JPS5925736B2 - Improved method for manufacturing heat-treated glass plates - Google Patents

Improved method for manufacturing heat-treated glass plates

Info

Publication number
JPS5925736B2
JPS5925736B2 JP11624482A JP11624482A JPS5925736B2 JP S5925736 B2 JPS5925736 B2 JP S5925736B2 JP 11624482 A JP11624482 A JP 11624482A JP 11624482 A JP11624482 A JP 11624482A JP S5925736 B2 JPS5925736 B2 JP S5925736B2
Authority
JP
Japan
Prior art keywords
glass plate
heat
treated
cooling
treated glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11624482A
Other languages
Japanese (ja)
Other versions
JPS598631A (en
Inventor
和哉 大庭
雅之 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11624482A priority Critical patent/JPS5925736B2/en
Publication of JPS598631A publication Critical patent/JPS598631A/en
Publication of JPS5925736B2 publication Critical patent/JPS5925736B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0417Controlling or regulating for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/012Tempering or quenching glass products by heat treatment, e.g. for crystallisation; Heat treatment of glass products before tempering by cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/044Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】 本発明は、ガラス板にクラックが入った時にもクラック
が自走しないとともに耐風圧強度が充分で、且つ熱割れ
しない高層ビルの窓用として最適な熱処理ガラスを製造
する方法に関するものである。
[Detailed Description of the Invention] The present invention manufactures heat-treated glass that does not cause cracks to propagate even when a glass plate cracks, has sufficient wind pressure resistance, and does not crack due to heat, and is ideal for use in windows of high-rise buildings. It is about the method.

例えば、高層ビルにおいては、窓ガラス板の耐風圧向上
を計るため、10〜20朋程度の特厚のガラス板が使用
されている。
For example, in high-rise buildings, extra-thick glass plates of about 10 to 20 mm are used to improve the wind pressure resistance of window glass plates.

この様な特厚のガラス板を使用すると、重量が著るしく
増大するという欠点があるとともに、板厚の厚い熱線吸
収ガラスや着色コートガラス板を使用した場合には、特
に熱割れの危険性が高くなるという欠点がある。
Using such extra-thick glass plates has the disadvantage of significantly increasing weight, and when using thick heat-absorbing glass or colored coated glass plates, there is a particular risk of thermal cracking. The disadvantage is that it is expensive.

軽量化対策、熱割れ防止対策のために風冷強化ガラス板
を使用することも可能であるが、風冷強化ガラス板は破
損時細かい多くの破片になるため、高層ビルに風冷強化
ガラス板を使用すると破損した時高層ビルの窓からガラ
ス板の破片が降り落ちるという危険があり好ましくない
Although it is possible to use air-cooled tempered glass sheets to reduce weight and prevent heat cracking, air-cooled tempered glass sheets break into many small pieces when broken, so air-cooled tempered glass sheets are not used in high-rise buildings. It is undesirable to use glass panels because there is a risk that glass fragments may fall from the windows of high-rise buildings when they break.

又強化ガラス板の一種として表面圧縮応力が高く、且つ
破片数密度の小さい化学強化ガラス板もあるが、この化
学強化ガラス板は傷がついた場合の強度低下が著るしい
とともに強化処理工程に長時間を要するため実用に不適
である。
There is also a chemically strengthened glass sheet that has a high surface compressive stress and a low fragment number density as a type of tempered glass sheet, but this chemically strengthened glass sheet has a significant decrease in strength when scratched and is difficult to process during the strengthening treatment process. It is not suitable for practical use because it requires a long time.

更に10m/m以上の特厚ガラスにおいては自然放冷で
さえ手強化硝子の製造ができないので従来前記の如き改
良されたガラスの使用例がなかった。
Furthermore, since it is not possible to manufacture hand-strengthened glass with special thickness of 10 m/m or more even by allowing it to cool naturally, there has been no example of the use of the above-mentioned improved glass.

先に、本出願人は、従来の強化ガラス板とは異なり、ガ
ラス板にクラックが入った時にもクラックが自走せず、
かつ耐風圧強度が充分で熱割れしない高層ビルの窓ガラ
ス用あるいはスパンドレル用として最適な熱処理ガラス
、即ち板厚が5〜15mmの熱処理ガラス板であって、
その熱処理ガラス板の中央引張応力σtが85kg/c
f?L〜200kg/iの範囲にあり、かつ、その表面
の圧縮応力σCと中央引張応力σtとの比σC/σtが
1.5〜3.0の範囲にある断面応力分布を持つ熱処理
ガラス板を提供した。
First, the applicant has discovered that, unlike conventional tempered glass plates, even when a crack occurs in the glass plate, the crack does not propagate by itself.
A heat-treated glass that has sufficient wind pressure strength and does not crack under heat and is suitable for use in window glasses or spandrels of high-rise buildings, that is, a heat-treated glass plate with a thickness of 5 to 15 mm,
The central tensile stress σt of the heat-treated glass plate is 85 kg/c
f? A heat-treated glass plate having a cross-sectional stress distribution in the range of L ~ 200 kg/i and a ratio σC/σt of the compressive stress σC on the surface and the central tensile stress σt in the range 1.5 to 3.0. provided.

