応温度条件下において連鎖成長確率α値が高い値
に維持でき、高級炭化水素合成に優れ、かつよシ広い温
度範囲で安定した生成物組成が得られることがわかる。
As mentioned above, in the Fischer-Tropsch synthesis reaction, the catalyst containing ruthenium and thorium described in the above example produces less methane than the corresponding catalyst of the comparative example, which has the same composition except that it does not contain thorium. It can be seen that the chain growth probability α value can be maintained at a high value under a wide range of reaction temperature conditions, that the synthesis of higher hydrocarbons is excellent, and that a stable product composition can be obtained over a wide temperature range.

Claims (1)

【特許請求の範囲】[Claims] 一酸化炭素と水素との接触反応による炭化水素の製造方
法において、ルテニウムとトリウムとを含有する触媒を
用いて反応を行なうことを特徴とする炭化水素の製造方
法0
A method for producing hydrocarbons by a catalytic reaction between carbon monoxide and hydrogen, characterized in that the reaction is carried out using a catalyst containing ruthenium and thorium 0
JP57137603A 1982-08-06 1982-08-06 Production of hydrocarbon Pending JPS5927836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57137603A JPS5927836A (en) 1982-08-06 1982-08-06 Production of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137603A JPS5927836A (en) 1982-08-06 1982-08-06 Production of hydrocarbon

Publications (1)

Publication Number Publication Date
JPS5927836A true JPS5927836A (en) 1984-02-14

Family

ID=15202551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137603A Pending JPS5927836A (en) 1982-08-06 1982-08-06 Production of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS5927836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034742A (en) * 1983-08-05 1985-02-22 Osaka Gas Co Ltd Treatment of catalyst
JPS61225494A (en) * 1985-03-29 1986-10-07 株式会社三井三池製作所 Drum cutter
JPH01131795A (en) * 1987-11-17 1989-05-24 Mitsui Miike Mach Co Ltd Sprinkler for excavator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142502A (en) * 1974-04-24 1975-11-17
JPS55139324A (en) * 1976-05-21 1980-10-31 Dow Chemical Co Manufacture of c22c4 hydrocarbon from carbon monoxide and hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142502A (en) * 1974-04-24 1975-11-17
JPS55139324A (en) * 1976-05-21 1980-10-31 Dow Chemical Co Manufacture of c22c4 hydrocarbon from carbon monoxide and hydrogen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034742A (en) * 1983-08-05 1985-02-22 Osaka Gas Co Ltd Treatment of catalyst
JPH0417100B2 (en) * 1983-08-05 1992-03-25 Osaka Gas Co Ltd
JPS61225494A (en) * 1985-03-29 1986-10-07 株式会社三井三池製作所 Drum cutter
JPH01131795A (en) * 1987-11-17 1989-05-24 Mitsui Miike Mach Co Ltd Sprinkler for excavator
JPH0528319B2 (en) * 1987-11-17 1993-04-23 Mitsui Miike Machinery Co Ltd

Similar Documents

Publication Publication Date Title
JP2557959B2 (en) Process for producing alcohols and olefins from H 2) and CO 2) using iron carbide based catalysts
WO2017173791A1 (en) Cobalt carbide-based catalyst for direct preparation of olefin form synthesis gas, preparation method therefor and application thereof
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
EP2293875A1 (en) Bimetallic mo/co catalyst for producing of alcohols from hydrogen and carbon monoxide containing gas
EP0053386A1 (en) Process for the production of methanol from synthesis gas
CN114570360A (en) Ru-based catalyst and preparation method and application thereof
CA1200561A (en) Catalytic process for the production of methanol
EP0389158A1 (en) High activity nickel catalyst and process for preparation thereof
US2274639A (en) Process for the production of hydrocarbons
EP0171297A2 (en) A method for preparing dual colloid catalyst compositions
JPS5927836A (en) Production of hydrocarbon
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JPH0763624B2 (en) Method for producing fluidized catalyst for synthesizing methanol
WO2005030391A1 (en) Catalyst and method for the generation of co-free hydrogen from methane
CN114433059A (en) CO2Catalyst for synthesizing low-carbon olefin compound by hydrogenation, preparation and application thereof
JP3672367B2 (en) Ammonia synthesis catalyst and production method thereof
CN115007200A (en) Preparation method and application of sub-nanocluster Co-based catalyst
EP0133778B1 (en) Methanol conversion process
JP4354060B2 (en) Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide
JPH0371174B2 (en)
JPH05161848A (en) Preparation of high-activity and high-strength nickel/ magnesia catalyst
JPH0615041B2 (en) Ammonia production catalyst and method for preparing the same
JPS6144847B2 (en)
JP2003003174A (en) Method for producing hydrocarbons by fischer-tropsch method
JP2535876B2 (en) Fluid catalyst for mixed alcohol synthesis