JPH0649586B2 - Heat-treated glass plate and its manufacturing method - Google Patents

Heat-treated glass plate and its manufacturing method

Info

Publication number
JPH0649586B2
JPH0649586B2 JP63331805A JP33180588A JPH0649586B2 JP H0649586 B2 JPH0649586 B2 JP H0649586B2 JP 63331805 A JP63331805 A JP 63331805A JP 33180588 A JP33180588 A JP 33180588A JP H0649586 B2 JPH0649586 B2 JP H0649586B2
Authority
JP
Japan
Prior art keywords
glass plate
heat
cooling
glass
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63331805A
Other languages
Japanese (ja)
Other versions
JPH02175624A (en
Inventor
哲也 吉田
元一 伊賀
一郎 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63331805A priority Critical patent/JPH0649586B2/en
Publication of JPH02175624A publication Critical patent/JPH02175624A/en
Publication of JPH0649586B2 publication Critical patent/JPH0649586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0417Controlling or regulating for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/012Tempering or quenching glass products by heat treatment, e.g. for crystallisation; Heat treatment of glass products before tempering by cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/016Tempering or quenching glass products by absorbing heat radiated from the glass product
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガラス板にクラックが入った時にもクラック
が自走しないとともに耐風圧強度が充分で、且つ熱割れ
しない高層ビルの窓用として最適な熱処理ガラスを製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is intended for a window of a high-rise building, in which even when a glass plate is cracked, the crack does not run by itself, wind pressure strength is sufficient, and thermal cracking does not occur. The present invention relates to a method for producing an optimum heat-treated glass.

[従来の技術] 高層ビルに於いては、窓ガラス板の耐風圧向上を図る
為、10mm〜20mm程度の特厚のガラス板が使用されてい
る。この様に特厚のガラス板を使用すると重量が著しく
増大するという欠点があるとともに、板厚の厚い熱線吸
収ガラスや着色コートガラス板を使用した場合には、特
に熱割れの危険性が高くなるという欠点がある。軽量化
対策、熱割れ防止対策の為に風冷強化ガラス板を使用す
ることも可能であるが、風冷強化ガラス板は破損時細か
い多くの破片になる為、高層ビルに風冷強化ガラス板を
使用すると破損した時高層ビルの窓からガラス板の破片
が降り落ちるという危険があり、好ましくない。このた
めガラス板の強化度を調整して、所謂半強化としてクラ
ックの自走を防止する試みがなされてきたが、通常空気
で冷却する装置においては空気の突出を中止した大気中
の自然放冷という最も冷却能の少ない方法ですら10m/m
以上のガラスの厚味に於いては自然対流熱伝達よりガラ
スが強化処理されクラックの自走しない低い応力におさ
えたガラスは製造が出来なかった。又強化ガラス板の一
種として表面圧縮応力が高く、且つ破片数密度の小さい
化学強化ガラス板もあるが、この化学強化ガラス板は傷
がついた場合の強化低下が著しいとともに強化処理工程
に長時間を要する為実用に不適である。
[Prior Art] In high-rise buildings, glass plates with a special thickness of about 10 mm to 20 mm are used in order to improve the wind pressure resistance of window glass plates. In this way, the use of extra-thick glass plates has the drawback of significantly increasing the weight, and the use of thick heat-absorbing glass or colored coated glass plates increases the risk of thermal cracking in particular. There is a drawback that. It is possible to use air-cooled tempered glass plate as a measure for weight reduction and heat crack prevention, but since air-cooled tempered glass plate becomes many small pieces when broken, it is used for high-rise buildings. Is not preferable because there is a risk that fragments of the glass plate will fall from the windows of the skyscraper when damaged. For this reason, attempts have been made to prevent self-propagation of cracks by adjusting the degree of strengthening of the glass plate as so-called semi-strengthening.However, in a device that normally cools with air, natural cooling in the atmosphere where the protrusion of air was stopped Even the method with the least cooling capacity is 10 m / m
In the above glass thickness, the glass was strengthened by natural convection heat transfer, and the glass could not be manufactured under low stress where cracks did not run by itself. There is also a chemically strengthened glass plate that has a high surface compressive stress and a small fragment number density as a type of strengthened glass plate, but this chemically strengthened glass plate shows a significant decrease in strengthening when scratched and it takes a long time for the strengthening treatment process. Therefore, it is not suitable for practical use.

[発明が解決しようとする課題] 本発明は、高層ビル等の窓ガラスとして従来の特厚ガラ
ス板の板厚より薄くて同程度或いはそれ以上で、且つ熱
割れがなく実用上の不都合もなく、更に量産化が可能な
熱処理ガラス板及びその製法を提供することを目的とす
るものである。
[Problems to be Solved by the Invention] The present invention is, as a window glass for a high-rise building or the like, thinner than or equal to or more than the thickness of a conventional extra-thickness glass sheet, and has no thermal crack and is practically inconvenient. Another object of the present invention is to provide a heat-treated glass plate that can be mass-produced and a manufacturing method thereof.

