JPS5925734B2 - Glass plate heat treatment method - Google Patents

Glass plate heat treatment method

Info

Publication number
JPS5925734B2
JPS5925734B2 JP57116241A JP11624182A JPS5925734B2 JP S5925734 B2 JPS5925734 B2 JP S5925734B2 JP 57116241 A JP57116241 A JP 57116241A JP 11624182 A JP11624182 A JP 11624182A JP S5925734 B2 JPS5925734 B2 JP S5925734B2
Authority
JP
Japan
Prior art keywords
glass plate
heat
glass
stress
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57116241A
Other languages
Japanese (ja)
Other versions
JPS598628A (en
Inventor
和哉 大庭
雅之 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57116241A priority Critical patent/JPS5925734B2/en
Publication of JPS598628A publication Critical patent/JPS598628A/en
Publication of JPS5925734B2 publication Critical patent/JPS5925734B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0417Controlling or regulating for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/044Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position

Description

【発明の詳細な説明】 本発明は、ガラス板にクラックが入った時にもクラック
が自走しないとともに耐風圧強度が充分で、且つ熱割れ
しない高層ビルの窓用として最適な熱処理ガラスを製造
する方法に関するものである。
[Detailed Description of the Invention] The present invention manufactures heat-treated glass that does not cause cracks to propagate even when a glass plate cracks, has sufficient wind pressure resistance, and does not crack due to heat, and is ideal for use in windows of high-rise buildings. It is about the method.

例えば、高層ビルにおいては、窓ガラス板の耐風圧向上
を計るため、10〜20龍程度の特厚のガラス板が使用
されている。
For example, in high-rise buildings, extra-thick glass plates of about 10 to 20 mm are used to improve the wind pressure resistance of window glass plates.

この様な特厚のガラス板を使用すると重量が著るしく増
大するという欠点があるとともに、板厚の厚い熱線吸収
ガラスや着色ゴートガラス板を使用した場合には、特に
熱割れの危険性が高くなるという欠点がある。
The disadvantage of using such extra-thick glass plates is that the weight increases significantly, and when thick heat-absorbing glass or colored goat glass plates are used, there is a particular risk of thermal cracking. The disadvantage is that it is expensive.

軽量化対策、熱割れ防止対策のために風冷強化ガラス板
を使用することも可能であるが、風冷強化ガラス板は破
損時細かい多くの破片になるため、高層ビルに風冷強化
ガラス板を使用すると破損した時高層ビルの窓からガラ
ス板の破片が降り落ちるという危険があり好ましくない
Although it is possible to use air-cooled tempered glass sheets to reduce weight and prevent heat cracking, air-cooled tempered glass sheets break into many small pieces when broken, so air-cooled tempered glass sheets are not used in high-rise buildings. It is undesirable to use glass panels because there is a risk that glass fragments may fall from the windows of high-rise buildings when they break.

このためガラス板の強化度を調整して、所謂手強化とし
てクラックの自走を防止する試みがなされてきたが、通
常空気で冷却する装置においては空気の突出を中止した
大気中の自然放冷という最も冷却能の少ない方法ですら
10%以上のガラス厚味においては自然対流熱伝達によ
りガラスが強化処理されクラックの自走しない低い応力
におさえたガラスは製造ができなかった。
For this reason, attempts have been made to prevent the cracks from propagating by adjusting the degree of reinforcement of the glass plate by so-called manual strengthening, but in devices that normally use air to cool the glass, natural cooling in the atmosphere without air ejection has been attempted. Even with this method, which has the lowest cooling capacity, when the glass thickness is 10% or more, the glass is strengthened by natural convection heat transfer, and it is not possible to manufacture glass with low stress that prevents self-propagation of cracks.

又強化ガラス板の一種として表面圧縮応力が高く、且つ
破片数密度の小さい化学強化ガラス板もあるが、この化
学強化ガラス板は傷がついた場合の強度低下が著るしい
とともに強化処理工程に長時間を要するため実用には不
適である。
There is also a chemically strengthened glass sheet that has a high surface compressive stress and a low fragment number density as a type of tempered glass sheet, but this chemically strengthened glass sheet has a significant decrease in strength when scratched and is difficult to process during the strengthening treatment process. It is not suitable for practical use because it requires a long time.

先に、本出願人は、従来の強化ガラス板とは異なり、ガ
ラス板にクラックが入った時にもクラックが自走せず、
かつ耐風圧強度が充分で熱割れしない高層ビルの窓ガラ
ス用あるいはスパンドレル用として最適な熱処理ガラス
、即ち板厚が10〜15mmの熱処理ガラス板であって
、その熱処理ガラス板の中央引張応力σtが85〜20
0 kg/crILの範囲にあり、かつその表面の圧縮
応力σCと中央引張応力σtとの比σC/σtが1.5
〜2.0の範囲にある断面応力分布を持つ熱処理ガラス
板を提案した。
First, the applicant has discovered that, unlike conventional tempered glass plates, even when a crack occurs in the glass plate, the crack does not propagate by itself.
The heat-treated glass has sufficient wind pressure strength and does not crack due to heat and is suitable for use in window glasses or spandrels of high-rise buildings, that is, heat-treated glass sheets with a thickness of 10 to 15 mm, and the central tensile stress σt of the heat-treated glass sheet is 85-20
0 kg/crIL, and the ratio σC/σt of the surface compressive stress σC and the central tensile stress σt is 1.5.
We proposed a heat-treated glass plate with a cross-sectional stress distribution in the range of ~2.0.