本発明は、かかる熱処理ガラス板の工業的な製造方法を
提供することを目的として研究を重ねた結果得られたも
のであり、その要旨は、板厚5mm〜15 mmのガラ
ス板を6008C〜660℃に加熱した後、このガラス
板を該ガラス板の板厚をh(m戴冷却速度をk(’C/
秒)とした時、hk≧45となる様な冷却能を与えて1
〜20秒間1次風冷してガラス板の表面温度を450〜
560°Cまで更に好ましくは500〜520℃に低下
させ、次いでこのガラス板を100〜500℃の温度、
更に好ましくは300〜400℃の温度に保持された対
向した加熱板間に通して450’C以下まで徐冷し、そ
の後更に2次風冷し、この処理されたガラス板の中央引
張応力σtが85〜200kg/iの範囲となり、かつ
その表面圧縮応力σCと中央引張応力σtとの比σC/
σtが1.5〜3.0の範囲となる様に制御したことを
特徴とする改良された熱処理ガラス板の製法に関するも
のである。
The present invention was obtained as a result of repeated research aimed at providing an industrial manufacturing method for such heat-treated glass plates. After heating the glass plate to ℃, the thickness of the glass plate is h(m) and the cooling rate is k('C/
sec), by providing a cooling capacity such that hk≧45.
- Primary air cooling for 20 seconds to bring the surface temperature of the glass plate to 450 -
560°C, more preferably 500-520°C, and then the glass plate is heated to a temperature of 100-500°C,
More preferably, the glass plate is passed between opposed heating plates maintained at a temperature of 300 to 400°C and slowly cooled to 450'C or less, and then further air-cooled for a second time, so that the central tensile stress σt of the treated glass plate is The range is 85 to 200 kg/i, and the ratio of the surface compressive stress σC to the central tensile stress σt is σC/
The present invention relates to an improved method for manufacturing a heat-treated glass plate characterized in that σt is controlled to be in the range of 1.5 to 3.0.

ソーダ・ライムガラスよりなるガラス板を軟化点温度域
(600℃〜700℃)まで加熱した後直ちに、このガ
ラス板の両面に空気を吹き付けて急冷して強化した従来
の普通の強化ガラス板は、100 ’Okg/cit〜
1500 kg/antの表面圧縮応力と、その断面方
向の中心部に表面圧縮応力の約l/2の引張応力が発生
し、その断面応力分布は第1図に示した様になる。
Conventional ordinary tempered glass plates are made by heating a glass plate made of soda-lime glass to its softening point (600°C to 700°C) and then immediately blowing air onto both sides of the glass plate to quickly cool it and strengthen it. 100'Okg/cit~
A surface compressive stress of 1500 kg/ant and a tensile stress of approximately 1/2 of the surface compressive stress are generated at the center in the cross-sectional direction, and the cross-sectional stress distribution is as shown in FIG.

そしてこの強化ガラス板が破壊した時はガラス板に発生
したクラックが自走し、そして上記中央引張応力の大き
さによって一義的に決まる破砕密度、例えば40〜20
0個15C1rL角をもって細かく割れてしまう。
When this tempered glass plate breaks, the cracks generated in the glass plate propagate by themselves, and the fracture density is uniquely determined by the magnitude of the central tensile stress, for example, 40 to 20.
0 pieces 15C1rL It breaks into small pieces with an angle.

又、半強化ガラス板は、300〜600 kg/iの表
面圧縮応力と250〜400kg/dの中央引張応力σ
tと、1.5未満のσC/σtの比とを有し、その断面
応力分布を第2図に示した様になり、この半強化ガラス
板が破壊した場合には、細かい破片をもって割れないも
のの、破壊時ガラス板に発生したクラックは自走し、ガ
ラス板の端部まで及んでしまう。
In addition, the semi-strengthened glass plate has a surface compressive stress of 300 to 600 kg/i and a central tensile stress σ of 250 to 400 kg/d.
t and a ratio of σC/σt of less than 1.5, and its cross-sectional stress distribution is as shown in Figure 2, so that when this semi-strengthened glass plate breaks, it does not break with small pieces. However, the cracks that occur in the glass plate at the time of destruction propagate by themselves and extend to the edges of the glass plate.

又、化学強化ガラス板は、1000 kg/i〜300
0kg/CI?Lの表面圧縮応力と10〜60kg/d
の中央引張応力とを有し、その断面応力分布は、第3図
に示した様になり、この化学強化ガラス板が破壊した場
合には、風冷強化ガラス板とは異なリフラックが自走す
ることはないが耐スクラッチ性に劣り実用性がない。
Also, chemically strengthened glass plates have a weight of 1000 kg/i to 300 kg/i
0kg/CI? Surface compressive stress of L and 10 to 60 kg/d
It has a central tensile stress of Although this is not a problem, it has poor scratch resistance and is not practical.

これに対し、本発明により製造される熱処理ガラス板は
、その中央引張応力が85〜200kg/dの間に低く
コントロールされ、かつその表面圧縮応力σCと中央引
張応力σtとの比σC/σtが1.5〜3.0の範囲に
コントロールされて表面圧縮応力も127〜600 k
g/cyrtの範囲、更に好ましくは250〜350
kg/iに低く抑えられ、第4図に示した様な断面応力
分布にされているので、この熱処理ガラス板にクラック
が入った時その破壊線が自走せず、細かい破片をもって
割れない。
On the other hand, the heat-treated glass plate manufactured according to the present invention has a central tensile stress controlled to be low between 85 and 200 kg/d, and a ratio σC/σt of the surface compressive stress σC and the central tensile stress σt. The surface compressive stress is controlled within the range of 1.5 to 3.0 and is 127 to 600 k.
g/cyrt range, more preferably 250-350
kg/i and has a cross-sectional stress distribution as shown in Figure 4, so when a crack occurs in this heat-treated glass plate, the fracture line does not propagate by itself and it does not break into small pieces.