ソーダライムよりなるガラス板を軟化点温度域 600〜70
0 ℃迄加熱した後直ちに、このガラス板の両面に空気を
吹き付けて急冷して強化した従来の普通の強化ガラス板
は、1000kg/cm2〜1500kg/cm2の表面圧縮応力とその断面
方向の中心部に表面圧縮応力の1/2 の引張応力が発生
し、その断面応力分布は第1図に示した様になる。そし
て、この強化ガラス板が破壊した時は、ガラス板に発生
したクラックが自走し、そして上記中央引張応力の大き
さによって一義的に決まる破砕密度、例えば40〜200 個
/5cm角をもって細かく割れてしまう。又、半強化ガラ
ス板は、 300〜600kg/cm2 の表面圧縮応力σと 250〜
400kg/cm2 の中央引張応力σと、1.5未満のσc
の比を有し、その断面応力分布は第2図に示した様にな
り、この半強化ガラス板が破壊した場合には、細かい破
片をもって割れないものの、破壊時ガラス板に発生した
クラックは自走し、ガラス板の端部まで及んでしまう。
A glass plate made of soda lime is used in the softening temperature range 600-70
Immediately after heating up to 0 ° C., the both sides of the glass plate of the conventional reinforced quenched by blowing air ordinary tempered glass plate, 1000kg / cm 2 ~1500kg / cm 2 of surface compressive stress and its cross-sectional direction Tensile stress, which is half of the surface compressive stress, is generated at the center, and the cross-sectional stress distribution is as shown in Fig. 1. When the tempered glass plate is broken, the cracks generated in the glass plate are self-propelled, and the fracture density is uniquely determined by the magnitude of the central tensile stress, for example, 40 to 200 pieces / 5 cm square and finely cracked. Will end up. Also, the semi-tempered glass plate has a surface compression stress σ c of 300 to 600 kg / cm 2 and 250 to
Central tensile stress σ t of 400 kg / cm 2 and σ c / σ t less than 1.5
The cross-sectional stress distribution is as shown in Fig. 2. When this semi-tempered glass plate is broken, it does not break even with fine fragments, but the cracks generated on the glass plate at It runs and reaches the edge of the glass plate.

又、化学強化ガラス板は、1000kg/cm2〜3000kg/cm2の表
面圧縮応力と10〜60kg/cm2の中央引張応力とを有し、そ
の断面応力分布は第3図に示した様になり、この化学強
化ガラス板は表面圧縮応力層が薄いため傷がついた時の
衝撃強度が著しく低下する。
Further, chemically tempered glass plate has a central tensile stress of 1000kg / cm 2 ~3000kg / cm 2 of surface compressive stress and 10~60kg / cm 2, as the cross-sectional stress distribution is shown in FIG. 3 Since this chemically strengthened glass plate has a thin surface compressive stress layer, the impact strength when scratched is significantly reduced.

従来の強化ガラスとは異なり、ガラス板にクラックが入
った時にもクラックが自走せず、かつ耐風圧強度が充分
で熱割れしない高層ビルの窓ガラス用或いはスパンドレ
ル用として最適な熱処理ガラス、即ち板厚が5〜15mmの
熱処理ガラスであって、その熱処理ガラス板の中央引張
応力σが85kg/cm2〜200kg/cm2 の範囲にあり、かつ、
その表面の圧縮応力σとの中央引張応力σとの比σ
cが1.5 〜3.0 の範囲にある断面応力分布を持つ熱
処理ガラス板の製法には既に知られている。
Unlike conventional tempered glass, even when cracks occur in the glass plate, the cracks do not run on their own, and the wind pressure strength is sufficient and it is not heat cracked Optimal heat-treated glass for window glass or spandrel for high-rise buildings, that is, a heat treatment of glass plate thickness is 5 to 15 mm, the center of the heat-treated glass sheet tensile stress sigma t is in the range of 85kg / cm 2 ~200kg / cm 2 , and,
Ratio σ between the compressive stress σ c of the surface and the central tensile stress σ t
It is already known in the process for producing a heat-treated glass sheet having a sectional stress distribution in which c / σ t is in the range of 1.5 to 3.0.

特開昭59-8628 に示されている熱処理ガラスの製法はガ
ラス板を加熱炉内を通して 600〜660 ℃に加熱した後、
このガラス板を加熱炉から取出し、その後直ちにこのガ
ラス板表面に50℃〜300 ℃の熱風を吹き付けてガラス板
の冷却速度を大気中の自然放冷より遅くしてガラス板の
歪点温度以下迄冷却するというものである。
The method for producing heat-treated glass disclosed in JP-A-59-8628 is that after heating a glass plate through a heating furnace to 600 to 660 ° C.,
Remove this glass plate from the heating furnace and immediately blow hot air of 50 ° C to 300 ° C on the surface of this glass plate to cool the glass plate to a temperature below the strain point temperature of the glass plate by slowing it down from natural cooling in the atmosphere. It is to cool.

しかしながら、この様な製造方法では、ガラスから冷却
炉壁への輻射によるガラスの冷却が大きい為、熱風の温
度を高温に上げ、熱風の吹き付けを弱くして、冷却速度
を自然放冷よりも遅くしなければならず、特に板厚が12
〜19mmのガラス板の場合、熱風の吹き付けは、制御出来
ない程小さな量でなければならない。
However, in such a manufacturing method, since the cooling of the glass by radiation from the glass to the cooling furnace wall is large, the temperature of the hot air is raised to a high temperature, the blowing of the hot air is weakened, and the cooling rate is slower than that of natural cooling. Must be done, especially if the thickness is 12
For ~ 19 mm glass sheets, the blowing of hot air must be uncontrollably small.

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、板厚が6mm〜19mmのガラス板を570 ℃〜660 ℃に加
熱した後、このガラス板を加熱炉から取出し、その後直
ちにこのガラス板を輻射率が0.1 〜0.3 の内表面を有す
る冷却炉に入れ、それと同時にこのガラス表面に温度50
℃〜400 ℃、風圧0.1mmAq〜10mmAqの熱風を吹き付けて
ガラス板の冷却速度を大気中の自然放冷より遅くしてガ
ラス板を冷却することを特徴とする、中央引張応力σ
が85〜200kg/cm2 の範囲にあり、かつその表面圧縮応力
σと中央引張応力σとの比σcが1.5 〜3.0 の
範囲にある熱処理ガラス板の製法を提供するものであ
る。
[Means for Solving the Problem] The present invention has been made to solve the above-mentioned problems, and after heating a glass plate having a plate thickness of 6 mm to 19 mm to 570 ° C to 660 ° C, the glass plate is heated. Of the glass plate is immediately placed in a cooling furnace having an inner surface with an emissivity of 0.1 to 0.3, and at the same time, the glass plate is heated to a temperature of 50
Central tensile stress σ t characterized by cooling the glass plate by blowing hot air having a temperature of ℃ to 400 ℃ and a pressure of 0.1 mmAq to 10 mmAq to make the cooling rate of the glass plate slower than natural cooling in the atmosphere.
Of 85 to 200 kg / cm 2 and the ratio σ c / σ t of the surface compressive stress σ c to the central tensile stress σ t is in the range of 1.5 to 3.0. Is.