本発明は、かかる熱処理ガラス板の工業的な製造方法を
提供することを目的として研究を重ねた結果得られたも
のであり、その要旨は、板厚が10闘〜15mmのガラ
ス板を加熱炉内を通して600℃〜660°Cに加熱し
た後、このガラス板を加熱炉から取出し、その後直ちに
このガラス板表面に50°C〜300°Cの熱風を吹き
付けてガラス板の冷却速度を大気中の自然放冷より遅く
してガラス板の歪点温度以下まで冷却して、この処理さ
れたガラス板の中央引張応力σtが85〜200kMf
flの範囲となり、かつその表面圧縮応力σCと中央引
張応力σtとの比σC/σtが1.5〜2.0の範囲と
なる様に、更に好ましくは表面圧縮応力が200〜30
0 kg/l:yitとなる様に制御することを特徴と
するガラス板の熱処理方法に関するものである。
The present invention was obtained as a result of repeated research aimed at providing an industrial manufacturing method for such heat-treated glass plates. After heating the glass plate to 600°C to 660°C through the air, the glass plate is taken out from the heating furnace, and immediately after that, hot air of 50°C to 300°C is blown onto the surface of the glass plate to control the cooling rate of the glass plate. By cooling the glass plate slower than natural cooling to below the strain point temperature of the glass plate, the central tensile stress σt of the treated glass plate is 85 to 200 kMf.
More preferably, the surface compressive stress is 200 to 30, so that the ratio σC/σt of the surface compressive stress σC and the central tensile stress σt is in the range of 1.5 to 2.0.
The present invention relates to a method for heat treatment of a glass plate, characterized in that the heat treatment method is controlled to achieve 0 kg/l:yit.

ソーダ・ライムガラスよりなるガラス板を軟化点温度域
600℃〜700℃まで加熱した後直ちに、このガラス
板の両面に空気を吹き付けて急冷して強化した従来の普
通の強化ガラス板は、1000〜1500 kg/ct
itの表面圧縮応力と、その断面方向の中心部に表面圧
縮応力の約1/2の引張応力が発生し、その断面応力分
布は第1図に示した様になる。
Conventional ordinary tempered glass sheets are made by heating a glass sheet made of soda-lime glass to a softening point temperature range of 600 to 700 degrees Celsius, then immediately blowing air on both sides of the glass sheet to quickly cool and strengthen it. 1500 kg/ct
A surface compressive stress of it and a tensile stress of about 1/2 of the surface compressive stress are generated at the center in the cross-sectional direction, and the cross-sectional stress distribution is as shown in FIG.

そしてこの強化ガラス板が破壊した時はガラス板に発生
したクラックが自走し、そして上記中央引張応力の大き
さによって一義的に決まる破砕密度、例えは40〜20
0個15crrL角をもって細かく割れてしまう。
When this tempered glass plate breaks, the cracks generated in the glass plate propagate by themselves, and the fracture density is uniquely determined by the magnitude of the central tensile stress, for example, 40 to 20.
0 pieces break into small pieces with a 15crrL angle.

又、半強化ガラス板は、300〜600kg/iの表面
圧縮応力と250〜400kg/cr?Lの中央引張応
力σtと1.5未満のσC/σtの比とを有し、その断
面応力分布は第2図に示した様になり、この半強化ガラ
ス板が破壊した場合には、細かい破片をもって割れない
ものの、破壊時ガラス板に発生したクラックは自走し、
ガラス板の端部まで及んでしまう。
Moreover, the semi-tempered glass plate has a surface compressive stress of 300 to 600 kg/i and 250 to 400 kg/cr? It has a central tensile stress σt of L and a ratio of σC/σt of less than 1.5, and its cross-sectional stress distribution is as shown in Figure 2. When this semi-strengthened glass plate breaks, fine Although it cannot be broken by fragments, the cracks that occur in the glass plate at the time of destruction propagate by themselves.
It extends to the edge of the glass plate.

又、化学強化ガラス板は、1000kg/i〜3000
kg/iの表面圧縮応力と10〜60に9/dの中央
引張応力とを有し、その断面応力分布は、第3図に示し
た様になり、この化学強化ガラス板は、表面圧縮応力層
が薄いため傷がついこ時の衝撃強度が著るしく低下する
In addition, chemically strengthened glass plates have a weight of 1000 kg/i to 3000 kg/i
This chemically strengthened glass sheet has a surface compressive stress of 10 to 60 kg/i and a central tensile stress of 9/d, and its cross-sectional stress distribution is as shown in Figure 3. Since the layer is thin, the impact strength when scratched is significantly reduced.