しかも、この熱処理ガラス板は板厚5〜151mを有し
、かつ127 kg/=〜600 kg/cyyt、更
に好ましくは250〜350kg/iの表面圧縮応力を
持っているので耐風圧強度は、同一厚みの生板の2倍以
上で用土充分な強度であり、かつ熱割れすることもない
Furthermore, this heat-treated glass plate has a thickness of 5 to 151 m and a surface compressive stress of 127 kg/= to 600 kg/cyyt, more preferably 250 to 350 kg/i, so the wind pressure strength is the same. It is more than twice as thick as a raw board, has sufficient strength for use in soil, and does not crack due to heat.

例えば、板厚が6mmで中央引張応力σtが250kg
/d、表面圧縮応力σcが500ky/i(a c/σ
t−2)の熱処理ガラス板は、中央引張応力が高すぎる
ためにガラス板にクラックが入った場合、クラックが自
走するとともに破砕片が細かくなって、第5図に示す様
な破砕パターンとなり、破砕片が窓から落下する危険性
が高くなって好ましくない。
For example, if the plate thickness is 6 mm, the central tensile stress σt is 250 kg.
/d, surface compressive stress σc is 500ky/i (a c/σ
In the case of the heat-treated glass plate shown in t-2), if the central tensile stress is too high and the glass plate cracks, the crack propagates on its own and the fragments become finer, resulting in a fracture pattern as shown in Figure 5. This is undesirable as there is a high risk of debris falling from the window.

又、板厚が8mmで中央引張応力σtが300kg/c
r?L、表面圧縮応力σcが580kg/cr7L(σ
C/σt=1.93)の熱処理ガラス板も同様に中央引
張応力が高すぎるためにガラス板にクラックが入った場
合、クラックが自走するとともに破砕片が細かくなって
第6図に示す様な破砕パターンとなリ、破砕片が窓から
落下する危険性が高くなって好ましくない。
In addition, the plate thickness is 8 mm and the central tensile stress σt is 300 kg/c.
r? L, surface compressive stress σc is 580 kg/cr7L (σ
Similarly, if a heat-treated glass plate with C/σt = 1.93) cracks because the central tensile stress is too high, the crack will propagate and the fragments will become finer, as shown in Figure 6. This is undesirable because it increases the risk of fragments falling out of the window.

又、板厚が12m7ILで中央引張応力σtが、250
kg/ffl、表面圧縮応力σcが380kg/ff1
(a c/σt=1.52)の熱処理ガラス板も同様に
中央引張応力が高すぎるためにガラス板にクラックが入
った場合、クラックが自走するとともに破砕片が細かく
なって第7図に示す様な破砕パターンとなり、破砕片が
窓から落下する危険性が高くなって好ましくない。
Also, when the plate thickness is 12m7IL, the central tensile stress σt is 250
kg/ffl, surface compressive stress σc is 380 kg/ff1
Similarly, when a heat-treated glass plate with (a c/σt = 1.52) cracks because the central tensile stress is too high, the crack propagates on its own and the fragments become finer, as shown in Figure 7. This results in a fracture pattern as shown in the figure, which is undesirable as it increases the risk of the fractured pieces falling out of the window.

又板厚が6mmで、中央引張応力atが60ky/i、
表面圧縮応力σcが120に9/=(即ちσC/σt=
2.0)のガラス板は中央引張応力が低いためガラス板
にクラックが入った場合クラックは自走しないが耐風圧
強度が低く好ましくない。
Also, the plate thickness is 6 mm, the central tensile stress at is 60 ky/i,
The surface compressive stress σc is 120 to 9/= (i.e. σC/σt=
The glass plate 2.0) has a low central tensile stress, so if a crack occurs in the glass plate, the crack will not propagate by itself, but the wind resistance strength is low, which is not preferable.

一方本発明により製造される熱処理ガラス板例えば実施
例1〜7のサンプルの熱処理ガラス板の破砕パターンは
それぞれ第8〜14図の様になり、ガラス板にクラック
が入った場合クラックの自走が抑えられ破壊線が何本も
ガラス板の一端から他端まで入ることがなく、窓からガ
ラス板の破砕片が落下するのを防ぐことができる。
On the other hand, the fracture patterns of the heat-treated glass plates manufactured according to the present invention, for example, the samples of Examples 1 to 7, are as shown in Figures 8 to 14, respectively, and when a crack occurs in the glass plate, the crack does not propagate by itself. This prevents many broken lines from entering from one end of the glass plate to the other, and prevents broken pieces of the glass plate from falling from the window.

又、熱割れ防止及び風圧破壊防止に要求される表面圧縮
応力127kg/cWrL以上、特に好ましくは250
kg/crttより高い表面圧縮応力を有しているので
、熱割れする危険性が少く、又耐風圧強度も充分である
In addition, the surface compressive stress required to prevent thermal cracking and wind pressure fracture is 127 kg/cWrL or more, particularly preferably 250 kg/cWrL.
Since it has a surface compressive stress higher than kg/crtt, there is little risk of thermal cracking, and it also has sufficient wind pressure resistance.