本発明の熱処理ガラス板は、その中央引張応力σが85
〜200kg/cm2 の間に低くコントロールされ、かつその表
面圧縮応力σと中央引張応力σとの比σ/σ
1.5〜3.0 の範囲にコントロールされて表面圧縮応力も
127〜600kg/cm2 の範囲、更に好ましくは 250〜350kg/
cm2に低く押えられ、第4図に示した様な断面応力分布
にされているので、この熱処理ガラス板にクラックが入
った時その破壊線が自走せず、細かい破片をもって割れ
ない。しかもこの熱処理ガラス板は板厚6mm以上19mm以
下を有し、かつ、 127〜600kg/cm2、更に好ましくは 25
0〜350kg/cm2 の表面圧縮応力を持っているので耐風圧
強度は、同一厚みの生板の2倍以上で実用上充分な強度
であり、かつ熱割れすることもない。
The heat-treated glass sheet of the present invention has a central tensile stress σ t of 85.
Is ~200Kg / control low during cm 2, and the ratio σ c / σ t and the surface compressive stress sigma c and the central tensile stress sigma t
The surface compressive stress can be controlled by controlling the range from 1.5 to 3.0.
127 to 600 kg / cm 2 , more preferably 250 to 350 kg / cm 2.
Since it was held down to cm 2 and the cross-sectional stress distribution was as shown in Fig. 4, when the heat-treated glass plate had cracks, the fracture line did not run on its own and did not break into fine fragments. Moreover, this heat-treated glass plate has a plate thickness of 6 mm or more and 19 mm or less, and 127 to 600 kg / cm 2 , more preferably 25
Since it has a surface compressive stress of 0 to 350 kg / cm 2, the wind pressure resistance is at least twice as high as that of a green plate of the same thickness, which is a practically sufficient strength and does not cause thermal cracking.

例えば、板厚が12mmで中央引張応力σが250kg/cm2
表面圧縮応力σが380kg/cm2(σc=1.52)の熱
処理ガラス板は、中央引張応力が高すぎる為にガラス板
にクラックが入った場合、クラックが自走するとともに
破砕片が細かくなって第5図に示す様な破砕パターンと
なり、破砕片が窓から落下する危険性が高くなって好ま
しくない。又板厚が15mmで中央引張応力σが275kg/cm
2、表面圧縮応力σが450kg/cm2(即ちσc=1.6
4)のガラス板も同様である。
For example, the plate thickness is 12 mm, the central tensile stress σ t is 250 kg / cm 2 ,
A heat-treated glass plate with a surface compressive stress σ c of 380 kg / cm 2c / σ t = 1.52) has a central tensile stress that is too high. Becomes finer and has a crushing pattern as shown in FIG. 5, and there is a high risk of the crushed pieces falling from the window, which is not preferable. The plate thickness is 15 mm and the central tensile stress σ t is 275 kg / cm.
2 , the surface compressive stress σ c is 450 kg / cm 2 (ie σ c / σ t = 1.6
The same applies to the glass plate of 4).

一方、本発明により製造される熱処理ガラス板、例えば
実施例1〜4のサンプルの熱処理ガラス板の破砕パター
ンはそれぞれ第6〜9図の様になり、ガラス板にクラッ
クが入った場合クラックの自走が抑えられ、破壊線が何
本もガラス板の一端から他端迄入ることがなく、窓から
ガラス板の破砕片が落下するのを防ぐことができる。
又、熱割れ防止及び風圧破壊防止に要求される表面圧縮
応力127kg/cm2 以上、特に好ましくは200kg/cm2 より高
い表面圧縮応力を有しているので、熱割れする危険性が
少く、又耐風圧強度も充分である。
On the other hand, the crushing patterns of the heat-treated glass plates manufactured according to the present invention, for example, the heat-treated glass plates of the samples of Examples 1 to 4 are as shown in FIGS. 6 to 9, respectively. The running is suppressed, and the breaking lines do not enter from one end of the glass plate to the other end, and the fragments of the glass plate can be prevented from falling through the window.
Further, since it has a surface compressive stress of 127 kg / cm 2 or more, particularly preferably higher than 200 kg / cm 2 , which is required to prevent thermal cracking and wind pressure damage, there is little risk of thermal cracking, and The wind pressure resistance is also sufficient.

尚、ガラス板が割れる時、クラックの自走が抑えられて
破壊線(ヒビ)がガラスの一辺から他辺に及ばない様に
されたものが窓ガラス板の破砕片が落下する危険性が少
なく好ましいが、ガラス板の一辺から他辺迄及ぶ破壊線
(ヒビ)が一本程度あっても窓からの破砕片の落下の危
険性が実際上少ないので、この種の一本程度の破砕線
(ヒビ)の存在は、本発明により製造された熱処理ガラ
スの破砕パターンとして許される。例えば、第7、8図
はこの許される例である。
When the glass plate breaks, the self-propelled cracks are suppressed so that the breaking line (crack) does not extend from one side of the glass to the other. Although it is preferable, even if there is only one breaking line (crack) extending from one side to the other side of the glass plate, the risk of falling fragments from the window is practically low, so this kind of breaking line ( The presence of cracks) is allowed as a fracture pattern in the heat treated glass produced according to the invention. For example, Figures 7 and 8 are examples of this permissibility.

