JPS5926154B2 - solid-state imaging device - Google Patents

solid-state imaging device

Info

Publication number
JPS5926154B2
JPS5926154B2 JP49076372A JP7637274A JPS5926154B2 JP S5926154 B2 JPS5926154 B2 JP S5926154B2 JP 49076372 A JP49076372 A JP 49076372A JP 7637274 A JP7637274 A JP 7637274A JP S5926154 B2 JPS5926154 B2 JP S5926154B2
Authority
JP
Japan
Prior art keywords
electrode
solid
imaging device
state imaging
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49076372A
Other languages
Japanese (ja)
Other versions
JPS5110715A (en
Inventor
紀雄 小池
一八男 竹本
幹雄 芦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP49076372A priority Critical patent/JPS5926154B2/en
Publication of JPS5110715A publication Critical patent/JPS5110715A/ja
Publication of JPS5926154B2 publication Critical patent/JPS5926154B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明は同一半導体単結晶基板上に製作した可視光、に
線、X線等に感光する感光素子と感光素子からの出力を
時間順次的に選択読み出しをするための走査回路とから
構成される固体撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a photosensitive element sensitive to visible light, solar radiation, X-rays, etc. manufactured on the same semiconductor single crystal substrate, and a method for selectively reading out the output from the photosensitive element in time sequential manner. The present invention relates to a solid-state imaging device including a scanning circuit.

第1図は固体撮像装置の原理的な構成を示すものである
FIG. 1 shows the basic configuration of a solid-state imaging device.

1、2は水平、垂直用の走査回路であり、通常2〜4相
のクロックパルスCPx、CPyを印加することにより
入力パルスVsx、Vsyがクロックのもつ一定のタイ
ミング時間ずつシフトした出力パルス列、VOX(1)
、VOX(2)゜゜゜、V0y(2)・・・を走査回路
各段の出力線OX!、7)、0複2)・・・、Oyぃト
Oy(2)・・・に出力する。
Reference numerals 1 and 2 are horizontal and vertical scanning circuits, and by applying clock pulses CPx and CPy of usually 2 to 4 phases, an output pulse train, VOX, in which the input pulses Vsx and Vsy are shifted by a fixed timing period of the clock, is generated. (1)
, VOX(2)゜゜゜, V0y(2)... are output lines OX! of each stage of the scanning circuit. , 7), 0 double 2)..., output to OyitoOy(2)...

このパルス列により光電変換素子3に内含したスイッチ
ング素子を順次開閉し、2次元状に配列された個々の光
電変換素子からの信号をビデオ出力線4の上に取り出す
。光電変換素子からの信号はその上に投影された光学像
に対応するので上記動作により映像信号を取り出すこと
ができる。この種固体撮像装置では高い解像度を得るた
め500×500個程度の光電変換素子、スイッチング
素子および走査用の単位回路が必要になる。
The switching elements included in the photoelectric conversion element 3 are sequentially opened and closed by this pulse train, and signals from the individual photoelectric conversion elements arranged in a two-dimensional manner are taken out onto the video output line 4. Since the signal from the photoelectric conversion element corresponds to the optical image projected thereon, a video signal can be extracted by the above operation. This type of solid-state imaging device requires about 500×500 photoelectric conversion elements, switching elements, and scanning unit circuits to obtain high resolution.

そのため通常は高集積化が比較的容易でしかも光電変換
素子とスイッチング素子が一光化構造でできるMOS−
LSI技術を用いて製作される。第2図に固体映像IC
の殆んどの面積を占める光電変換素子の構造を示す。5
、6は水平、垂直の位置を選択するためのMOSスイッ
チングでドレンおよびソースを作る拡散層□、21と絶
縁酸化膜8を介して設けたゲート電極9、29で作られ
る。
Therefore, high integration is usually relatively easy, and MOS-
Manufactured using LSI technology. Figure 2 shows the solid-state image IC.
This shows the structure of the photoelectric conversion element that occupies most of the area. 5
, 6 are made of gate electrodes 9, 29 provided through an insulating oxide film 8 and diffusion layers □, 21 which form drains and sources by MOS switching for selecting horizontal and vertical positions.

10は垂直MOSスイッチのソースを利用した光ダイオ
ードである。
10 is a photodiode using the source of a vertical MOS switch.