なお、ガラス板が割れる時、クラックの自走が抑えられ
て破壊線(ヒビ)がガラスの一辺から他辺まで及ばない
様にされたものが窓からガラス板の破砕片が落下する危
険性が少なく好ましいが、ガラス板の一辺から他辺まで
及ぶ破壊線(ヒビ)が一本程度あっても窓からの破砕片
の落下の危険性が実際土中ないので、この種の一本程度
の破壊線(ヒビ)の存在は、本発明により製造された熱
処理ガラスの破砕パターンとして許される。
In addition, when a glass plate breaks, the self-propagation of the crack is suppressed so that the fracture line (crack) does not extend from one side of the glass to the other, so there is a risk of broken pieces of the glass plate falling from the window. Although it is preferable to have a small number of broken lines (cracks) extending from one side of the glass plate to the other, there is actually no danger of broken pieces falling from the window into the ground, so this type of breakage of about one line is not recommended. The presence of lines (cracks) is acceptable as a fracture pattern in the heat treated glass produced according to the present invention.

例えは第13図に示された様な破砕パターンは許される
For example, a fracture pattern as shown in FIG. 13 is permitted.

次に、本発明の熱処理ガラス板の製法の具体例について
説明する。
Next, a specific example of the method for manufacturing a heat-treated glass plate of the present invention will be described.

第1図は本発明の熱処理ガラス板を製造するために使用
される一具体例の装置を示したものであり、図において
1は熱処理されるガラス板、2はローラーバース、3は
ガラス板の搬送ロール、4はガラス板の加熱装置、5は
対向して設けられた第1の冷却吹口、6は対向して設け
られた加熱板、7は対向して設けられた第2の冷却吹口
を示す。
FIG. 1 shows a specific example of the apparatus used for producing the heat-treated glass plate of the present invention. In the figure, 1 is the glass plate to be heat-treated, 2 is the roller berth, and 3 is the glass plate. A conveyance roll, 4 a heating device for the glass plate, 5 a first cooling nozzle provided oppositely, 6 a heating plate provided oppositely, and 7 a second cooling nozzle provided oppositely. show.

上記ガラス板1は、ローラーバース内を搬送ローラーに
より水平に搬送しながら、あるいは水平に摺動しながら
ガラス板を熱処理するのに充分な温度まで、例えば60
0〜660°Cまで加熱される。
The glass plate 1 is heated to a temperature sufficient to heat-treat the glass plate while being horizontally conveyed by a conveyor roller or sliding horizontally in a roller berth, for example at 60°C.
Heated from 0 to 660°C.

ローラーバース3から取出されたガラス板は、ローラー
バースの出口に隣接して設けられた冷却空気を吹き出す
第1の冷却吹口5の間に移動され、この第1の冷却吹口
5がら空気をガラス板の板厚・hmm、冷却速度・K0
C/secとしたときhK≧45となる様な冷却能を与
えて1〜20秒間吹き付けてガラス板をその表面温度が
450〜560°C好ましくは500〜520°Cにな
るまで冷却し、次いで100°C〜500℃、特に好ま
しくは300°C〜400°Cの温度を有する加熱板間
に上記ガラス板を移動させ、この加熱板間で450℃以
下好ましくは400°C以下まで徐冷し、次いで加熱板
間から取出して第2の冷却吹口間に移動させ、この第2
の冷却吹口間でガラス板に空気を吹き付けて更に冷却し
てガラス板温か100〜300°Cまで低下したならば
、第2の冷却吹口から取出して所定の応力値及び応力分
布をもった熱処理ガラス板とする。
The glass plate taken out from the roller berth 3 is moved between a first cooling outlet 5 provided adjacent to the outlet of the roller berth that blows out cooling air, and air is blown from the first cooling outlet 5 to the glass plate. Plate thickness/hmm, cooling rate/K0
The glass plate is cooled down to a surface temperature of 450 to 560°C, preferably 500 to 520°C by blowing for 1 to 20 seconds with a cooling power such that hK≧45 when expressed as C/sec, and then The glass plate is moved between heating plates having a temperature of 100°C to 500°C, particularly preferably 300°C to 400°C, and slowly cooled between the heating plates to 450°C or less, preferably 400°C or less. , then taken out from between the heating plates and moved between the second cooling outlets, and this second
When the glass plate is further cooled by blowing air between the cooling nozzles and the temperature of the glass plate has decreased to 100 to 300°C, it is taken out from the second cooling nozzle and the heat-treated glass is heated to have a predetermined stress value and stress distribution. Let it be a board.

本発明において、所定の表面圧縮応力、中央引張応力、
及び断面応力分布を得るため、上記した600〜660
°Cまでのガラス板の加熱、hK≧45の冷却能と1〜
20秒間の第1次冷却、第1次冷起による450〜56
0°Cまでの冷却、100〜500°Cの加熱板間での
ガラス板温450℃以下までの徐冷及びこれら条件の組
み合せが重要である。
In the present invention, predetermined surface compressive stress, central tensile stress,
and 600 to 660 as described above to obtain the cross-sectional stress distribution.
Heating of glass plate up to °C, cooling capacity of hK≧45 and 1~
20 seconds of primary cooling, 450-56 due to primary cooling
Cooling to 0°C, slow cooling between heating plates of 100 to 500°C until the glass plate temperature reaches 450°C or less, and a combination of these conditions are important.

前述した本発明の熱処理ガラス板の製法は、ローラーバ
ースを利用したものであるが、この方法に限らず、ガス
バースを利用してガラス板を水平に搬送しながら加熱し
、ガスバースの出口から出た直後、加熱ガラス板を熱処
理する方法、あるいはガラス板を吊手により吊下げて搬
送しながら加熱炉内で加熱し、この加熱炉の出口から出
た直後、加熱ガラス板を熱処理する方法などによっても
同様に製造することができる。
The method for manufacturing the heat-treated glass plate of the present invention described above uses a roller berth, but is not limited to this method. Alternatively, the heated glass plate may be heated in a heating furnace while being suspended from a hanger while being transported, and the heated glass plate may be heat treated immediately after it comes out of the outlet of the heating furnace. It can be manufactured similarly.