第10図は、本発明の熱処理ガラス板を製造するために
使用される一具体例を示したものであり、図に於いて、
1は熱処理されるガラス板、2はローラーハース、3は
ガラス板の搬送ロール、4はガラス板の加熱装置、5は
上下に対向して設けられた熱風吹出口、6は上下に対向
して設けられた冷却炉表面被覆面を示す。熱処理される
ガラス板1はローラーハース内2を搬送ロール3により
水平に搬送されながら、或いは、水平に摺動されながら
ガラス板を強化するのに充分な温度迄、例えば 570℃〜
660 ℃迄加熱される。そしてローラーハース1から取出
されたガラス板1は、上下に対向した熱風吸出口間に移
動され、この熱風吸出口から50℃〜400 ℃の熱風をガラ
ス板面に風圧0.1 〜10mmAqで吹き付け、ガラス板の温度
が 200〜450 ℃迄冷却する。この場合、熱風吹出口或い
は冷却炉壁は、鏡面加工したSUS304にて、輻射率を0.1
以下にし、輻射による冷却を押えてある。そして熱風吹
出口からガラス板を取り出し、所定の応力値及び応力分
布をもった強化ガラス板製品とする。
FIG. 10 shows one specific example used for producing the heat-treated glass plate of the present invention.
1 is a glass plate to be heat-treated, 2 is a roller hearth, 3 is a glass plate conveying roll, 4 is a heating device for the glass plate, 5 is a hot air outlet provided vertically opposed, and 6 is vertically opposed. The cooling furnace surface coating surface provided is shown. The glass plate 1 to be heat-treated is transported horizontally in the roller hearth 2 by the transport rolls 3 or while being horizontally slid, to a temperature sufficient to strengthen the glass plate, for example, 570 ° C.
Heated to 660 ° C. Then, the glass plate 1 taken out from the roller hearth 1 is moved between the hot air inlets which are vertically opposed to each other, and hot air of 50 ° C to 400 ° C is blown from the hot air inlet to the glass plate surface at a wind pressure of 0.1 to 10 mmAq, and the Cool the plate to a temperature of 200-450 ° C. In this case, the hot air outlet or cooling furnace wall is made of mirror-finished SUS304 with an emissivity of 0.1.
Below, the cooling by radiation is suppressed. Then, the glass sheet is taken out from the hot air outlet to obtain a tempered glass sheet product having a predetermined stress value and stress distribution.

本発明において、所定の表面圧縮応力、中央引張応力及
び断面応力分布を得るため、上記した 570〜660 ℃まで
のガラス板の加熱温度、50〜400 ℃、風圧0.1mmAq〜10m
mAqの熱風の吹出し、この熱風吹出しによるガラス板温
200〜450 ℃までの冷却、冷却炉壁の輻射率を小さくす
る(0.1〜0.3)ことによる輻射冷却の抑制及びこれら条件
の組み合せが重要である。
In the present invention, in order to obtain a predetermined surface compressive stress, central tensile stress and cross-sectional stress distribution, the above-mentioned heating temperature of the glass plate up to 570 to 660 ° C., 50 to 400 ° C., wind pressure 0.1 mmAq to 10 m
Blowing out hot air of mAq, glass plate temperature due to this blowing out hot air
It is important to cool down to 200-450 ℃, suppress radiative cooling by reducing the emissivity of the cooling furnace wall (0.1-0.3), and combine these conditions.

前述した本発明の熱処理ガラス板の製法は、ローラーハ
ースを利用したものであるが、この方法に限らず、ガス
ハースを利用してガラス板を水平に搬送しながら加熱
し、ガスハースの出口から出た直後、加熱ガラス板を熱
処理する方法、あるいはガラス板を吊手により吊下げて
搬送しながら加熱炉内で加熱し、この加熱炉の出口から
出た直後、加熱ガラスを熱処理する方法などによっても
同様に製造することができる。
The manufacturing method of the heat-treated glass plate of the present invention described above uses a roller hearth, but the method is not limited to this, and the glass plate is heated while being horizontally conveyed using a gas hearth, and exited from the gas hearth outlet. Immediately after that, the same applies to the method of heat-treating the heated glass plate, or the method of heat-treating the heated glass immediately after exiting from the outlet of the heating furnace while the glass plate is hung by the hanging hand and conveyed and heated. Can be manufactured.

[作 用] 本発明の方法により、中央引張応力σが85〜200kg/cm
2 の範囲となり、かつその表面圧縮応力σと中央引張
応力σとの比σcが1.5 〜3.0 の範囲にある熱処
理ガラスが得られる理由については、次の様に考えられ
る。
[Operation] By the method of the present invention, the central tensile stress σ t is 85 to 200 kg / cm.
The reason why the heat-treated glass having the range of 2 and the ratio σ c / σ t of the surface compressive stress σ c and the central tensile stress σ t in the range of 1.5 to 3.0 can be obtained is considered as follows.

一般に軟化したガラス板を冷却して強化処理する時に発
生する残留応力は次の理論式による。
Generally, the residual stress generated when the softened glass plate is cooled and strengthened is calculated by the following theoretical formula.

(ガラス内部の伝熱方程式) これを解くと、中央引張応力σとなる。 (Heat transfer equation inside glass) Solving this gives the central tensile stress σ t Becomes

ここで自然放冷の冷却能は通常、約k=1.1 ℃/secとな
る。
Here, the cooling capacity of natural cooling is usually about k = 1.1 ° C / sec.