これに対し、本発明により製造される熱処理ガラス板は
、その中央引張応力が85〜200kg/−更に好まし
くは100〜150 kg/crj、の間に低くコント
ロールされ、かつその表面圧縮応力σCと中央引張応力
σtとの比σC/σtが1.5〜2.0の範囲にコント
ロールされて表面圧縮応力も127〜400kg/cI
?Lの範囲、更に好ましくは200〜300kg/dに
低く抑えられ第4図に示した様な断面応力分布にされて
いるので、この熱処理ガラス板にクラックが入った時そ
の破壊線が自走せず、細かい破片をもって割れない。
On the other hand, the heat-treated glass plate manufactured according to the present invention has a central tensile stress controlled to be low between 85 and 200 kg/-, more preferably 100 and 150 kg/crj, and a surface compressive stress σC and a central The ratio σC/σt to tensile stress σt is controlled within the range of 1.5 to 2.0, and the surface compressive stress is also 127 to 400 kg/cI.
? L is suppressed to a low range, more preferably 200 to 300 kg/d, and the cross-sectional stress distribution is as shown in Figure 4, so that when a crack occurs in this heat-treated glass plate, the fracture line will not move on its own. No, it cannot be broken by small pieces.

しかもこの熱処理ガラス板は板厚10mm以上15mm
以下を有し、かつ127〜400kg/i更に好ましく
は200〜300 kg/crrtの表面圧縮応力を持
っているので耐風圧強度は、同一厚みの生板の2倍以上
で実用上充分な強度であり、かつ熱割れすることもない
Moreover, this heat-treated glass plate has a thickness of 10 mm or more and 15 mm.
It has the following properties and has a surface compressive stress of 127 to 400 kg/i, more preferably 200 to 300 kg/crrt, so the wind pressure strength is more than twice that of raw board of the same thickness, which is sufficient for practical use. Yes, and there is no heat cracking.

例えば、板厚が121nmで中央引張応力σtが250
ky/i、表面圧縮応力σcが380 kg/cyyt
(σC/σt=ts2)の熱処理ガラス板は、中央引張
応力が高すぎるためにガラス板にクラックが入った場合
、クラックが自走するとともに破砕片が細かくなって第
5図に示す様な破砕パターンとなり、破砕片が窓から落
下する危険性が高くなって好ましくない。
For example, when the plate thickness is 121 nm, the central tensile stress σt is 250 nm.
ky/i, surface compressive stress σc is 380 kg/cyyt
When a heat-treated glass plate with (σC/σt=ts2) cracks because the central tensile stress is too high, the crack propagates on its own and the fragments become finer, resulting in the fracture shown in Figure 5. This is undesirable because it creates a pattern and increases the risk of debris falling from the window.

又板厚が15闘で、中央引張応力σtが275 ky/
ffl、表面圧縮応力σCが450kg/cr?i(即
ちac/at=1.64)のガラス板も同様である。
Also, the plate thickness is 15 mm and the central tensile stress σt is 275 ky/
ffl, surface compressive stress σC is 450 kg/cr? The same applies to the glass plate of i (ie, ac/at=1.64).

一方、本発明により製造される熱処理ガラス板、例えば
実施例1〜4のサンプルの熱処理ガラス板の破砕パター
ンはそれぞれ第6〜9図の様になり、ガラス板にクラッ
クが入った場合クラックの自走が抑えられ破壊線が何本
もガラス板の一端から他端まで入ることがなく、窓から
ガラス板の破砕片が落下するのを防ぐことができる。
On the other hand, the fracture patterns of the heat-treated glass plates produced according to the present invention, for example, the samples of Examples 1 to 4, are as shown in Figures 6 to 9, respectively, and when cracks occur in the glass plates, the cracks occur automatically. This prevents the breakage lines from entering from one end of the glass plate to the other, and prevents broken pieces of the glass plate from falling from the window.

又、熱割れ防止及び風圧破壊防止に要求される表面圧縮
応力127 kg/ctyt以上、特に好ましくは20
0 kg/iより高い表面圧縮応力を有しているので、
熱割れする危険性が少く、又耐風圧強度も充分である。
In addition, the surface compressive stress required to prevent thermal cracking and wind pressure fracture is 127 kg/ctyt or more, particularly preferably 20 kg/ctyt.
Since it has a surface compressive stress higher than 0 kg/i,
There is little risk of thermal cracking, and it also has sufficient wind pressure resistance.