又、本発明方法により熱処理する際、加熱板内で徐冷し
た後、第1の冷却吹口に戻して2次冷却する様にすれば
、第2の冷却吹口を省くことができ、設備費を低減させ
ることができる。
In addition, when performing heat treatment according to the method of the present invention, if the second cooling port is cooled slowly in the heating plate and then returned to the first cooling port for secondary cooling, the second cooling port can be omitted and equipment costs can be reduced. can be reduced.

実施例 上記した装置を用いてソーダ・ライムガラス板を第1表
に示した条件で熱処理し、得られた熱処理ガラス板の中
央引張応力σt、表面圧縮応力σC1σC/σt、耐風
圧性を示す許容荷重(破壊確率171000以下)、熱
割れ試験結果(熱割れするまでのガラス板中央部と周辺
部の温度差)を同じく第1表に示した。
Example A soda-lime glass plate was heat-treated using the above-mentioned apparatus under the conditions shown in Table 1, and the central tensile stress σt, surface compressive stress σC1σC/σt, and allowable load indicating wind pressure resistance of the heat-treated glass plate obtained were (Probability of breakage: 171,000 or less) and thermal cracking test results (temperature difference between the center and peripheral portions of the glass plate until thermal cracking occurs) are also shown in Table 1.

又実施例1〜7の熱処理ガラス板及び比較例1〜3の熱
処理ガラス板についてJISR3206の6−5に規定
された破壊試験を行なった時の破壊した時の破砕パター
ンを第8〜13図に示した。
In addition, the fracture patterns when the heat-treated glass plates of Examples 1 to 7 and the heat-treated glass plates of Comparative Examples 1 to 3 were subjected to the destructive test specified in JISR3206 6-5 are shown in Figures 8 to 13. Indicated.

本発明の方法により、中央引張応力σtが85〜200
kg/iの範囲となり、かつその表面圧縮応力σCと
中央引張応力との比σC/σtが1.5〜3.0の範囲
にある熱処理ガラス板が得られる理由については次の様
に考えられる。
By the method of the present invention, the central tensile stress σt is 85 to 200.
The reason why a heat-treated glass plate can be obtained in which the surface compressive stress σC and the central tensile stress ratio σC/σt is in the range of 1.5 to 3.0 is thought to be as follows. .

軟化したガラス板を急冷すると、ガラス板断面の温度分
布は遷移状態を経て定常状態になる。
When a softened glass plate is rapidly cooled, the temperature distribution in the cross section of the glass plate goes through a transition state and becomes a steady state.

通常ガラス板中心部の温度が固化温度(560〜570
℃)を通過する時の温度分布(表面と中心の温度差)が
ガラス板の強化度即ち中央引張応力と表面圧縮応力を決
定する。
Normally, the temperature at the center of the glass plate is the solidification temperature (560 to 570
The temperature distribution (temperature difference between the surface and center) when passing through the glass plate (°C) determines the degree of reinforcement of the glass plate, that is, the central tensile stress and the surface compressive stress.

本発明はこのガラス板固化前後の温度の変化を単純な冷
却とはちがった履歴を与えることにより操作し好ましい
応力を得るものである。
The present invention obtains a preferable stress by manipulating the change in temperature before and after solidifying the glass plate by giving a history different from that of simple cooling.

即ち、ガラス板表面温度のみ固化温度以下になった状態
(この時点で中央部はまだ軟化している)でガラス板の
冷却を中止し200〜500℃の雰囲気で徐冷すること
により表面の温度、固化状態は変化させず、中央部のみ
固化を遅らせることにより残留応力を緩和させ中央引張
応力を小さくすることが可能となるのである。
In other words, when only the surface temperature of the glass plate falls below the solidification temperature (at this point, the central part is still softened), the cooling of the glass plate is stopped and the surface temperature is lowered by slowly cooling the glass plate in an atmosphere of 200 to 500°C. By delaying solidification only in the center without changing the solidification state, it is possible to relax the residual stress and reduce the central tensile stress.

又、10〜15 m / mの硝子については板厚が厚
いため自然放冷ですらσt≦200kg/dにコントロ
ールするととが不可能であり、本発明のように適切な徐
冷操作をすることが必要である。
In addition, for glass with a thickness of 10 to 15 m/m, it is impossible to control σt≦200 kg/d even by natural cooling due to the thick plate thickness, so it is necessary to perform an appropriate slow cooling operation as in the present invention. is necessary.

上記実施例及び比較例におけるガラス板の表面圧縮応力
は東芝風冷強化硝子表面応力計FS−M−30により測
定し又中央引張応力は次の様に測定したものである。
The surface compressive stress of the glass plates in the above Examples and Comparative Examples was measured using a Toshiba air-cooled tempered glass surface stress meter FS-M-30, and the central tensile stress was measured as follows.

・中央引張応力の測定 第16図の様にガラス板サンプル11を水平に保持し、
端面に垂直にHe−Neレーザ12を光源に偏光子13
、レンズ14、絞り15を通した直線偏光Aを入射する
・Measurement of central tensile stress Hold the glass plate sample 11 horizontally as shown in Figure 16,
A polarizer 13 is installed perpendicularly to the end face using a He-Ne laser 12 as a light source.
, a lens 14, and a linearly polarized light A that has passed through an aperture 15.