Q=2.5 ×104k kcal/m2h の関係より となる。From the relation of Q = 2.5 × 10 4 k kcal / m 2 h Becomes

しかし、自然放冷の場合、ガラス板両面の冷却能の差の
制御が出来ない為ガラス板に反りが発生する。これを調
整するため片面の冷却能をk>1.1 とするため実用上10
m/m 以上のガラス板ではσ<200kg/cm2とすること
が工業的に不可能となっている。
However, in the case of natural cooling, the difference in cooling ability between both surfaces of the glass plate cannot be controlled, so that the glass plate is warped. In order to adjust this, the cooling capacity of one side should be k> 1.1.
It is industrially impossible to satisfy σ t <200 kg / cm 2 for a glass plate of m / m or more.

本発明は、このkの冷却炉壁の輻射率を下げ、熱風を用
いることにより制御し、σ=85〜200kg/cm2 の範囲に
調整することが可能となったものである。
In the present invention, it is possible to reduce the emissivity of the cooling furnace wall of k, control it by using hot air, and adjust to σ t = 85 to 200 kg / cm 2 .

[実施例] 上記した装置を用いてソーダ・ライムガラス板を第1表
に示した条件で熱処理し、得られた熱処理ガラス板の中
央引張応力σ、表面圧縮応力σc、σc、耐風圧
性を示す許容荷重(破壊確率1/1000以下)、熱割れ試験
結果(熱割れするまでのガラス板中央部と周辺部の温度
差)を同じく第1表に示した。又、実施例1〜4の熱処
理ガラス板及び比較例1の熱処理ガラス板についてJIS
R 3206の6-5 に規定された破壊試験を行なった時の破砕
パターンを第5〜9図に示す。
[Example] A soda-lime glass plate was heat-treated under the conditions shown in Table 1 using the above-described apparatus, and the obtained heat-treated glass plate had a central tensile stress σ t , a surface compressive stress σ c , and σ c / σ. Table 1 also shows t 1 , allowable load indicating wind pressure resistance (breaking probability 1/1000 or less), and thermal cracking test results (temperature difference between the central portion and the peripheral portion of the glass plate before thermal cracking). JIS for the heat-treated glass plates of Examples 1 to 4 and the heat-treated glass plate of Comparative Example 1
The crushing patterns when the destructive test specified in 6-5 of R 3206 is performed are shown in FIGS.

上記実施例及び比較例におけるガラス板の表面圧縮応力
は東芝風冷強化硝子表面応力計FSM-30により測定し、
又、中央引張応力は次の様に測定したものである。
The surface compressive stress of the glass plate in the above Examples and Comparative Examples is measured by Toshiba wind-cooled tempered glass surface stress meter FSM-30,
The central tensile stress is measured as follows.

・中央引張応力の測定 第11図の様にガラス・サンプル11を水平に保持し、端
面に垂直にHe-Ne レーザ12を、光源に偏光子13、レンズ
14、絞り15を通した直線偏光Aを入射する。ガラス板11
面に平行および垂直な平行を角々y,zとし、入射方向
をxとする。
・ Measurement of central tensile stress As shown in Fig. 11, the glass sample 11 is held horizontally, the He-Ne laser 12 is perpendicular to the end face, the light source is the polarizer 13, and the lens.
Linearly polarized light A that has passed through 14 and the diaphragm 15 is incident. Glass plate 11
Parallel and perpendicular to the plane are y and z, and the incident direction is x.

入射光の振動方向はy−z面で各軸に対し、45゜の角度
になるようにする。
The vibration direction of the incident light should be at an angle of 45 ° with respect to each axis in the yz plane.

ガラス板の端面から入射された直線偏光Aはガラス内在
するy−z平面の主応力差によって、位相差を生じ、第
12図の様にy−z軸と45゜の角度に軸を持つ楕円→円
→楕円→直線(入射光と直交)→楕円→円→楕円→直線
と偏光が変わり、位相差 360゜で元の入射光と振動方向
が同じ直線偏光に戻る。
The linearly polarized light A incident from the end surface of the glass plate causes a phase difference due to the principal stress difference in the yz plane inside the glass, and as shown in FIG. 12, an ellipse having an axis at an angle of 45 ° with the yz axis. → Circle → Ellipse → Straight line (orthogonal to incident light) → Ellipse → Circle → Ellipse → Polarization changes to a straight line and returns to linear polarization with the same oscillation direction as the original incident light with a phase difference of 360 °.

この偏光はガラスの中で散乱され、光軸と直角をなすy
−z平面内のy,z軸と45゜の方向から観察すると、第
13図のB又は第14図の様に1波長ごとのドット状に
見える。
This polarized light is scattered in the glass and is perpendicular to the optical axis, y
When observed from the directions of 45 ° with the y and z axes in the −z plane, it looks like dots for each wavelength as shown in B of FIG. 13 or FIG.

フロート・ガラス板の散乱は非常に小さいため、観察し
ようとする散乱光は微弱である。このため、マイクロ・
チャンネル・イメージ・インテンシファイヤーを内蔵し
た暗視装置を使い、高感度テレビ・カメラ16を通してモ
ニタテレビ17上に散乱光のドット・パターンを映し出
す。ボジション・アナライザー18と組み合わせて実時間
で長さを読みとる。
Since the scattering of the float glass plate is very small, the scattered light to be observed is weak. For this reason,
A night-vision device with a built-in channel image intensifier is used to display a dot pattern of scattered light on a monitor TV 17 through a high-sensitivity TV camera 16. Read the length in real time in combination with the Vision Analyzer 18.

このドット1つが 360゜(1波長)の位相差に対応する
ので、この実長さを測定することにより光弾性定数を使
い、主応力差を知ることができる。
Since one dot corresponds to a phase difference of 360 ° (one wavelength), it is possible to know the principal stress difference by using the photoelastic constant by measuring the actual length.