なお、ガラス板が割れる時、クラックの自走が抑えられ
て破壊線(ヒビ)がガラスの一辺から他辺まで及ばない
様にされたものが窓からガラス板の破砕片が落下する危
険性が少なく好ましいが、ガラス板の一辺から他辺まで
及ぶ破壊線(ヒビ)が一本程度あっても窓からの破砕片
の落下の危険性が実際土中ないので、この種の一本程度
の破壊線(ヒビ)の存在は、本発明により製造された熱
処理ガラスの破砕パターンとして許される。
In addition, when a glass plate breaks, the self-propagation of the crack is suppressed so that the fracture line (crack) does not extend from one side of the glass to the other, so there is a risk of broken pieces of the glass plate falling from the window. Although it is preferable to have a small number of broken lines (cracks) extending from one side of the glass plate to the other, there is actually no danger of broken pieces falling from the window into the ground, so this type of breakage of about one line is not recommended. The presence of lines (cracks) is acceptable as a fracture pattern in the heat treated glass produced according to the present invention.

例えば、第7,8図はこの許される例である。For example, Figures 7 and 8 are examples of this permissible.

次に、本発明の熱処理ガラス板の製法の具体例について
説明する。
Next, a specific example of the method for manufacturing a heat-treated glass plate of the present invention will be described.

第10図は、本発明の熱処理ガラス板を製造するために
使用される一具体例の装置を示したものであり、図にお
いて、1は熱処理されるガラス板、2はローラーハース
、3はガラス板の搬送ロール、4はガラス板の加熱装置
、5は熱風吹出口を示す。
FIG. 10 shows a specific example of the apparatus used for producing the heat-treated glass plate of the present invention, and in the figure, 1 is the glass plate to be heat-treated, 2 is the roller hearth, and 3 is the glass plate. A conveying roll for the plate, 4 a heating device for the glass plate, and 5 a hot air outlet.

熱処理されるガラス板1はローラーハース2内を搬送ロ
ール2により水平に搬送されながら、あるいは水平に摺
動されながらガラス板を強化するのに充分な温度まで、
例えば600〜660°Cまで加熱される。
The glass plate 1 to be heat treated is conveyed horizontally by the conveyor roll 2 in the roller hearth 2, or is slid horizontally until the temperature is sufficient to strengthen the glass plate.
For example, it is heated to 600-660°C.

そしてローラーハース1から取出されたガラス板1は、
上下に対向した熱風吹出口間に移動され、この熱風吹出
口から50℃〜300°Cの熱風をガラス板面に吹き付
け、ガラス板の温度が200〜450°Cまで低下した
後熱風吹出口から取出し、所定の応力値及び応力分布を
もった強化ガラス板製品とする。
The glass plate 1 taken out from the roller hearth 1 is
The hot air outlet is moved between vertically opposed hot air outlets, from which hot air of 50°C to 300°C is blown onto the glass plate surface, and after the temperature of the glass plate has decreased to 200 to 450°C, the hot air outlet is It is taken out and made into a tempered glass plate product with a predetermined stress value and stress distribution.

本発明において、所定の表面圧縮応力、中央引張応力及
び断面応力分布を得るため、上記した600〜660℃
までのガラス板の加熱、50〜300°Cの熱風の吹出
し、この熱風吹出しによるガラス板温200〜450℃
までの冷却、及びこれら条件の組み合せが重要である。
In the present invention, in order to obtain predetermined surface compressive stress, central tensile stress, and cross-sectional stress distribution,
Heating the glass plate to a temperature of 50 to 300°C, blowing hot air to a temperature of 200 to 450°C
The combination of these conditions is important.

前述した本発明の熱処理ガラス板の製法は、ローラーハ
ースを利用したものであるが、この方法に限らず、ガス
ハースを利用してガラス板を水平に搬送しながら加熱し
、ガスハースの出口から出た直後、加熱ガラス板を熱処
理する方法、あるいはガラス板を吊手により吊下げて搬
送しながら加熱炉内で加熱し、この加熱炉の出口から出
た直後、加熱ガラス板を熱処理する方法などによっても
同様に製造することができる。
Although the method for manufacturing the heat-treated glass plate of the present invention described above uses a roller hearth, the method is not limited to this method. Alternatively, the heated glass plate may be heated in a heating furnace while being suspended from a hanger while being transported, and the heated glass plate may be heat treated immediately after it comes out of the outlet of the heating furnace. It can be manufactured similarly.

なお、第10図に示したガスハースを利用して強化ガラ
ス板を得る場合ローラーハース炉内で空気を熱交換器に
より加熱する方法、あるいは、熱風の吹口へ通ずる空気
送風用のダクトの途中でガスバーナー、あるいは電気加
熱ヒーターにより空気を加熱する方法などにより熱風を
得るのが実用上好ましい。
In addition, when obtaining a tempered glass plate using the gas hearth shown in Figure 10, there is a method in which the air is heated in a roller hearth furnace using a heat exchanger, or the gas is heated in the middle of the air blowing duct leading to the hot air outlet. It is practically preferable to obtain hot air by heating the air with a burner or an electric heater.

実施例 上記した装置を用いてソーダ・ライムガラス板を第1表
に示した条件で熱処理し、得られた熱処理ガラス板の中
央引張応力σt1表面圧縮応力σc1 σC/σt、
耐風圧性を示す許容荷重(破壊確率1/1000以下)
、熱割れ試験結果(熱割れするまでのガラス板中央部と
周辺部の温度差)を同じく第1表に示した。
Example A soda-lime glass plate was heat-treated using the above-mentioned apparatus under the conditions shown in Table 1, and the resulting heat-treated glass plate had a central tensile stress σt1 surface compressive stress σc1 σC/σt,
Allowable load indicating wind pressure resistance (probability of failure 1/1000 or less)
The results of the thermal cracking test (temperature difference between the central part and the peripheral part of the glass plate until thermal cracking) are also shown in Table 1.

又実施例1〜4の熱処理ガラス板及び比較例1の熱処理
ガラス板についてJISR3206の6−5に規定され
た破壊試験を行なった時の破砕パターンを第5〜9図に
示す。
5 to 9 show the fracture patterns obtained when the fracture tests specified in JISR3206 6-5 were conducted on the heat treated glass plates of Examples 1 to 4 and the heat treated glass plates of Comparative Example 1.

本発明の方法により、中央引張応力σtが85〜200
kg/iの範囲となり、かつその表面圧縮応力σCと中
央引張応力との比σC/σtが1.5〜2.0の範囲に
ある熱処理ガラス板が得られる理由については次の様に
考えられる。
By the method of the present invention, the central tensile stress σt is 85 to 200.
The reason why a heat-treated glass plate can be obtained in which the ratio of the surface compressive stress σC to the central tensile stress σC/σt is in the range of 1.5 to 2.0 is thought to be as follows. .

一般に軟化したガラス板を冷却して強化処理するときに
発生する残留応力は次の理論式による。
Generally, the residual stress generated when a softened glass plate is cooled and strengthened is based on the following theoretical formula.

冷却能:Q ガラス板温度:θ 比熱:C 密度:ρ 冷却時間:t ガラス板熱膨張率:α ポアソン比ニジ 弾性係数:E 熱伝導率二に ガラス板の板厚:h (ガラス内部の伝熱方 程式) これを解くと 中央引張応力σtは となる。Cooling capacity: Q Glass plate temperature: θ Specific heat: C Density: ρ Cooling time: t Glass plate thermal expansion coefficient: α Poisson ratio Elastic modulus: E Thermal conductivity is second Glass plate thickness: h (How heat is transferred inside the glass) equation) Solving this The central tensile stress σt is becomes.

ここで自然放冷の冷却能は通常約 K = 1.1 ’C/ s e c となる。Here, the cooling capacity of natural cooling is usually about K = 1.1'C/sec.

Q=2.5X10’k Kqal/m2hの関係より
板厚10m/mの場合a t =1511y/ff11
2 m/m ” σt=181 tt15m/m
tt σt = 226 //となる しかし自然放冷の場合、ガラス板両面の冷却能の差の制
御ができないためガラス板に反りが発生する。
From the relationship of Q=2.5X10'k Kqal/m2h, when the plate thickness is 10m/m, a t =1511y/ff11
2 m/m ” σt=181 tt15m/m
tt σt = 226 // However, in the case of natural cooling, the glass plate warps because it is not possible to control the difference in cooling capacity on both sides of the glass plate.

これを調整するため片面の冷却能をk〉1.1とするた
め実用上long以上のガラス板ではσt <200k
g/Cr?Lとすることが工業的には不可能となってい
る。
In order to adjust this, the cooling capacity on one side is set to k>1.1, so in practice, for glass plates longer than long, σt<200k
g/Cr? It has become industrially impossible to achieve L.

本発明は、このkの値を熱風を用いることにより制御し
σt=85〜200 kg/critの範囲に調整する
ことが可能となったものである。
The present invention makes it possible to control the value of k by using hot air and adjust it within the range of σt=85 to 200 kg/crit.

上記実施例及び比較例におけるガラス板の表面圧縮応力
は東芝風冷強化硝子表面応力計FSM−30により測定
し、又中央引張応力は次の様に測定したものである。
The surface compressive stress of the glass plates in the above Examples and Comparative Examples was measured using a Toshiba air-cooled tempered glass surface stress meter FSM-30, and the central tensile stress was measured as follows.

・中央引張応力の測定 第11図の様にガラス・サンプル11を水平に保持し、
端面に垂直にHe −N eレーザ12を光源に偏光子
13、レンズ14、絞り15を通した直線偏光Aを入射
する。
・Measurement of central tensile stress Hold the glass sample 11 horizontally as shown in Figure 11,
Linearly polarized light A, which has been passed through a polarizer 13, a lens 14, and an aperture 15 using a He-Ne laser 12 as a light source, is incident perpendicularly to the end face.

ガラス板11面に平行および垂直な方向を各々y、zと
し、入射方向をXとする。
Let y and z be the directions parallel and perpendicular to the surface of the glass plate 11, respectively, and let X be the incident direction.

入射光の振動方向はy −z面で各軸に対し、45°の
角度になるようにする。
The direction of vibration of the incident light is set at an angle of 45° with respect to each axis in the y-z plane.

ガラス板の端面から入射された直線偏光Aはガラスに内
在するy −z平面の主応力差によって、位相差を生じ
、第12図の様にy −z軸と45゜の角度に軸を持つ
楕円→円→楕円→直線(入射光と直交)→楕円→円→楕
円→直線と偏光が変わり、位相差360°で元の入射光
と振動方向が同じ直線偏向に戻る。
Linearly polarized light A incident from the end surface of the glass plate produces a phase difference due to the principal stress difference in the y-z plane inherent in the glass, and has an axis at an angle of 45° with the y-z axis as shown in Figure 12. The polarization changes as follows: ellipse → circle → ellipse → straight line (perpendicular to the incident light) → ellipse → circle → ellipse → straight line, and with a phase difference of 360°, the vibration direction returns to the same linear polarization as the original incident light.

この偏光はガラスの中で散乱され、光軸と直角をなすy
−z平面内のy、 z軸と45°の方向から観察する
と、第13図のB又は第14図の様に1波長ごとのドツ
ト状に見える。
This polarized light is scattered within the glass and is oriented at right angles to the optical axis.
When observed from a direction of 45° with respect to the y and z axes in the -z plane, it appears as dots for each wavelength, as shown in FIG. 13B or FIG. 14.

フロート・ガラス板の散乱は非常に小さいため、観察し
ようとする散乱光は微弱である。
Since the scattering of the float glass plate is very small, the scattered light to be observed is weak.

このため、マイクロ・チャンネル・イメージ・インテン
シファイヤーを内蔵した暗視装置を使い、高感度テレビ
・カメラ16を通してモニタテレビ1T上に散乱光のド
ツト・パターンを映し出す。
For this purpose, a night vision device with a built-in micro-channel image intensifier is used to project a dot pattern of scattered light onto the monitor television 1T through the high-sensitivity television camera 16.

ポジション・アナライザー18と組み合わせて実時間で
長さを読みとる。
In combination with the position analyzer 18, the length can be read in real time.

このドツト1つが360°(1波長)の位相差に対応す
るので、この実長さを測定することにより光弾性定数を
使い、主応力差を知ることができる。
Since one dot corresponds to a phase difference of 360° (one wavelength), by measuring this actual length, the principal stress difference can be determined using the photoelastic constant.

ここで求めた主応力差△σより中央引張応力σyを下式
により求める。
From the principal stress difference Δσ found here, the central tensile stress σy is determined by the following formula.

主応力差 △σ σy:応力の平面方向の成分、即ち中央引張応力 σ2:応力の厚み方向の成分(σZキ0)λ :レーザ
光波長(632,8m p −He−Neレーザ) lλ:360°の位相差に対応する光路差(crIl) C:光弾性定数 2.63mμ/crIL/kg/i(
フロート板) なお、本発明により製造される中央引張応力σtが85
〜200kg/d1表面圧縮応力σcが127〜600
kg/cIIL1更に好ましくは200〜300 kg
/iの熱処理ガラス板の上記各応力値とは、第15図の
様に熱処理ガラス板の周辺部の4点Pと中央部の1点Q
の5点における測定値を平均したものを示したものであ
り、平均値として捕えたものである。
Principal stress difference △σ σy: Component of stress in the plane direction, i.e. central tensile stress σ2: Component of stress in the thickness direction (σZki0) λ: Laser light wavelength (632,8 m p -He-Ne laser) lλ: 360 Optical path difference (crIl) corresponding to a phase difference of ° C: Photoelastic constant 2.63 mμ/crIL/kg/i (
Note that the center tensile stress σt manufactured by the present invention is 85
~200kg/d1 Surface compressive stress σc is 127~600
kg/cIIL1, more preferably 200-300 kg
The above stress values of the heat-treated glass plate /i are the four points P at the periphery and one point Q at the center of the heat-treated glass plate, as shown in Figure 15.
It shows the average of the measured values at five points, and is taken as an average value.

以上の様に、本発明によれば、耐風圧強度が実用上充分
で、かつ熱割れすることがなく更にクラックがガラス板
に入ってもクラックが自走せず、細かい破片に割れるこ
とがない熱処理ガラスを提供することができる。
As described above, according to the present invention, the wind pressure strength is sufficient for practical use, there is no thermal cracking, and furthermore, even if a crack enters the glass plate, the crack does not propagate by itself and does not break into small pieces. Heat treated glass can be provided.

このガラス板は割れても破片の一部あるいは全体が窓枠
から脱落する危険性が少なく、ビル、住宅等の建築用ガ
ラス板として有用である。
Even if this glass plate breaks, there is little risk that some or all of the pieces will fall off the window frame, and it is useful as a glass plate for construction of buildings, houses, etc.

特にガラス板の破片の落下の危険性のないガラス板が要
求される中高層ビル用の窓用ガラス板として本発明の方
法により製造された熱処理ガラス板は最適である。
In particular, the heat-treated glass sheet produced by the method of the present invention is ideal for use as a window glass sheet for medium-to-high-rise buildings, which requires a glass sheet that is free from the risk of falling glass fragments.

中でも熱割れの危険性の高い窓用、あるいはスパンドレ
ル用に使用される熱線吸収ガラス板、着色コートガラス
板、熱線反射ガラス板等のガラス板に対し、本発明によ
り製造された熱処理ガラス板は好適である。
The heat-treated glass sheet manufactured by the present invention is particularly suitable for glass sheets such as heat-absorbing glass sheets, colored coated glass sheets, and heat-reflecting glass sheets used for windows or spandrels that have a high risk of thermal cracking. It is.

又、本発明により製造されたガラス板は耐風圧強度及び
熱割れ強度が向上され、又クラック自走防止がなされて
いるので、例えば、従来19mrn厚のガラス板が使用
されていた中高層用の窓ガラス板を本発明により製造さ
れた12mm厚の熱処理ガラス板に置き換えることがで
き、ガラス板の軽量化を計ることができる。
In addition, the glass plate manufactured according to the present invention has improved wind pressure strength and thermal cracking strength, and also prevents self-propagation of cracks. The glass plate can be replaced with a 12 mm thick heat-treated glass plate manufactured according to the present invention, and the weight of the glass plate can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第3図は、従来の強化ガラス板の厚さ方向の断面
の応力分布図、第4図は本発明の方法により製造された
熱処理ガラス板の厚さ方向の断面の応力分布図、第5図
は比較例に係るガラス板の破砕パターン図、第6〜9図
は本発明の方法により製造された熱処理ガラス板の破砕
パターン図、第10図は本発明を実施するための装置の
一具体例に係る概略図、第11図はガラス板の中央引張
応力を測定するための装置の概略図、第12〜14図は
ガラス板の中央引張応力の測定原理を示すための説明図
、第15図は応力の測定点を示す説明図である。 1:熱処理されるガラス板、2:ローラーハース、3:
搬送ロール、4ニガラス板の加熱装置、5:熱風吹出口
1 to 3 are stress distribution diagrams of a cross section in the thickness direction of a conventional tempered glass plate, and FIG. 4 is a stress distribution diagram of a cross section in the thickness direction of a heat-treated glass plate manufactured by the method of the present invention. FIG. 5 is a diagram of a crushing pattern of a glass plate according to a comparative example, FIGS. 6 to 9 are diagrams of a crushing pattern of a heat-treated glass plate manufactured by the method of the present invention, and FIG. 10 is a diagram of a crushing pattern of a glass plate according to a comparative example. A schematic diagram according to one specific example; FIG. 11 is a schematic diagram of an apparatus for measuring the central tensile stress of a glass plate; FIGS. 12 to 14 are explanatory diagrams showing the principle of measuring the central tensile stress of a glass plate; FIG. 15 is an explanatory diagram showing stress measurement points. 1: Glass plate to be heat treated, 2: Roller hearth, 3:
Conveyance roll, 4: Glass plate heating device, 5: Hot air outlet.

Claims (1)

【特許請求の範囲】 1 板厚が10mm〜15mmのガラス板を加熱炉内を
通して600°C〜660℃に加熱した後、このガラス
板を加熱炉から取出し、その後直ちにこのガラス板表面
に50℃〜300℃の熱風を吹き付けてガラス板の冷却
速度を大気中の自然放冷より遅くしてガラス板の歪点温
度以下まで冷却して、この処理されたガラス板の中央引
張応力σtが85〜200kg/CIj、の範囲となり
、かつその表面圧縮応力σCと中央引張応力σtとの比
σC/σtが1.5〜2.0の範囲となる様に制御する
ことを特徴とするガラス板の熱処理方法。 2 板厚10mm〜151n11Lのガラス板をローラ
ーハース炉内を水平に搬送させながら600°C〜66
0℃に加熱した後、ローラーハース炉から水平に取出し
て対向した吹口間に入れて該吹口から温度50℃〜30
0℃の熱風を吹き出させてガラス板をガラス板の歪点温
度以下まで冷却することを特徴とする特許請求の範囲第
1項記載のガラス板の熱処理方法。 3 ローラーハース炉内で熱交換器により加熱された5
0℃〜300℃の熱風をローラーハース炉から水平に取
出されたガラス板の両面に吹き付けることを特徴とする
特許請求の範囲第2項記載のガラス板の熱処理方法。 4 冷却空気を吹ロヘ通ずるダクトの途中でガスバーナ
ーを燃焼させて50°C〜300℃に加熱して熱風とす
ることを特徴とする特許請求の範囲第1項記載のガラス
板の熱処理方法。
[Scope of Claims] 1. After passing a glass plate with a thickness of 10 mm to 15 mm through a heating furnace and heating it to 600°C to 660°C, the glass plate is taken out from the heating furnace, and immediately thereafter, the surface of the glass plate is heated at 50°C. By blowing hot air at ~300°C, the cooling rate of the glass plate is slower than that of natural cooling in the atmosphere, and the glass plate is cooled to below the strain point temperature of the glass plate, so that the central tensile stress σt of this treated glass plate is 85~ 200 kg/CIj, and the ratio of the surface compressive stress σC to the central tensile stress σt, σC/σt, is controlled to be in the range of 1.5 to 2.0. Method. 2 A glass plate with a thickness of 10mm to 151n11L is heated at 600°C to 66°C while horizontally conveying it in a roller hearth furnace.
After heating to 0°C, it is taken out horizontally from the roller hearth furnace, placed between opposing blowholes, and heated to a temperature of 50°C to 30°C.
2. The method for heat treatment of a glass plate according to claim 1, wherein the glass plate is cooled to a temperature below the strain point of the glass plate by blowing out hot air at 0°C. 3 Heated by a heat exchanger in a roller hearth furnace 5
3. The method for heat treating a glass plate according to claim 2, wherein hot air at 0°C to 300°C is blown onto both sides of the glass plate taken out horizontally from a roller hearth furnace. 4. The method for heat treating a glass plate according to claim 1, characterized in that the cooling air is heated to 50°C to 300°C by burning a gas burner in the middle of a duct passing through the blower to produce hot air.
JP57116241A 1982-07-06 1982-07-06 Glass plate heat treatment method Expired JPS5925734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57116241A JPS5925734B2 (en) 1982-07-06 1982-07-06 Glass plate heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116241A JPS5925734B2 (en) 1982-07-06 1982-07-06 Glass plate heat treatment method

Publications (2)

Publication Number Publication Date
JPS598628A JPS598628A (en) 1984-01-17
JPS5925734B2 true JPS5925734B2 (en) 1984-06-20

Family

ID=14682287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116241A Expired JPS5925734B2 (en) 1982-07-06 1982-07-06 Glass plate heat treatment method

Country Status (1)

Country Link
JP (1) JPS5925734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430451Y2 (en) * 1986-01-09 1992-07-22

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164686A (en) * 1984-09-04 1986-04-03 三菱電機株式会社 Temporarily installed elevator
JPH0649586B2 (en) * 1988-12-28 1994-06-29 旭硝子株式会社 Heat-treated glass plate and its manufacturing method
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
JP6701168B2 (en) 2014-07-31 2020-05-27 コーニング インコーポレイテッド Heat strengthened glass, and method and apparatus for heat strengthening glass
KR102492060B1 (en) 2016-01-12 2023-01-26 코닝 인코포레이티드 Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
CN111065609A (en) 2017-08-24 2020-04-24 康宁股份有限公司 Glass with improved tempering capability
TWI785156B (en) 2017-11-30 2022-12-01 美商康寧公司 Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
WO2021025981A1 (en) 2019-08-06 2021-02-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110719A (en) * 1976-02-25 1977-09-17 Libbey Owens Ford Co Apparatus for brnding and tempering flat glass by differential cooling
JPS5515983A (en) * 1978-07-21 1980-02-04 Nippon Sheet Glass Co Ltd Strengthened glass plate and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110719A (en) * 1976-02-25 1977-09-17 Libbey Owens Ford Co Apparatus for brnding and tempering flat glass by differential cooling
JPS5515983A (en) * 1978-07-21 1980-02-04 Nippon Sheet Glass Co Ltd Strengthened glass plate and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430451Y2 (en) * 1986-01-09 1992-07-22

Also Published As

Publication number Publication date
JPS598628A (en) 1984-01-17

Similar Documents

Publication Publication Date Title
US3107196A (en) Heat treatment of glass and product
JPS5925734B2 (en) Glass plate heat treatment method
US6370917B1 (en) Quenching method and apparatus for tempering a glass sheet
US6881485B2 (en) Tempered glass sheet and method therefor
JP7206034B2 (en) Method for desymmetrizing hydrogen content and method for producing highly chemically strengthenable plate-like glass article and glass article obtained according to the method
JPS5925736B2 (en) Improved method for manufacturing heat-treated glass plates
JPH02175624A (en) Heat-treated glass plate and production thereof
JPH0653585B2 (en) Heat treatment method for glass plate
JPS6238288B2 (en)
JPS5925735B2 (en) Manufacturing method of heat treated glass plate
JPH0348143B2 (en)
JPH0331656B2 (en)
JP3505755B2 (en) Glass plate heat treatment equipment
US3776709A (en) Method of toughening glass sheets
JP2003040635A (en) Production method for fireproof glass
US20110271716A1 (en) Method for producing thermally tempered glasses
JP4438149B2 (en) Glass substrate for display
US20190047893A1 (en) Thermally strengthened photochromic glass and related systems and methods
US3333934A (en) Method of and apparatus for shaping glass sheets with opposed pressing members
JPS6335581B2 (en)
US2823491A (en) Production of birefringent glass
JP5375213B2 (en) Manufacturing method of glass substrate for display and manufacturing method of flat panel display
US3387963A (en) Annealing lehr for glass sheets with reradiating side wall plates
JP2009179552A5 (en)
Winstanley et al. Concepts of annealing applied to small glass fragments