ガラス板11面に平行および垂直な方向を条々y、zと
し、入射方向をXとする。
Let y and z be the directions parallel and perpendicular to the surface of the glass plate 11, and let X be the direction of incidence.

入射光の振動方向はy −z面で各軸に対し、45°の
角度になるようにする。
The direction of vibration of the incident light is set at an angle of 45° with respect to each axis in the y-z plane.

ガラス板11の端面から入射された直線偏光Aは、ガラ
スに内在するy −z平面の主応力差によって、位相差
を生じ、第17図の様にy −z軸と45°の角度に軸
を持つ楕円→円→楕円→直線(入射光と直交)→楕円→
円→楕円→直線と偏光が変わり、位相差360°で元の
入射光と振動方向が同じ直線偏向に戻る。
Linearly polarized light A incident from the end surface of the glass plate 11 produces a phase difference due to the principal stress difference in the y-z plane inherent in the glass, and as shown in FIG. ellipse → circle → ellipse → straight line (perpendicular to the incident light) → ellipse →
The polarization changes from circle to ellipse to straight line, and with a phase difference of 360°, the vibration direction returns to the same linear polarization as the original incident light.

この偏光はガラスの中で散乱され、光軸と直角をなすy
−z平面内の、y”z軸と45°の方向から観察する
と、第18図のB又第19図の様に1波長ごとのドツト
状に見える。
This polarized light is scattered within the glass and is oriented at right angles to the optical axis.
When observed from a direction of 45° with respect to the y''z axis in the -z plane, it appears as dots for each wavelength, as shown in B of FIG. 18 and FIG. 19.

フロートガラス板の散乱は非常に小さいため、観察しよ
うとする散乱光は微弱である。
Since the scattering of the float glass plate is very small, the scattered light to be observed is weak.

このため、マイクロ・チャンネル・イメージ・インテン
シファイヤーを内蔵した暗視装置を使い、高感度テレビ
・カメラ16を通してモニタテレビ17上に散乱光のド
ツト・パターンを映し出す。
To this end, a night vision device with a built-in micro-channel image intensifier is used to project a dot pattern of scattered light onto a monitor television 17 through a high-sensitivity television camera 16.

ポジション・アナライザー18と組み合わせて実時間で
長さを読みとる。
In combination with the position analyzer 18, the length can be read in real time.

このドツト1つが360° (1波長)の位相差に対応
するので、この実長さを測定することにより光弾性定数
を使い、主応力差を知ることができる。
Since one dot corresponds to a phase difference of 360° (one wavelength), by measuring this actual length, the principal stress difference can be determined using the photoelastic constant.

ここで求めた主応力差△σより中央引張応力σyを下式
により求める。
From the principal stress difference Δσ found here, the central tensile stress σy is determined by the following formula.

主応力差 △σ σy:応力の平面方向の成分、即ち中央引張応力 σZ:応力の厚み方向の成分(σ2=0 )λ:レーザ
光波長(632,m p、 −He −N eレーザ) lλ:360°の位相差に対応する光路差−〇二元弾性
定数2.63mμ/cm/kg/cr?t(フロート板
) なお、本発明により製造される中央引張応力σtが85
〜200kg/ml、表面圧縮応力σCが127〜60
0 kg/ffl、更に好ましくは250〜350 k
g/caの熱処理ガラス板の上記各応力値とは、第20
図の様に熱処理ガラス板の周辺部の4点Pと中央部の1
点Qの5点における測定値を平均したものであり、平均
値として捕えたものである。
Principal stress difference △σ σy: Component of stress in the plane direction, i.e. central tensile stress σZ: Component of stress in the thickness direction (σ2=0) λ: Laser light wavelength (632, m p, -He -N e laser) lλ : Optical path difference corresponding to 360° phase difference - Two-way elastic constant 2.63 mμ/cm/kg/cr? t (float plate) Note that the central tensile stress σt manufactured by the present invention is 85
~200kg/ml, surface compressive stress σC is 127~60
0 kg/ffl, more preferably 250-350 k
The above stress values of the heat-treated glass plate in g/ca are the 20th
As shown in the figure, 4 points P on the periphery of the heat-treated glass plate and 1 point on the center.
It is an average of the measured values at five points, including point Q, and is taken as an average value.

以上の様に、本発明によれば、耐風圧強度が実用上充分
で、かつ熱割れすることがなく、更にクラックがガラス
板に入ってもクラックが自走せず、細かい破片に割れる
ことがない熱処理ガラスを提供することができる。
As described above, according to the present invention, the wind pressure strength is sufficient for practical use, there is no thermal cracking, and furthermore, even if a crack enters the glass plate, the crack will not propagate by itself and will not break into small pieces. No heat treated glass can be provided.

このガラス板は割れても破片の一部あるいは全体が窓枠
から脱落する危険性が少なく、ビル、住宅等の建築用ガ
ラス板とじて有用である。
Even if this glass plate breaks, there is little risk that some or all of the pieces will fall off from the window frame, and it is useful as a glass plate for construction of buildings, houses, etc.

特にガラス板の破片の落下の危険性のないガラス板が要
求される中、高層ビル用の窓用ガラス板として本発明の
方法により製造された熱処理ガラス板は最適である。
In particular, there is a demand for a glass plate that is free from the risk of falling glass fragments, and the heat-treated glass plate produced by the method of the present invention is optimal as a glass plate for windows in high-rise buildings.

中でも、熱割れの危険性の高い窓用、あるいはスパンド
レル用に使用される熱線吸収ガラス板、着色コートガラ
ス板熱線反射ガラス等のガラス板に対し、本発明により
製造された熱処理ガラス板は好適である。
Among these, the heat-treated glass sheet manufactured by the present invention is suitable for glass sheets such as heat-absorbing glass sheets, colored coated glass sheets, and heat-reflecting glass sheets used for windows or spandrels that have a high risk of thermal cracking. be.

又、本発明により製造されたガラス板は耐風圧強度及び
熱割れ強度が向上され、又クラック自走防止がなされて
いるので、例えば、従来10mmN。
In addition, the glass plate manufactured according to the present invention has improved wind pressure strength and thermal cracking strength, and is also prevented from propagating cracks, so that, for example, the strength of the conventional glass plate is 10 mmN.

のガラス板が使用されていた中高層用の窓ガラス板を本
発明により製造された6mm厚の熱処理ガラス板に、又
12myrt厚の従来の生板ガラスを本発明による8m
m厚の熱処理ガラス板に、又19mm厚の従来の生板ガ
ラスを本発明による12mrIL厚の熱処理ガラス板に
置き換えることができ、ガラス板の軽量化を計ることが
できる。
A 6 mm thick heat treated glass plate manufactured according to the present invention was used to replace a window glass plate for mid-to-high-rise buildings, and a 12 myrt thick conventional raw glass plate was replaced with an 8 m high glass plate according to the present invention.
It is possible to replace a heat-treated glass plate with a thickness of m or a conventional raw glass plate with a thickness of 19 mm with a heat-treated glass plate with a thickness of 12 mrIL according to the present invention, and the weight of the glass plate can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第3図は、従来の強化ガラス板の厚さ方向の断面
の応力分布図、第4図は本発明の方法により製造された
熱処理ガラス板の厚さ方向の断面の応力分布図、第5〜
7図は比較例に係るガラス板の破砕パターン図、第8〜
14図は本発明の方法により製造された熱処理ガラス板
の破砕パターン図、第15図は本発明を実施するための
装置の一具体例に係る概略図、第16図はガラス板の中
央引張応力を測定するための装置の概略図、第17〜1
9図はガラス板の中央引張応力の測定原理を示すための
説明図、第20図は応力の測定点を示す説明図である。 1:熱処理されるガラス板、2:ローラーハース、3:
搬送ロール、4ニガラス板の加熱装置、5:第1の冷却
吹口、6:加熱板、7:第2の冷却吹口。
1 to 3 are stress distribution diagrams of a cross section in the thickness direction of a conventional tempered glass plate, and FIG. 4 is a stress distribution diagram of a cross section in the thickness direction of a heat-treated glass plate manufactured by the method of the present invention. 5th~
Figure 7 is a diagram of the fracture pattern of the glass plate according to the comparative example, and Figures 8-
Figure 14 is a diagram of the fracture pattern of a heat-treated glass plate produced by the method of the present invention, Figure 15 is a schematic diagram of a specific example of an apparatus for carrying out the present invention, and Figure 16 is a diagram showing the central tensile stress of the glass plate. Schematic diagram of an apparatus for measuring, No. 17-1
FIG. 9 is an explanatory diagram showing the principle of measuring the central tensile stress of a glass plate, and FIG. 20 is an explanatory diagram showing stress measurement points. 1: Glass plate to be heat treated, 2: Roller hearth, 3:
Conveyance roll, 4 glass plate heating device, 5: first cooling nozzle, 6: heating plate, 7: second cooling nozzle.

Claims (1)

【特許請求の範囲】 1 板厚5龍〜15mmのガラス板を600°C〜66
0℃に加熱した後、このガラス板を該ガラス板の板厚を
h(im)、冷却速度をK(’C/秒)とした時hK≧
45となる様な冷却能を与えて1〜20秒間1次風冷し
てガラス板の表面温度を450〜560℃まで低下させ
、次いでこのガラス板を100’C〜500℃の温度に
保持された対向した加熱板間に通して450℃以下まで
徐冷し、その後更に2次風冷し、この処理されたガラス
板の中央引張応力σtが85〜200 y/=の範囲と
なり、かつその表面圧縮応力σCと中央引張応力σtと
の比σC/σtが1.5〜3.0の範囲となる様に制御
したことを特徴とする改良された熱処理ガラス板の製法
。 2 加熱されたガラス板を4秒〜10秒間1次風冷する
ことを特徴とする特許請求の範囲第1項記載の熱処理ガ
ラス板の製法。 3 加熱板の温度を300℃〜400℃に保持したこと
を特徴とする特許請求の範囲第1項記載の熱処理ガラス
板の製法。 4 板厚5mrn〜15龍のガラス板をローラーハー
ス炉内を水平に搬送させなから6000C〜660°C
に加熱した後ローラーハース炉から水平に取出して対向
した1次冷却吹口間に入れて1次風冷してガラス板の表
面温度を450〜560℃まで低下させ、次いで100
°C〜500°Cの温度の対向した加熱板間に適して4
50℃以下まで徐冷し、その後更に対向した第2次冷却
吹口に通して2次風冷することを特徴とする特許請求の
範囲第1項記載の改良された熱処理ガラス板の製法。 5 ガラス板をローラーハース炉内を水平に摺動させて
加熱することを特徴とする特許請求の範囲第4項記載の
改良された熱処理ガラス板の製法。
[Claims] 1. A glass plate with a thickness of 5 mm to 15 mm is heated at 600°C to 66°C.
After heating this glass plate to 0°C, when the thickness of the glass plate is h (im) and the cooling rate is K ('C/sec), hK≧
The surface temperature of the glass plate was lowered to 450 to 560°C by primary air cooling for 1 to 20 seconds, and the glass plate was then held at a temperature of 100 to 500°C. The treated glass plate was cooled gradually to 450°C or lower by passing it between opposing heating plates, and then further air-cooled, so that the central tensile stress σt of the treated glass plate was in the range of 85 to 200 y/=, and the surface An improved method for producing a heat-treated glass plate, characterized in that the ratio σC/σt of compressive stress σC and central tensile stress σt is controlled to be in the range of 1.5 to 3.0. 2. The method for producing a heat-treated glass plate according to claim 1, wherein the heated glass plate is subjected to primary air cooling for 4 seconds to 10 seconds. 3. The method for manufacturing a heat-treated glass plate according to claim 1, wherein the temperature of the heating plate is maintained at 300°C to 400°C. 4 A glass plate with a thickness of 5 mrn to 15 mm is transported horizontally in a roller hearth furnace at 6000 C to 660 °C.
After heating, the glass plate was taken out horizontally from the roller hearth furnace and placed between opposing primary cooling blowholes to perform primary air cooling to lower the surface temperature of the glass plate to 450 to 560°C, and then to 100°C.
Suitable between opposing heating plates at temperatures between 4°C and 500°C
2. The improved method for producing a heat-treated glass sheet according to claim 1, wherein the glass sheet is slowly cooled to 50° C. or lower, and then passed through opposing secondary cooling ports for secondary air cooling. 5. The improved method for producing a heat-treated glass plate according to claim 4, characterized in that the glass plate is heated by sliding the glass plate horizontally in a roller hearth furnace.
JP11624482A 1982-07-06 1982-07-06 Improved method for manufacturing heat-treated glass plates Expired JPS5925736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11624482A JPS5925736B2 (en) 1982-07-06 1982-07-06 Improved method for manufacturing heat-treated glass plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11624482A JPS5925736B2 (en) 1982-07-06 1982-07-06 Improved method for manufacturing heat-treated glass plates

Publications (2)

Publication Number Publication Date
JPS598631A JPS598631A (en) 1984-01-17
JPS5925736B2 true JPS5925736B2 (en) 1984-06-20

Family

ID=14682350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11624482A Expired JPS5925736B2 (en) 1982-07-06 1982-07-06 Improved method for manufacturing heat-treated glass plates

Country Status (1)

Country Link
JP (1) JPS5925736B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392849U (en) * 1986-12-08 1988-06-15
JPH0478354U (en) * 1990-11-22 1992-07-08

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111890A (en) * 1985-11-07 1987-05-22 日本海上工事株式会社 Hanging frame for tabular body
US9776905B2 (en) 2014-07-31 2017-10-03 Corning Incorporated Highly strengthened glass article
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
KR101952085B1 (en) 2016-01-12 2019-05-21 코닝 인코포레이티드 Thin, thermally and chemically tempered glass-based products
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
WO2019040818A2 (en) 2017-08-24 2019-02-28 Corning Incorporated Glasses with improved tempering capabilities
TWI785156B (en) 2017-11-30 2022-12-01 美商康寧公司 Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
KR20210154825A (en) 2019-04-23 2021-12-21 코닝 인코포레이티드 Glass laminate with definite stress profile and method for manufacturing the same
CN114514115B (en) 2019-08-06 2023-09-01 康宁股份有限公司 Glass laminate with embedded stress spike for crack prevention and method of making same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392849U (en) * 1986-12-08 1988-06-15
JPH0478354U (en) * 1990-11-22 1992-07-08

Also Published As

Publication number Publication date
JPS598631A (en) 1984-01-17

Similar Documents

Publication Publication Date Title
JPS5925736B2 (en) Improved method for manufacturing heat-treated glass plates
US6370917B1 (en) Quenching method and apparatus for tempering a glass sheet
TWI789367B (en) Lithium containing glasses
US6881485B2 (en) Tempered glass sheet and method therefor
CN101467029B (en) Installation for producing flat glass, comprising a stress measuring device, and method for operating a flat glass annealing kiln
EP1215039A2 (en) Laminated glass and glass plate used for producing laminated glass
JPS5925734B2 (en) Glass plate heat treatment method
CN105698985B (en) One kind being suitable for the physical toughened stress detection device of large format plate glass
JPS6238288B2 (en)
JPH0653585B2 (en) Heat treatment method for glass plate
JPH0348143B2 (en)
JPS5925735B2 (en) Manufacturing method of heat treated glass plate
JPH0331656B2 (en)
JPH0649586B2 (en) Heat-treated glass plate and its manufacturing method
JPS55104935A (en) Tempered glass plate, said plate manufacturing method and apparatus
US20110271716A1 (en) Method for producing thermally tempered glasses
US20190047893A1 (en) Thermally strengthened photochromic glass and related systems and methods
KR20190061028A (en) Organic modification of glass products by laser heating and its manufacturing method
WO2020262293A1 (en) Tempered glass plate and method for producing same
McMaster Fundamentals of tempered glass
KR20220107218A (en) 3D glass-ceramic articles and methods of making them
US3477834A (en) Method for strengthening glass
JPH09208246A (en) Fireproof glass
US3333934A (en) Method of and apparatus for shaping glass sheets with opposed pressing members
JPS6335581B2 (en)