ここで求めた主応力差Δσより中央引張応力σを下式
により求める。
The central tensile stress σ y is calculated from the principal stress difference Δσ calculated here by the following formula.

主応力差 Δσ σ:応力の平面方向の成分、即ち中央引張応力σ σ:応力の厚み方向の成分(σ≒0) λ:レーザ光波長(632.8mμ-He-Neレ-ザ) lλ:360 ゜の位相差に対応する光路差(cm) C :光弾性定数 2.63mμ/cm/kg/cm2 (フロート板) なお、本発明により製造される中央引張応力σが85〜
200kg/cm2、表面圧縮応力σが127 〜600kg/cm2、更に
好ましくは 200〜300kg/cm2の熱処理ガラス板の上記各
応力値とは、第15図の様に熱処理ガラス板の周辺部の
4点Pと中央部の1点Qの5点における測定値を平均し
たものを示したものであり、平均値として捕えたもので
ある。
Principal stress difference Δσ σ y : component in the plane direction of stress, that is, central tensile stress σ t σ z : component in the thickness direction of stress (σ z ≈0) λ: wavelength of laser light (632.8 mμ-He-Ne laser) lλ: 360 Optical path difference (cm) C corresponding to the phase difference of ° C: Photoelastic constant 2.63 mμ / cm / kg / cm 2 (float plate) The central tensile stress σ t produced by the present invention is 85 to
200 kg / cm 2, surface compressive stress sigma c is 127 ~600kg / cm 2, more preferably the above stress value of the heat treatment the glass plate 200~300kg / cm 2, the periphery of the heat treatment the glass plate as in Fig. 15 This is an average of the measured values at 5 points of 4 points P of the part and 1 point Q of the central part, which is captured as the average value.

[発明の効果] 本発明によれば、耐風圧強度が実用上充分で、且つ熱割
れすることがなく、更にクラックがガラス板に入っても
クラックが自走せず、細かい粉砕に割れることがない熱
処理ガラスを提供することが出来る。このガラス板は割
れても破片の一部或いは全体が窓枠から脱落する危険性
が少なく、ビル、住宅等の建築用ガラス板として有用で
ある。特にガラス板の破片の落下の危険性のないガラス
板が要求される中、高層ビル用の窓用ビルガラス板とし
て本発明の熱処理ガラス板は最適である。
[Advantages of the Invention] According to the present invention, the wind pressure resistance is practically sufficient, thermal cracking does not occur, and even if the crack enters the glass plate, the crack does not run on its own and may break into fine pulverization. No heat treated glass can be provided. Even if this glass plate is broken, there is little risk that some or all of the fragments will fall off the window frame, and it is useful as a glass plate for construction such as buildings and houses. In particular, while a glass plate that is free from the risk of falling fragments of the glass plate is required, the heat-treated glass plate of the present invention is most suitable as a building glass plate for windows for high-rise buildings.

中でも、熱割れの危険性の高い窓用、あるいはスパンド
レル用に使用される熱線吸収ガラス板、着色コートガラ
ス板、熱線反射ガラス板等のガラス板に対し、本発明の
熱処理ガラス板は好適である。
Among them, for a window having a high risk of heat cracking, or a heat ray absorbing glass sheet used for a spandrel, a colored coated glass sheet, a glass sheet such as a heat ray reflecting glass sheet, the heat treated glass sheet of the present invention is suitable. .

