JPS5927758B2 - Vapor phase epitaxial growth equipment - Google Patents

Vapor phase epitaxial growth equipment

Info

Publication number
JPS5927758B2
JPS5927758B2 JP7584779A JP7584779A JPS5927758B2 JP S5927758 B2 JPS5927758 B2 JP S5927758B2 JP 7584779 A JP7584779 A JP 7584779A JP 7584779 A JP7584779 A JP 7584779A JP S5927758 B2 JPS5927758 B2 JP S5927758B2
Authority
JP
Japan
Prior art keywords
vapor phase
epitaxial growth
compound semiconductor
phase epitaxial
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7584779A
Other languages
Japanese (ja)
Other versions
JPS55167199A (en
Inventor
和久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7584779A priority Critical patent/JPS5927758B2/en
Publication of JPS55167199A publication Critical patent/JPS55167199A/en
Publication of JPS5927758B2 publication Critical patent/JPS5927758B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は半導体基板上に化合物半導体結晶を成長させる
際に適した気相エピタキシャル成長装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase epitaxial growth apparatus suitable for growing compound semiconductor crystals on a semiconductor substrate.

InXGa1、XASYPI−YやAlxGa1→AS
YSb1層Yなどで代表される■−V族化合物半導体結
晶の気相成長方法として、常温気体のり族元素の水素化
物と常温液体の■族元素の有機化合物をH2、Arなど
のキャリアガスにより気体化させて用いる熱分解法があ
る。
InXGa1, XASYPI-Y and AlxGa1→AS
As a vapor phase growth method for ■-V group compound semiconductor crystals such as YSb 1-layer Y, hydrides of group elements that are gaseous at room temperature and organic compounds of group group elements that are liquid at room temperature are grown into gases using a carrier gas such as H2 or Ar. There is a thermal decomposition method that uses oxidation.

第1図はこの種の従来の気相エピタキシャル成長装置の
一例を示す概略構成図である。
FIG. 1 is a schematic diagram showing an example of a conventional vapor phase epitaxial growth apparatus of this type.

同図において、1は気相成長炉、2および3はH2、A
になどの不活性ガス(a)、(b)をそれぞれ収容する
不活性ガス容器、4および5はそれぞれH2、Arなど
の不活性ガスで希釈されたASH3、PH3、SbH3
などのり族元素の水素化物(c)、(d)を収容する気
体材料源、6およびTはそれぞれGa(CH3)3、I
n(C2H5)3、Al(CH3)3などの■族元素の
有機化合物(e)、(f)をキャリアガスとしての前記
不活性ガス(b)により気体化させるための気体化装置
、8−1〜8−|は各流路のガスの流量をそれぞれ制御
するマスフローコントロ・−ラであり、各々の流路が主
流路9を通じて気相成長炉1に接続されている。
In the figure, 1 is a vapor phase growth furnace, 2 and 3 are H2, A
4 and 5 are ASH3, PH3, and SbH3 diluted with inert gases such as H2 and Ar, respectively.
6 and T are Ga(CH3)3, I
A gasification device for gasifying organic compounds (e) and (f) of group II elements such as n(C2H5)3 and Al(CH3)3 using the inert gas (b) as a carrier gas, 8- Mass flow controllers 1 to 8-| control the flow rate of gas in each channel, and each channel is connected to the vapor phase growth furnace 1 through a main channel 9.

なお、図中、10はサセプタ11上に支持された半導体
基板である。しかしながら、このように構成された従来
装置においては、不活性ガス容器2中のキャリアガス(
a)や液体材料の気体化のためのキャリアガス(b)お
よび気体材料ガス(c)、(d)の全てのガスの流量を
各マスフローコントローラ8−1〜8−5でそれぞれ精
度よく制御しなければならないので、それらの流量制御
が極めて煩雑になるという不都合があつた。特に、り族
元素の水素化物(c)および(d)の流量と気体化され
た■族元素の有機化合物(e)および(f)の流量との
比が変動した場合には、エピタキシャル成長された化合
物半導体結晶の化学量論比が変動してその結晶の品質を
低下させる要因になつていた。本発明は、上記のような
従来装置の欠点を解消するためになされたもので、構成
を簡単にして高い品質のエピタキシャル層を成長させる
ようにした気相エピタキシャル成長装置を提供するもの
である。
In addition, in the figure, 10 is a semiconductor substrate supported on a susceptor 11. However, in the conventional device configured in this way, the carrier gas (
The mass flow controllers 8-1 to 8-5 accurately control the flow rates of all the gases a), carrier gas (b) for gasifying the liquid material, and gaseous material gases (c) and (d). As a result, the flow rate control becomes extremely complicated. In particular, when the ratio of the flow rate of the hydrides (c) and (d) of group I elements to the flow rate of the gasified organic compounds (e) and (f) of group II elements changes, the epitaxial growth Fluctuations in the stoichiometric ratio of compound semiconductor crystals have been a factor in degrading the quality of the crystals. The present invention was made in order to eliminate the drawbacks of the conventional apparatus as described above, and provides a vapor phase epitaxial growth apparatus which has a simple structure and is capable of growing a high quality epitaxial layer.

以下、図面を用いて本発明の実施例を説明する。第2図
は本発明にかかる気相エピタキシャル成長装置の一実施
例を示す概略構成図であり、同図において第1図と同一
部分は同一符号を用いている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a schematic configuration diagram showing an embodiment of a vapor phase epitaxial growth apparatus according to the present invention, and in this figure, the same parts as in FIG. 1 are denoted by the same reference numerals.

この実施例では、気体化装置6、Tの導入口6aおよび
7aに気体材料源4,5の送出口4a,5aをそれぞれ
連通させることにより、族元素の有機化合物(e)およ
び(f)を気体化させるためのキヤリアガスとして不活
性ガスで希釈された族元素の水素化物(c虚よび(d)
を導入させるようにしたものである。この場合、前記各
導入口6a,7aと送出口4a,5a間の流路にはマス
フローコントローラ8−6および8−7がそれぞれ接続
されている。上記実施例の装置によると、不活性ガスで
希釈された族元素の水素化物(c)および(d)が変動
しても、それに伴つて気体化される族元素の有機化合物
(e)および(f)の流量も変動するので、両者の比が
変動することはない。
In this embodiment, the organic compounds (e) and (f) of group elements are introduced by connecting the inlet ports 6a and 7a of the gasification device 6 and T with the outlet ports 4a and 5a of the gaseous material sources 4 and 5, respectively. Hydrides of group elements (c and (d) diluted with an inert gas as a carrier gas for gasification)
It was designed to introduce the following. In this case, mass flow controllers 8-6 and 8-7 are connected to the flow paths between the inlets 6a, 7a and the outlets 4a, 5a, respectively. According to the apparatus of the above embodiment, even if the hydrides (c) and (d) of the group elements diluted with an inert gas fluctuate, the organic compounds (e) and (d) of the group elements are gasified accordingly. Since the flow rate of f) also changes, the ratio between the two does not change.

従つて、半導体基板10上に成長された化合物半導体結
晶の化学量論比が変動することはなく、高い品質の結晶
を得ることができる。また、従来のものに比べて流量を
制御すべきガスの数を低減できるので、その流量制御が
容易になり、しかも流路系が簡単になる。なお、以上の
説明ではInxGa,−XAsYP,−ッやAlxGa
,−XAsYSb,ィなどの−V族4元化合物半導体結
晶の場合について示したが、InxGal−XAsやG
aAsなどの3元または2元化合物半導体結晶にも応用
できることはいうまでもない。また、一族化合物半導体
結晶に限らず、−族,その他の組合わせの化合物半導体
結晶の場合にも応用できることはいうまでもない。以上
説明したように、本発明によれば、化合物半導体結晶を
構成する一元素を含む気体よりなる気体材料源と前記化
合物半導体結晶を構成する他の元素を含む液体をキヤリ
アガスにより気体化させる気体化装置とを設け、この気
体化装置に前記気体材料源を連通してキヤリアガスとし
て該気体材料源中の気体を導入するようにしたので、半
導体基板上に成長される化合物半導体結晶の化学量論比
が変動することはなく、極めて簡便に高品質のエピタキ
シヤル結晶を得ることができると共に、流量を制御すべ
きガスの数の低減によりその制御の簡易化,装置の小型
化をはかることができるという効果がある。
Therefore, the stoichiometric ratio of the compound semiconductor crystal grown on the semiconductor substrate 10 does not change, and a high quality crystal can be obtained. Furthermore, since the number of gases whose flow rates should be controlled can be reduced compared to conventional ones, the flow rate control becomes easier and the flow path system becomes simpler. In the above explanation, InxGa, -XAsYP, - and AlxGa
, -XAsYSb, -V group quaternary compound semiconductor crystals such as InxGal-XAs and G
Needless to say, it can also be applied to ternary or binary compound semiconductor crystals such as aAs. It goes without saying that the present invention can be applied not only to family compound semiconductor crystals but also to - group compound semiconductor crystals and other combinations of compound semiconductor crystals. As explained above, according to the present invention, a gaseous material source consisting of a gas containing one element constituting a compound semiconductor crystal and a liquid containing another element constituting the compound semiconductor crystal are gasified by a carrier gas. The gaseous material source is communicated with the gasification device and the gas in the gaseous material source is introduced as a carrier gas, so that the stoichiometric ratio of the compound semiconductor crystal grown on the semiconductor substrate is controlled. There is no fluctuation in the amount of gas, making it possible to obtain high-quality epitaxial crystals extremely easily, and by reducing the number of gases whose flow rates must be controlled, the control can be simplified and the equipment can be made smaller. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱分解法気相エビタキシヤル成長装置の
一例を示す概略構成図、第2図は本発明による気相エピ
タキシヤル成長装置の一実施例を示す概略構成図である
。 1・・・・・・気相成長炉、2,3・・・・・・不活性
ガス容器、4,5・・・・・・気体材料源、6,7・・
・・・・気体化装置、8−1〜8−7・・・・・・マス
フローコントローラ、9・・・・・・主流路、10・・
・・・・半導体基板、11・・・・・・サセプタ。
FIG. 1 is a schematic diagram showing an example of a conventional pyrolytic vapor phase epitaxial growth apparatus, and FIG. 2 is a schematic diagram showing an embodiment of a vapor phase epitaxial growth apparatus according to the present invention. 1... Vapor phase growth furnace, 2, 3... Inert gas container, 4, 5... Gaseous material source, 6, 7...
... Gasifier, 8-1 to 8-7 ... Mass flow controller, 9 ... Main channel, 10 ...
... Semiconductor substrate, 11 ... Susceptor.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に化合物半導体結晶を気相エピタキシ
ャル成長させる装置において、前記化合物半導体結晶を
構成する一元素を含む気体よりなる気体材料源と、前記
化合物半導体結晶を構成する他の元素を含む液体をキャ
リアガスにより気体化させる気体化装置とをそれぞれ有
し、前記気体化装置に前記気体材料源を連通させて該気
体材料源中の気体を前記キャリアガスとして導入するよ
うにしたことを特徴とする気相エピタキシャル成長装置
1. In an apparatus for vapor phase epitaxial growth of a compound semiconductor crystal on a semiconductor substrate, a gaseous material source consisting of a gas containing one element constituting the compound semiconductor crystal and a carrier liquid containing another element constituting the compound semiconductor crystal are provided. and a gasification device for gasifying the gas, the gaseous material source is communicated with the gasification device, and the gas in the gaseous material source is introduced as the carrier gas. Phase epitaxial growth equipment.
JP7584779A 1979-06-13 1979-06-13 Vapor phase epitaxial growth equipment Expired JPS5927758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7584779A JPS5927758B2 (en) 1979-06-13 1979-06-13 Vapor phase epitaxial growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7584779A JPS5927758B2 (en) 1979-06-13 1979-06-13 Vapor phase epitaxial growth equipment

Publications (2)

Publication Number Publication Date
JPS55167199A JPS55167199A (en) 1980-12-26
JPS5927758B2 true JPS5927758B2 (en) 1984-07-07

Family

ID=13588005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7584779A Expired JPS5927758B2 (en) 1979-06-13 1979-06-13 Vapor phase epitaxial growth equipment

Country Status (1)

Country Link
JP (1) JPS5927758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878142U (en) * 1981-11-20 1983-05-26 三洋電機株式会社 Reaction gas supply device
JPS5980325A (en) * 1982-10-29 1984-05-09 Fujitsu Ltd Distribution of reaction gas
JP2953955B2 (en) * 1994-06-27 1999-09-27 日本電気株式会社 Method for selectively growing compound semiconductor and method for selectively burying compound semiconductor

Also Published As

Publication number Publication date
JPS55167199A (en) 1980-12-26

Similar Documents

Publication Publication Date Title
Kamins et al. Kinetics of silicon‐germanium deposition by atmospheric‐pressure chemical vapor deposition
US3382113A (en) Method of epitaxially growing silicon carbide by pyrolytically decomposing sih4 and ch4
JPS5927758B2 (en) Vapor phase epitaxial growth equipment
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
KR920009652B1 (en) Compound semiconductor manufacturing apparatus
JPH01130519A (en) Mocvd crystal growing apparatus
JPH0321516B2 (en)
JPS6016898A (en) Gaseous-phase growth device
JP3044699B2 (en) Vapor phase growth apparatus and vapor phase growth method
US5250135A (en) Reagent source
Koukitu et al. Atomic layer epitaxy of GaAsP and InAsP by halogen system
Koukitu et al. Vapor-phase epitaxial growth of GaAs by the single flat temperature zone method
JPH0196922A (en) Semiconductor manufacture equipment
JPS5826656B2 (en) 3-5 Epitaxy method
JPH02305446A (en) Vapor phase epitaxial growth method
JPS5895696A (en) Vapor-phase growing method with controlled vapor pressure
JPH0536397B2 (en)
Flemish et al. Altering the Composition of InGaAsP Grown by the Hydride Technique by Introducing HCl Downstream
JPH02184019A (en) Vapor growth device
JPH04219393A (en) Method and device for gas-phase epitaxial growth
JPH0665209B2 (en) Semiconductor manufacturing equipment by vapor phase growth
JPS5518024A (en) Vapor phase reactor
JPH08130187A (en) Semiconductor vapor phase growth apparatus and semiconductor vapor phase growth method
JPS61263119A (en) Producing equipment of semiconductor by vapor growth
JPS64809B2 (en)