MOSシフトレジスタ等を利用した走査回路の出力パル
スVox”、Voy(代)が出力線Ox(代)、Oy”
を通してMOSスイッチのゲートに同時に印加された位
置のダイオード10から入射光量に比例して放電してい
た電荷がビデオ電圧11より充電される。その時の充電
電流が負荷抵抗12を通してビデオ信号として読み出さ
れる。上記の例のように構成された撮像1Cは電子ビー
ム走査を行う従来の撮像管に比較して高い信頼性、小型
、軽量、低消費電力、低電圧駆動という固体化に伴う多
くの利点を有している。
The output pulses Vox" and Voy of a scanning circuit using a MOS shift register etc. are the output lines Ox" and Oy".
The video voltage 11 charges the electric charge that had been discharged from the diode 10 simultaneously applied to the gate of the MOS switch in proportion to the amount of incident light. The charging current at that time is read out as a video signal through the load resistor 12. The imaging 1C configured as in the above example has many advantages associated with solid-state construction, such as high reliability, small size, light weight, low power consumption, and low voltage drive compared to conventional image pickup tubes that perform electron beam scanning. are doing.

しかし、現在の撮像管に四敵する解像度を持つ撮像1C
を製作する場合には前にものべたように500×500
個程度あるいはそれ以上の光電変換素子が必要になる。
However, the imaging 1C has a resolution rivaling that of current image pickup tubes.
500 x 500 as mentioned before.
2 or more photoelectric conversion elements are required.

2個の光電変換素子を含めた光電変換素子のピツチはプ
ロセス加工の寸法精度を最大限に上げても30μm以下
に押えることは実質上不可能であり、ピツチを30μm
に見積つた場合でも全体では1.5?×1.5CTIL
のチツプサィズを持つた超大型LSIになる。
It is virtually impossible to keep the pitch of photoelectric conversion elements including two photoelectric conversion elements to 30 μm or less even if the dimensional accuracy of process processing is maximized.
Even if you estimate it, the total is 1.5? ×1.5 CTIL
It will be a super large LSI with a chip size of .

さらに現状でのピツチは50μm程度であるから500
X500個を実現する場合2.5(1−JモV!×2.5
CfL以上の巨大なチツプサイズになつてしまう。巨大
チツプは当然加工歩留りを低下させる。一方撮像1Cの
中で走査回路の領域が占める割合は500段の回路が縦
横2つの隅に配置されるのみで光電変換素子領域に軽べ
ると1/数100程度で無視できる程小さい。したがつ
て現在の撮像1Cが抱えている大きな問題点は素子間の
ピツチを縮少できるようなデバイス構造を実現すること
と感光素子の簡素化でありこれらは歩留りの向上にも寄
与する。さらにもう1つの問題は二次元状に配列された
MOSスイツチを相当な面積を占めるため、同一ピツチ
ではその分だけダイオード面積を減らすことが必要にな
る。また縦横に走る配線は当然ダイオード面上も走るた
め光の入射面積が減少する。これらは光感度の低下を招
き、信号の出力が小さくなるため信号対雑音比(S/N
比)を落とす原因となつている。したがつて、許された
大きさの中で感光面積を最大にするということは重要な
課題となる。本発明の目的は上述したごとき撮像Cの構
造を改良し1個当りの光電変換素子の占める面積が小さ
く、この面積全体が感光部として利用できる簡潔で光感
度の高い固体撮像Cを実現することである。本発明は感
光素子として多数の分離したダイオードを用いていた構
造を改め、感光面を撮像1Cの最上面に設け、感光材料
として光導電性の薄膜を用いたものである。
Furthermore, the current pitch is about 50μm, so 500μm.
When realizing X500 pieces, 2.5 (1-JMoV!×2.5
This results in a huge chip size larger than CfL. Large chips naturally lower processing yields. On the other hand, the area occupied by the scanning circuit in the image pickup 1C is negligibly small, with only 500 stages of circuits arranged in two vertical and horizontal corners, which is about 1/100 times the area of the photoelectric conversion element. Therefore, the major problems faced by the current imaging device 1C are the realization of a device structure that can reduce the pitch between elements and the simplification of photosensitive elements, which also contribute to improving yield. Yet another problem is that the two-dimensionally arranged MOS switches occupy a considerable area, so it is necessary to reduce the area of the diodes by that amount at the same pitch. Furthermore, since the wiring lines running vertically and horizontally also run on the diode surface, the incident area of light decreases. These lead to a decrease in photosensitivity and a decrease in signal output, resulting in a signal-to-noise ratio (S/N).
This is the cause of the decline in the ratio). Therefore, it is an important issue to maximize the photosensitive area within the allowed size. The purpose of the present invention is to improve the structure of the image sensor C as described above, and to realize a simple solid-state image sensor C with high photosensitivity, in which the area occupied by each photoelectric conversion element is small and the entire area can be used as a photosensitive section. It is. The present invention changes the structure of using a large number of separate diodes as photosensitive elements, provides a photosensitive surface on the uppermost surface of the imaging device 1C, and uses a photoconductive thin film as the photosensitive material.

以下本発明の構造および製造法を実施例を用いて説明す
る。
The structure and manufacturing method of the present invention will be explained below using Examples.

第3図aは本発明による固体撮像装置の断面構造である
FIG. 3a shows a cross-sectional structure of a solid-state imaging device according to the present invention.

13は例えば第2図における垂直MOSスイツチのソー
スに接続された電極、14は光導電性薄膜で電極13と
は導通するが、ゲート電極9,29等とは酸化膜8を介
して絶縁されている。
For example, 13 is an electrode connected to the source of the vertical MOS switch in FIG. There is.

15は透明導電性薄膜、16は電極13を取り出すため
の拡散層で例えば上記したように垂直MOSスイツチ6
のソースにあたる。
15 is a transparent conductive thin film, 16 is a diffusion layer for taking out the electrode 13, and for example, as mentioned above, the vertical MOS switch 6
It corresponds to the source of

第3図aにおいて、第2図と同符号の部分は、同一又は
機能的に同一の部分を示す。
In FIG. 3a, parts with the same reference numerals as those in FIG. 2 indicate the same or functionally identical parts.

すなわち、垂直MOSスイツチ6は、ゲート電極29と
ソース16、ドレイン27とから成る。
That is, the vertical MOS switch 6 consists of a gate electrode 29, a source 16, and a drain 27.

水平MOSスイツチ5は、ゲート電極9とソース27、
ドレイン7とから成る。以上の構成において、透明導電
性膜15と接地電位の間にターゲツト電圧17が印加さ
れる。
The horizontal MOS switch 5 has a gate electrode 9, a source 27,
It consists of a drain 7. In the above configuration, a target voltage 17 is applied between the transparent conductive film 15 and the ground potential.

又、第3図aの装置においては、走w回路部は第2図の
装置と同様であるため、ビデオ電圧11を抵抗12を通
して端子7に印加して良い。入射光量に応じた信号は、
電極13、及びソース16を介して、垂直MOSスイツ
チ6及び、水平MOSスイツチ5の両者が導通している
場合のみ読み出される。信号は、第2図と同様にドレイ
ン7から引出線4を介し、抵抗によつて読み出しうる。
Furthermore, in the device of FIG. 3a, the video voltage 11 may be applied to the terminal 7 through the resistor 12, since the running circuit section is the same as that of the device of FIG. The signal according to the amount of incident light is
Data is read only when both the vertical MOS switch 6 and the horizontal MOS switch 5 are conductive via the electrode 13 and source 16. The signal can be read out from the drain 7 via the lead line 4 by a resistor, as in FIG.

基板電位も第2図と同様に接地しておく。The substrate potential is also grounded as in FIG.

また、第3図bは同図aの固体撮像装置を上からみた場
合の基板面の平面図である。
Moreover, FIG. 3b is a plan view of the substrate surface when the solid-state imaging device of FIG. 3a is viewed from above.

電極13が二次元的に配列されている。電極13は、た
とえばSb2S3,CdS,AS2Se3、多結晶Si
l非晶質Si等光導電性を示す結晶性或いは非晶質の物
質からなる光導電性薄膜14を介して透明導電性電極1
5との間に容量を形成する。電極パターンは第3図bに
示すようにマトリツクス状に分離して置かれているため
、容量がマトリツクス状に配置されたことになる。この
容量は間に導電性薄膜を介しているため感光素子として
働くことになり画素を形成する。感光素子を等価回路で
表わせば、光の強度によつて電気抵抗の変わる可変抵抗
Rと容量Cで表わすことができ第4図に示したようにな
る。容量Cの大きさは電極面積Sと光電導性薄膜14の
膜厚tと誘電率εで決まりc一且十笠で表わされる。ま
た抵抗の大きさはその位置の電極面に入射する光の強度
に反比例し、光が全く当たらない場合は光伝導性薄膜の
種類にもよるが一般にR=らとなる。透明電極15には
ターゲツト電圧17(VT)が印加されているので1フ
イールドの間に光の当たらない部分の容量はそのままの
ビデオ電圧Vを保持する。
Electrodes 13 are arranged two-dimensionally. The electrode 13 is made of, for example, Sb2S3, CdS, AS2Se3, polycrystalline Si.
A transparent conductive electrode 1 is formed through a photoconductive thin film 14 made of a crystalline or amorphous substance exhibiting photoconductivity such as amorphous Si.
A capacitance is formed between 5 and 5. Since the electrode patterns are separated and arranged in a matrix as shown in FIG. 3b, the capacitors are arranged in a matrix. Since this capacitor has a conductive thin film in between, it functions as a photosensitive element and forms a pixel. If the photosensitive element is represented by an equivalent circuit, it can be represented by a variable resistance R whose electrical resistance changes depending on the intensity of light and a capacitance C, as shown in FIG. The size of the capacitance C is determined by the electrode area S, the thickness t of the photoconductive thin film 14, and the dielectric constant ε, and is expressed by c1 and 10. Further, the magnitude of the resistance is inversely proportional to the intensity of light incident on the electrode surface at that position, and when no light hits the electrode surface, generally R = 0, although it depends on the type of photoconductive thin film. Since a target voltage 17 (VT) is applied to the transparent electrode 15, the capacitance of the portion not exposed to light during one field maintains the same video voltage V.

光の当たる部分はその強度に応じて抵抗Rが小さくなる
ので、容量Cに貯えられる電圧は光量に応じて大きくな
る。1フイールド期間に充電された電圧をVTとすれば
、選択の際第2図における説明と同様の動作により、I
V−V′TIに相当した放電(或いは充電)電流が流れ
放電(或いは次電)が完了すると電極15は再びVにり
セツトされる。
Since the resistance R of the portion exposed to light decreases according to its intensity, the voltage stored in the capacitor C increases according to the amount of light. If the voltage charged during one field period is VT, I
A discharge (or charge) current corresponding to V-V'TI flows, and when the discharge (or next charge) is completed, the electrode 15 is reset to V again.

なお、ターゲツト印加電圧の正負の違いにより、信号読
み出し側に蓄積されるキヤリアの種類(電子又は、正孔
)によつて充電、放電の差異を生じる。この時の放電(
或いは充電)電流がこのフイールドに対応したビデオ信
号となる。第3図bに示した電極マトリツクス18は走
査回路を含めて従来と全く同様のMOSプロセスで製作
すればよく、例えば同図では説明の便宜上、従来例(第
2図)の垂直MOSスイツチのソースに電極13を接続
する構造を紹介したが、この他にもMOSスイツチの配
置、走査の方法により種種の構造を取り得る。
Note that due to the difference in positive and negative voltages applied to the target, charging and discharging differ depending on the type of carrier (electrons or holes) accumulated on the signal readout side. The discharge at this time (
(or charging) current becomes a video signal corresponding to this field. The electrode matrix 18 shown in FIG. 3b, including the scanning circuit, can be manufactured using the same MOS process as the conventional one. Although the structure in which the electrodes 13 are connected to each other has been introduced, various other structures can be obtained depending on the arrangement of the MOS switches and the scanning method.

光導電性薄膜14は電極の上に蒸着法或はスパツタ法等
で一面に付着すればよく、膜厚は固体撮像装置に要求さ
れる感度および必要な容量値に応じて蒸着時間等を制御
すればよい。前述した光導電性材料のなかでシリコンは
、次の理由で極めて好ましい材料である。
The photoconductive thin film 14 may be deposited all over the electrode by a vapor deposition method, a sputtering method, etc., and the film thickness should be controlled by controlling the vapor deposition time, etc. according to the sensitivity and capacitance required for the solid-state imaging device. Bye. Among the photoconductive materials mentioned above, silicon is a highly preferred material for the following reasons.

(1)耐熱性に優れている。(1) Excellent heat resistance.

温度上昇に伴なう結晶化反応が生じにくい。(2)走査
回路を構成する半導体基板は一般にシリコン基板が使用
されるが、光導電材料にシリコンを用いるとこの基板と
同種、同系統の材料であり装置の信頼性を高め得る。
Crystallization reactions are less likely to occur as the temperature rises. (2) A silicon substrate is generally used as the semiconductor substrate constituting the scanning circuit, but if silicon is used as the photoconductive material, it is a material of the same type and family as the substrate, and the reliability of the device can be improved.

(3)前述に併記したたとえばSb2S3,CdSlA
s2se3等の如く公害物質を含有せず、公害問題を生
じない。
(3) For example, Sb2S3, CdSlA mentioned above
It does not contain polluting substances such as s2se3 and does not cause pollution problems.

透明導電性薄膜15はSnO2,In2O3等を蒸着法
スパツタ法等によりやはり光導電性薄膜の上に一面に付
着すればよく、非常に簡単に製作できる。
The transparent conductive thin film 15 can be manufactured very easily by simply depositing SnO2, In2O3, etc. on the entire surface of the photoconductive thin film by vapor deposition, sputtering, or the like.

本発明の固体撮像装置では感光面が不透明電極13の上
側にある。
In the solid-state imaging device of the present invention, the photosensitive surface is above the opaque electrode 13.

つまり感光素子がスイツチや配線等と同一平面上にない
ため感光素子の分だけ面積が減少する、すなわち光変換
素子のピツチが縮少される。しかも感光面が不透明電極
の上側にあるため入射光は電極にさえぎられることなく
有効に感光面に入射する。ピツチの縮少は解像度の向上
とともにチツプサイズの縮少つまりは歩留りの向上につ
ながり、入射光が有効に利用できることは光感度の向上
につながる。また、本発明の如く、透光性電極側にター
ゲツト電圧が印加される如く装置を構成することにより
、次の如き利点が生ずる。
In other words, since the photosensitive element is not on the same plane as the switch, wiring, etc., the area is reduced by the amount of the photosensitive element, that is, the pitch of the light conversion element is reduced. Moreover, since the photosensitive surface is above the opaque electrode, the incident light is effectively incident on the photosensitive surface without being blocked by the electrode. A reduction in pitch leads to an improvement in resolution and a reduction in chip size, which in turn leads to an improvement in yield, and the effective use of incident light leads to an improvement in photosensitivity. Furthermore, by configuring the device so that a target voltage is applied to the transparent electrode side as in the present invention, the following advantages arise.

透光性電極側にターゲツト電圧を印加することにより、
光導電体膜内に加わる実効的な電界が高くなる。
By applying a target voltage to the transparent electrode side,
The effective electric field applied within the photoconductor film becomes higher.

この結果、(1)光導電体膜内で発生するキヤリアの走
行時間が短かくなり、再結合で消滅するキヤリアが減少
する。
As a result, (1) the travel time of carriers generated within the photoconductor film is shortened, and the number of carriers that disappear due to recombination is reduced.

従つて、光感度が高くなる。(2)容量Cに貯えること
のできる電荷量が大きくなるため、ダイナミツクレンジ
が高くなる。
Therefore, the photosensitivity becomes high. (2) Since the amount of charge that can be stored in the capacitor C increases, the dynamic range increases.

蓄積可能な最大電荷量(QMAX)はQMAX=C・(
VT−VV) で表わされるが、VTを大ならしめることができる。
The maximum amount of charge that can be stored (QMAX) is QMAX=C・(
VT-VV), but it is possible to increase VT.

(3)焼付けが減少する。(3) Burning is reduced.

以上実施例を用いて詳細に説明したように本発明の撮像
1Cはサイズが小型で歩留りが高く、光感度が高い、解
像度が高い等その実用上の価値は極めて大きい。
As described above in detail using the embodiments, the imaging device 1C of the present invention is small in size, has a high yield, has high photosensitivity, high resolution, and has extremely great practical value.

又、ビデオ電圧は必ずしも必要ではないが、これを使用
することにより次の如き利点を生ずる。(1)出力線に
寄生する浮遊容量を1/3〜1/5に減少させることが
出来、解像度の劣化防止およびランダム雑音の低減を図
り得る。
Further, although a video voltage is not necessarily required, its use brings about the following advantages. (1) Stray capacitance parasitic to the output line can be reduced to 1/3 to 1/5, thereby preventing deterioration of resolution and reducing random noise.

(2)固体撮像素子で映した画面をみると、白や黒の薄
い縦縞が見られる。
(2) When looking at a screen captured by a solid-state image sensor, thin vertical stripes of white and black can be seen.

この雑音は画面上に固定して見えるので人間の目につき
易く固定パターン雑音(FixedPatternNO
ise)と呼ばれている。ビデオ電圧の印加によつて、
この固定パターン雑音を減少せしめ得る。なお実施例で
は走査回路および電極マトリツタスの製作にMOS電界
効果トランジスタを用いて説明したが、本発明の趣旨を
逸脱しない範囲で接合型電介効果トランジスタ、バィボ
ーラ型トランジスタCCD(ChargeCOuple
dDerice)SBBD(BucketBrigad
eDerice)、或いはCID(ChargeInj
ectiOnDerice)等を構成要素として走査回
路を構成できることはもちろんである。
This noise appears fixed on the screen, so it is easily noticeable to humans and is called fixed pattern noise (FixedPatternNO).
ise). By applying video voltage,
This fixed pattern noise can be reduced. In the embodiment, a MOS field effect transistor was used to fabricate the scanning circuit and the electrode matrices, but a junction type field effect transistor, a bibolar type transistor CCD (Charge COuple
dDerice)SBBD(BucketBrigad)
eDerice) or CID (ChargeInj)
Of course, a scanning circuit can be constructed using components such as ectiOnDerice).

さらに本発明では感光素子の材料として光伝導性物質を
用いたがその他種々の感光物質を利用できることはもち
ろんである。
Further, in the present invention, a photoconductive substance is used as the material of the photosensitive element, but it goes without saying that various other photosensitive substances can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体撮像装置の構成、第2図は従来の光
電変換素子の断面構造、第3図aは本発明による固体撮
像装置の構造、同図bは同図aを上から見た電極パター
ンの平面図、第4図は本発明の光電変換素子を説明する
等価回路図である。 1・・・・・・水平走査回路、2・・・・・・垂直走査
回路、3・・・・・・光電変換素子、4・・・・・・ビ
デオ出力線、CPx,CPy・・・・・・クロツクパル
ス、Vsx,sy・・・・・・入力パルス、0x(N)
,0y(N)・・・・・・走査回路の出力線、5・・・
・・・水平MOSスイツチ、6・・・・・・垂直MOS
スイツチ、7,27・・・・・・ドレインおよびソース
拡散層、8・・・・・・絶縁酸化膜、9,29・・・・
・・ゲート電極、10・・・・・・光ダイオード、11
・・・・・・ビデオ電圧、12・・・・・・負荷抵抗、
13・・・・・・電極、14・・・・・・光伝導性薄膜
、15・・・・・・透明導伝性薄膜、16・・・・・・
電極取り出し用拡散層、17・・・・・・ターゲツト電
圧、18・・・・・・電極の二次元状パターン、S・・
・・・・電極の面積、C・・・・・・容量、R・・・・
・・可変抵抗。
Fig. 1 shows the configuration of a conventional solid-state imaging device, Fig. 2 shows the cross-sectional structure of a conventional photoelectric conversion element, Fig. 3a shows the structure of the solid-state imaging device according to the present invention, and Fig. 3b shows Fig. FIG. 4 is an equivalent circuit diagram illustrating the photoelectric conversion element of the present invention. 1... Horizontal scanning circuit, 2... Vertical scanning circuit, 3... Photoelectric conversion element, 4... Video output line, CPx, CPy... ...Clock pulse, Vsx, sy...Input pulse, 0x(N)
,0y(N)... Output line of the scanning circuit, 5...
...Horizontal MOS switch, 6...Vertical MOS
Switch, 7, 27...Drain and source diffusion layer, 8...Insulating oxide film, 9, 29...
...Gate electrode, 10...Photodiode, 11
...Video voltage, 12...Load resistance,
13... Electrode, 14... Photoconductive thin film, 15... Transparent conductive thin film, 16...
Diffusion layer for electrode extraction, 17...Target voltage, 18...Two-dimensional pattern of electrodes, S...
... Electrode area, C ... Capacity, R ...
...Variable resistance.

Claims (1)

【特許請求の範囲】 1 半導体基体に1画素に対応して設けられた少なくと
も1つの半導体スイッチと、該スイッチの1端子側に電
気的に接続され画素毎に設けられた電極と、該電極上に
設けられた光導電膜と、該光導電膜上に設けられた透光
性電極とを有し、該透光性電極にターゲット電圧を印加
し、かつ、上記スイッチの他端子を介して信号を取り出
すことを特徴とする固体撮像装置。 2 前記光導電膜がシリコン光導電膜なることを特徹と
する特許請求の範囲第1項記載の固体撮像装置。
[Scope of Claims] 1. At least one semiconductor switch provided on a semiconductor substrate corresponding to one pixel, an electrode electrically connected to one terminal side of the switch and provided for each pixel, and on the electrode The switch has a photoconductive film provided on the switch, and a transparent electrode provided on the photoconductive film, and a target voltage is applied to the transparent electrode, and a signal is applied via the other terminal of the switch. A solid-state imaging device characterized by taking out. 2. The solid-state imaging device according to claim 1, wherein the photoconductive film is a silicon photoconductive film.
JP49076372A 1974-07-05 1974-07-05 solid-state imaging device Expired JPS5926154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49076372A JPS5926154B2 (en) 1974-07-05 1974-07-05 solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49076372A JPS5926154B2 (en) 1974-07-05 1974-07-05 solid-state imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP57047202A Division JPS57181278A (en) 1982-03-26 1982-03-26 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS5110715A JPS5110715A (en) 1976-01-28
JPS5926154B2 true JPS5926154B2 (en) 1984-06-25

Family

ID=13603502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49076372A Expired JPS5926154B2 (en) 1974-07-05 1974-07-05 solid-state imaging device

Country Status (1)

Country Link
JP (1) JPS5926154B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551152A (en) * 1978-06-19 1980-01-07 Matsushita Electric Ind Co Ltd Method of fabricating photoconducting element
JPS54147730A (en) * 1978-05-12 1979-11-19 Victor Co Of Japan Ltd Color television camera using solidstate pick up element
FR2433871A1 (en) 1978-08-18 1980-03-14 Hitachi Ltd SEMICONDUCTOR IMAGE FORMING DEVICE
JPS5556671A (en) * 1978-10-20 1980-04-25 Matsushita Electric Ind Co Ltd Photoelectric converter
FR2469805A1 (en) * 1979-11-09 1981-05-22 Thomson Csf MATRIX FOR DETECTION OF ELECTROMAGNETIC RADIATION AND RADIOLOGICAL IMAGE ENHANCER COMPRISING SUCH A MATRIX
JPS56103477A (en) * 1980-01-21 1981-08-18 Hitachi Ltd Photoelectric conversion element
JPS56129379A (en) * 1980-03-12 1981-10-09 Matsushita Electric Ind Co Ltd Solid image-pickup element and manufacture
JPS58177086A (en) * 1982-04-10 1983-10-17 Sony Corp Solid-state image pickup element
JPH07115184A (en) * 1993-08-24 1995-05-02 Canon Inc Layer-built solid-state image pickup device and its manufacture
JPH07335935A (en) * 1994-06-07 1995-12-22 Canon Inc Manufacture of optoelectric transducer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445589A (en) * 1964-07-03 1969-05-20 Emi Ltd Electrical scanning apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3445589A (en) * 1964-07-03 1969-05-20 Emi Ltd Electrical scanning apparatus

Also Published As

Publication number Publication date
JPS5110715A (en) 1976-01-28

Similar Documents

Publication Publication Date Title
US5396072A (en) X-ray image detector
US5498880A (en) Image capture panel using a solid state device
US7022997B2 (en) Photoelectric converter, its driving method, and system including the photoelectric converter
US5619049A (en) CCD-type solid state image pickup with overflow drain structure
US3826926A (en) Charge coupled device area imaging array
JP2844733B2 (en) Photosensitive device with photosensitive dot signal amplification
JPH0245395B2 (en)
US6172369B1 (en) Flat panel detector for radiation imaging with reduced trapped charges
JPS6156912B2 (en)
US4223330A (en) Solid-state imaging device
JPS5926154B2 (en) solid-state imaging device
US5998794A (en) Prevention of photoelectric conversion layer contamination in an imaging device
US4974043A (en) Solid-state image sensor
JPH04281681A (en) X-y address type solid-state image pickup device
JP3135309B2 (en) Photoelectric conversion device and information processing device
JPS6272282A (en) Video camera
JP4314255B2 (en) Conversion device and X-ray detection system
JP2000156491A (en) Infrared solid state image sensor
JPS6042666B2 (en) solid state imaging device
JPS6272281A (en) Video camera
Ozawa et al. Recent development in amorphous silicon image sensor
JPS6057746B2 (en) solid-state imaging device
US11843011B2 (en) Pixel and global shutter image sensor
JP2570054B2 (en) Solid-state image sensor
Baji et al. Solid-State Color Image Sensor Using Hydrogenated Amorphous Silicon