又、本発明によるガラス板は耐風圧強度及び熱割れ強度
が向上され、又クラック自走防止がなされているので、
例えば、従来10mm厚のガラス板が使用されていた。中高
層用の生板窓ガラス板を本発明による6mm厚の熱処理ガ
ラス板に、又12mm厚の従来の生板窓ガラス板を本発明に
よる8mm厚の熱処理ガラス板に置き換えることができ、
ガラス板の軽量化を図ることができる。
Further, since the glass sheet according to the present invention has improved wind pressure resistance and thermal cracking strength, and crack self-propelled prevention,
For example, a glass plate having a thickness of 10 mm has been conventionally used. It is possible to replace the raw plate window glass plate for middle and high layers with a heat-treated glass plate having a thickness of 6 mm according to the present invention, and the conventional raw plate window glass plate having a thickness of 12 mm with a heat-treated glass plate having a thickness of 8 mm according to the present invention.
The weight of the glass plate can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1〜第3図は、従来の強化ガラス板の厚さ方向の断面
の応力分布図、第4図は本発明の方法により製造された
熱処理ガラス板の厚さ方向の断面の応力分布図、第5図
は比較例に係るガラス板の破砕パターン図、第6〜9図
は本発明の方法により製造された熱処理ガラス板の破砕
パターン図、第10図は本発明を実施する為の装置の一
具体例に係る概略図、第11図はガラス板の中央引張応
力を測定する為の装置の概略図、第12〜14図はガラ
ス板の中央引張応力の測定原理を示す為の説明図、第1
5図は応力の測定点を示す説明図である。 1:熱処理されるガラス板、2:ローラーハース炉、
3:搬送ロール、4:ガラス板の加熱装置、5:熱風吹
出口、6:熱交換器。
1 to 3 are stress distribution diagrams of a cross section in the thickness direction of a conventional tempered glass plate, and FIG. 4 is a stress distribution diagram of the cross section in the thickness direction of a heat-treated glass plate manufactured by the method of the present invention. FIG. 5 is a crushing pattern diagram of a glass plate according to a comparative example, FIGS. 6 to 9 are crushing pattern diagrams of a heat-treated glass plate manufactured by the method of the present invention, and FIG. 10 is an apparatus for carrying out the present invention. Schematic diagram concerning one specific example, FIG. 11 is a schematic diagram of an apparatus for measuring the central tensile stress of a glass plate, and FIGS. 12 to 14 are explanatory diagrams showing the principle of measuring the central tensile stress of a glass plate, First
FIG. 5 is an explanatory diagram showing stress measurement points. 1: Glass plate to be heat treated, 2: Roller hearth furnace,
3: Transport roll, 4: Glass plate heating device, 5: Hot air outlet, 6: Heat exchanger.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】板厚が6mm〜19mmのガラス板を570 ℃〜66
0 ℃に加熱した後、このガラス板を加熱炉から取出し、
その後直ちにこのガラス板を輻射率が0.1 〜0.3 の内表
面を有する冷却炉に入れ、それと同時にこのガラス表面
に温度50℃〜400 ℃、風圧 0.1mmAq〜10mmAqの熱風を吹
き付けてガラス板の冷却速度を大気中の自然放冷より遅
くして或る冷却能の範囲内でガラス板を冷却することを
特徴とする、中央引張応力σが85〜200kg/cm2 の範囲
にあり、かつその表面圧縮応力σと中央引張応力σ
との比σcが1.5 〜3.0 の範囲にある熱処理ガラス
板の製法。
1. A glass plate having a thickness of 6 mm to 19 mm is 570 ° C. to 66.
After heating to 0 ℃, remove this glass plate from the heating furnace,
Immediately thereafter, the glass plate was placed in a cooling furnace having an inner surface with an emissivity of 0.1 to 0.3, and at the same time, hot air with a temperature of 50 ° C to 400 ° C and a wind pressure of 0.1 mmAq to 10 mmAq was blown onto the glass plate to cool the glass plate. Cooling the glass plate within a certain cooling capacity by slowing the cooling rate to a value lower than the natural cooling in the atmosphere, and the central tensile stress σ t is in the range of 85 to 200 kg / cm 2 and the surface thereof is Compressive stress σ c and central tensile stress σ t
A method for producing a heat-treated glass plate having a ratio σ c / σ t of 1.5 to 3.0.
【請求項2】板厚が6mm〜19mmのガラス板をローラーハ
ース炉内を水平に搬送させながら570 ℃〜660 ℃に加熱
した後、ローラーハース炉から水平に取出して対向した
吹口間に入れて、該吹口から温度50℃〜400 ℃の熱風を
風圧 0.1mmAq〜10mmAqで吹き出させてガラス板をガラス
の歪点温度以下迄冷却することを特徴とする特許請求の
範囲第1項記載の熱処理ガラス板の製法。
2. A glass plate having a plate thickness of 6 mm to 19 mm is heated to 570 ° C. to 660 ° C. while being conveyed horizontally in a roller hearth furnace, then taken out horizontally from the roller hearth furnace and placed between opposed blow outlets. 2. The heat-treated glass according to claim 1, wherein hot glass having a temperature of 50 ° C. to 400 ° C. is blown out from the air outlet at a wind pressure of 0.1 mmAq to 10 mmAq to cool the glass plate to a strain point temperature of the glass or lower. How to make a board.
【請求項3】ローラーハース炉内で熱交換器により加熱
された50℃〜400 ℃の熱風をローラーハース炉から水平
に取出されたガラス板の両面に吹き付けることを特徴と
する特許請求の範囲第2項記載の熱処理ガラス板の製
法。
3. A hot air of 50 ° C. to 400 ° C. heated by a heat exchanger in a roller hearth furnace is blown onto both sides of a glass plate taken out horizontally from the roller hearth furnace. The method for producing a heat-treated glass plate according to item 2.
【請求項4】冷却空気を吹口へ通じるダクトの途中でヒ
ーターを挿入することによって50℃〜400 ℃に加熱して
熱風とすることを特徴とする特許請求の範囲第1項記載
の熱処理ガラス板の製法。
4. A heat-treated glass sheet according to claim 1, wherein a heater is inserted in the middle of a duct that allows cooling air to reach the air outlet to heat the air to 50 ° C. to 400 ° C. to produce hot air. Manufacturing method.
【請求項5】ガラス板を600 〜660 ℃に加熱した後、温
度50〜400 ℃、風圧 0.1mmAq〜10mmAqの熱風を炉壁の輻
射率が0.1 〜0.3 の冷却炉内で吹き付け、以下に示す冷
却速度K(℃/sec)で冷却することを特徴とする中央
引張応力が85〜200kg/cmの範囲にあり、かつその表面
圧縮応力σと中央引張応力σとの比σcが1.5
〜3.0 の範囲にある熱処理ガラス板の製法。 板厚6mmの場合、2.33≦K≦4.34(℃/sec) 板厚8mmの場合、1.79≦K≦3.14(℃/sec) 板厚10mmの場合、1.38≦K≦2.78(℃/sec) 板厚12mmの場合、1.00≦K≦1.59(℃/sec) 板厚15mmの場合、0.69≦K≦1.16(℃/sec) 板厚19mmの場合、0.58≦K≦0.91(℃/sec)
5. A glass plate is heated to 600 to 660 ° C., and then hot air having a temperature of 50 to 400 ° C. and a wind pressure of 0.1 mmAq to 10 mmAq is blown in a cooling furnace having a furnace wall emissivity of 0.1 to 0.3, as shown below. The central tensile stress characterized by cooling at a cooling rate K (° C / sec) is in the range of 85 to 200 kg / cm 2 , and the ratio of the surface compressive stress σ c to the central tensile stress σ t is σ c / σ t is 1.5
Manufacturing method of heat-treated glass plate in the range of up to 3.0. 2.33 ≤ K ≤ 4.34 (° C / sec) when the plate thickness is 6 mm 1.79 ≤ K ≤ 3.14 (° C / sec) when the plate thickness is 8 mm 1.38 ≤ K ≤ 2.78 (° C / sec) when the plate thickness is 10 mm For 12 mm, 1.00 ≤ K ≤ 1.59 (° C / sec) For plate thickness 15 mm, 0.69 ≤ K ≤ 1.16 (° C / sec) For plate thickness 19 mm, 0.58 ≤ K ≤ 0.91 (° C / sec)
【請求項6】黄銅、クロム、ステンレス又は、周期律表
の2,3,4族の金属酸化物或いは化合物(Ge,Siの酸化
物、化合物は除く)にて冷却炉内表面を被覆するか、炉
壁材として使用することにより、冷却炉内表面の輻射率
を0.1 〜0.3 とすることを特徴とする特許請求の範囲第
1項または第5項記載の熱処理ガラス板の製法。
6. A cooling furnace inner surface is coated with brass, chromium, stainless steel, or metal oxides or compounds of groups 2, 3 and 4 of the periodic table (excluding Ge and Si oxides and compounds). The method for producing a heat-treated glass sheet according to claim 1 or 5, wherein the emissivity of the inner surface of the cooling furnace is set to 0.1 to 0.3 by using it as a furnace wall material.
【請求項7】570 ℃〜660 ℃に加熱されて加熱炉から取
出された後に、直ちに輻射率が0.1 〜0.3 の内表面を有
する冷却炉内にて、表面に温度50℃〜400 ℃、風圧0.1m
m Aq〜10mmAqの熱風が吹き付けられて冷却速度を大気中
の自然放冷より遅くして或る冷却能の範囲内で冷却され
てなる、板厚が6mm〜19mmの熱処理ガラス板であって、
中央引張応力σが85〜200kg/cmの範囲にあり、かつ
その表面圧縮応力σと中央引張応力σとの比σc
が1.5 〜3.0 の範囲にある特許請求の範囲第1項記載
の製法により製造された熱処理ガラス板。
7. After being heated to 570 ° C. to 660 ° C. and taken out from the heating furnace, immediately in a cooling furnace having an inner surface with an emissivity of 0.1 to 0.3, the surface has a temperature of 50 ° C. to 400 ° C. and a wind pressure. 0.1 m
A heat-treated glass plate having a plate thickness of 6 mm to 19 mm, which is obtained by blowing hot air of m Aq to 10 mm Aq to cool the glass at a cooling rate slower than natural cooling in the atmosphere and cooling within a certain cooling capacity,
The central tensile stress σ t is in the range of 85 to 200 kg / cm 2 , and the ratio of the surface compressive stress σ c to the central tensile stress σ t σ c / σ
A heat-treated glass sheet produced by the production method according to claim 1, wherein t is in the range of 1.5 to 3.0.
JP63331805A 1988-12-28 1988-12-28 Heat-treated glass plate and its manufacturing method Expired - Fee Related JPH0649586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63331805A JPH0649586B2 (en) 1988-12-28 1988-12-28 Heat-treated glass plate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331805A JPH0649586B2 (en) 1988-12-28 1988-12-28 Heat-treated glass plate and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02175624A JPH02175624A (en) 1990-07-06
JPH0649586B2 true JPH0649586B2 (en) 1994-06-29

Family

ID=18247838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331805A Expired - Fee Related JPH0649586B2 (en) 1988-12-28 1988-12-28 Heat-treated glass plate and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0649586B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845249B1 (en) * 2007-04-27 2008-07-09 요업기술원 Manufacturing method of tempered safety mirror with high quality image
JP5024487B1 (en) * 2011-02-01 2012-09-12 旭硝子株式会社 Manufacturing method of glass substrate for magnetic disk
US9783448B2 (en) 2014-07-31 2017-10-10 Corning Incorporated Thin dicing glass article
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
CN108698922B (en) 2016-01-12 2020-02-28 康宁股份有限公司 Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
TWI785156B (en) 2017-11-30 2022-12-01 美商康寧公司 Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
KR20220044538A (en) 2019-08-06 2022-04-08 코닝 인코포레이티드 Glass laminate with buried stress spikes to arrest cracks and method of making same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925734B2 (en) * 1982-07-06 1984-06-20 旭硝子株式会社 Glass plate heat treatment method

Also Published As

Publication number Publication date
JPH02175624A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
US8074473B2 (en) Method for quenching formed glass sheets
JPH0649586B2 (en) Heat-treated glass plate and its manufacturing method
TW201623169A (en) Glass or glass-ceramic for windows, countertops, and other applications
US20020106519A1 (en) Laminated glass and glass plate used for producing laminated glass
JPH0769669A (en) Fire prevention safe plate glass
US6881485B2 (en) Tempered glass sheet and method therefor
JPH0653585B2 (en) Heat treatment method for glass plate
JPS598628A (en) Method for heat-treating glass plate
JPS598631A (en) Preparation of improved heat-treated glass plate
JP2003040635A (en) Production method for fireproof glass
JPS6238288B2 (en)
JPS598627A (en) Heat-treated glass plate and preparation thereof
JPS55104935A (en) Tempered glass plate, said plate manufacturing method and apparatus
McMaster Fundamentals of tempered glass
JPH0331656B2 (en)
US20110271716A1 (en) Method for producing thermally tempered glasses
CA1108860A (en) Position selectable glass surface temperature scanner
JPS6335581B2 (en)
JP4438149B2 (en) Glass substrate for display
JPS5925735B2 (en) Manufacturing method of heat treated glass plate
JPH09208246A (en) Fireproof glass
US20190047893A1 (en) Thermally strengthened photochromic glass and related systems and methods
JP3238322B2 (en) Heat strengthened flat glass
Hess Material glass
JPH11145495A (en) Glass substrate for solar cells and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees