JPH0331656B2 - - Google Patents

Info

Publication number
JPH0331656B2
JPH0331656B2 JP57113995A JP11399582A JPH0331656B2 JP H0331656 B2 JPH0331656 B2 JP H0331656B2 JP 57113995 A JP57113995 A JP 57113995A JP 11399582 A JP11399582 A JP 11399582A JP H0331656 B2 JPH0331656 B2 JP H0331656B2
Authority
JP
Japan
Prior art keywords
glass plate
heat
stress
glass
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57113995A
Other languages
Japanese (ja)
Other versions
JPS598626A (en
Inventor
Kazuya Ooba
Masayuki Miwa
Koji Imamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11399582A priority Critical patent/JPS598626A/en
Publication of JPS598626A publication Critical patent/JPS598626A/en
Publication of JPH0331656B2 publication Critical patent/JPH0331656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0417Controlling or regulating for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/012Tempering or quenching glass products by heat treatment, e.g. for crystallisation; Heat treatment of glass products before tempering by cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/044Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ガラス板にクラツクが入つた時にも
クラツクが自走しない安全性の高い熱処理ガラス
板の製法に関するものである。 例えば、高層ビルにおいては、窓ガラス板の耐
風圧向上を計るため、10〜20mm程度の特厚のガラ
ス板が使用されている。この様な特厚のガラス板
を使用すると、重量が著るしく増大するという欠
点があるとともに、板厚の厚い熱線吸収ガラスや
着色コートガラス板を使用した場合には、特に熱
割れの危険性が高くなるという欠点がある。軽量
化対策、熱割れ防止対策のために風冷強化ガラス
板を使用することも可能であるが、風冷強化ガラ
ス板は破損時細かい多くの破片になるため、高層
ビルに風冷強化ガラス板を使用すると破損した時
高層ビルの窓からガラス板の破片が降り落ちると
いう危険があり好ましくない。又、強化ガラス板
の一種として表面圧縮応力が高く、且つ破片数密
度の小さい化学強化ガラス板もあるが、この化学
強化ガラス板は傷がついた場合の強度低下が著る
しいとともに、強化処理工程に長時間を要するた
め実用には不適である。 本発明は、高層ビル等の窓ガラス板として従来
の特厚ガラス板の板厚より薄くて同程度あるいは
それ以上の耐風圧強度で、かつ熱割れがなく実用
上の不都合もなく、更に量産化が可能な熱処理ガ
ラス板の製法を提供することを目的として研究を
重ねた結果得られたものであり、その要旨は、板
厚5mm以上10mm未満のガラス板を600℃〜660℃に
加熱した後、このガラス板を100〜300Kcal/
m2・hr・℃の冷却能で1秒〜20秒間1次冷却して
ガラス板の表面温度を450℃〜560℃まで低下さ
せ、次いでその直後に200℃〜500℃の範囲の熱処
理炉に入れてガラス板を徐冷し、発生応力を調整
することを特徴とする熱処理ガラス板の製法に関
するものである。 ソーダ・ライムガラス板よりなるガラス板を軟
化点温度域600℃〜700℃まで加熱した後直ちに、
このガラス板の両面に空気を吹き付けて急冷して
強化した従来の普通の強化ガラス板は、1000Kg/
cm2〜1500Kg/cm2の表面圧線応力とその断面方向の
中心部に表面圧縮応力の約1/2の引張応力が発生
し、その断面応力分布は第1図に示した様にな
る。そして、この強化ガラス板が破壊した時は、
ガラス板に発生したクラツクが自走し、そして上
記中央引張応力の大きさによつて一義的に決まる
破砕密度、例えば40〜200個/5cm角をもつて細
かく割れてしまう。又、半強化ガラス板は、300
〜600Kg/cm2の表面圧縮応力σcと250〜400Kg/cm2
の中央引張応力σtと、1.5未満のσc/σtの比を有
し、その断面応力分布は第2図に示した様にな
り、この半強化ガラス板が破壊した場合には、細
かい破片をもつて割れないものの、破壊時ガラス
板に発生したクラツクは自走し、ガラス板の端部
まで及んでしまう。 又、化学強化ガラス板は、1000Kg/cm2〜3000
Kg/cm2の表面圧縮応力と10〜60Kg/cm2の中央引張
応力とを有し、その断面応力分布は第3図に示し
た様になり、この化学強化ガラス板は表面圧縮応
力層が薄いため傷がついた時の衝撃強度が著るし
く低下する。 これに対し、本発明により製造された熱処理ガ
ラス板は、その中央引張応力が85〜200Kg/cm2
間に低くコントロールされ、かつその表面圧縮応
力σcと中央引張応力σtとの比σc/σtが1.5〜3.0の
範囲にコントロールされて表面圧縮応力も127〜
600Kg/cm2の範囲、更に好ましくは250〜350Kg/
cm2に低く押えられ、第4図に示した様な断面応力
分布にされているので、この熱処理ガラス板にク
ラツクが入つた時その破壊線が自走せず、細かい
破片をもつて割れない。しかもこの熱処理ガラス
板は板厚5mm以上10mm未満を有し、かつ127〜600
Kg/cm2更に好ましくは250〜350Kg/cm2の表面圧縮
応力を持つているので耐風圧強度は、同一厚みの
生板の2倍以上で実用充分な強度であり、かつ熱
割れすることもない。 例えば、板厚が6mmで中央引張応力σtが、250
Kg/cm2、表面圧縮応力σが370Kg/cm2(σc/σt=
1.48)の熱処理ガラス板は、中央引張応力が高す
ぎるためにガラス板にクラツクが入つた場合、ク
ラツクが自走するときにも破砕片が細かくなつ
て、第5図に示す様な破砕パターンとなり、破砕
片が窓から落下する危険性が高くなつて好ましく
ない。 又、板厚が8mmで中央引張応力σcが580Kg/
cm2、表面圧縮応力σtが390Kg/cm2(σc/σt=1.49)
の熱処理ガラス板も上記例と同じく中央引張応力
が高すぎるためにガラス板にクラツクが入つた場
合クラツクが自走するときには破砕片が細かくな
つて第6図に示す様な破砕パターンとなり、破砕
片が窓から落下する危険性が高くなつて好ましく
ない。又板厚が6mmで、中央引張応力σtが60Kg/
cm2、表面圧縮応力σcが120Kg/cm2(即ちσc/σt=
2.0)のガラス板は、中央引張応力が低いためガ
ラス板にクラツクが入つた場合クラツク自走しな
いが耐風圧強度が低く好ましくない。例えば、充
分な風圧に耐えるに必要な表面圧縮応力、例えば
250Kg/cm2より低くなつて耐風圧強度が低下し好
ましくない。 一方、本発明により製造された熱処理ガラス
板、例えば後記する実施例1〜6のサンプルの熱
処理ガラス板の破砕パターンはそれぞれ第7〜1
2図の様になり、ガラス板にクラツクが入つた場
合クラツクの自走が抑えられ破壊線が何本もガラ
ス板の一端から他端まで入ることがなく、窓から
ガラス板の破砕片が落下するのを防ぐことができ
る。又、熱割れ防止及び風圧破壊防止に要求され
る表面圧縮応力127Kg/cm2以上好ましくは250Kg/
cm2より高い表面圧縮応力を有しているので、熱割
れする危険性が少く、又耐風圧強度も充分であ
る。 なお、ガラス板が割れる時、クラツクの自走が
押えられて破壊線(ヒビ)がガラスの一辺から他
辺まで及ぼない様にされたものが窓からガラス板
の破砕片が落下する危険性が少なく好ましいが、
ガラス板の一辺から他辺まで及ぶ破壊線(ヒビ)
が一本程度あつても窓からの破砕片の落下の危険
性が実際上少ないので、この種の一本程度の破壊
線(ヒビ)の存在は、本発明により製造された熱
処理ガラスの破砕パターンとして許される。 次に本発明の熱処理ガラス板の製法の具体例に
ついて説明する。 第13図は本発明の熱処理ガラス板を製造する
ために使用される一具体例の装置を示したもので
あり、図において、1は熱処理されるガラス板、
2はローラーハース、3はガラス板の搬送ロー
ル、4はガラス板の加熱装置、5は上下に対向し
て設けられた第1の冷却吹口、6は上下に対向し
て設けられた熱処理炉、7は上下に対向して設け
られた第2の冷却吹口を示す。上記ガラス板1は
ローラーハース内を搬送ローラーーにより水平に
搬送しながら、あるいは水平に摺動しながらガラ
ス板を熱処理するのに充分な温度まで、例えば
600〜660℃まで加熱される。ローラーハースから
取出されたガラス板は、ローラーハースの出口に
隣接して設けられた第1の吹口間に移動され、こ
の第1の吹口5から空気を100〜300Kcal/m2
hr・℃の冷却能となる様に1〜20秒間吹き付けて
ガラス板をその表面温度がガラス板の固化温度、
即ち約450〜560℃になるまで冷却し、次いで200
℃〜500℃の温度の熱処理炉に入れて2〜5分間
ガラス板を徐冷し、発生応力を調整し、ガラス板
の表面温度が400〜450℃まで低下したならば熱処
理炉から取出して、更に第2の冷却吹口7で更に
冷却し所定の応力値及び応力分布をもつた熱処理
ガラス板とする。 本発明においては、所定の表面圧縮応力、中央
引張応力及び断面応力分布を得るため、上記した
600〜660℃までのガラス板の加熱、100〜
300Kcal/m2・hr・℃の冷却能と1〜20秒間の第
1次冷却、第1次冷却により450〜560℃までの冷
却、200〜500℃の熱処理炉でガラス板の表面温度
400〜450℃までの徐冷、及びこれらの条件の組み
合わせが重要である。 前述した本発明の熱処理ガラス板の製法は、ロ
ーラーハースを利用したものであるが、この方法
に限らず、ガスハースを利用してガラス板を水平
に搬送しながら加熱し、ガスハースの出口から出
た直後、加熱ガラス板を熱処理する方法、あるい
はガラス板を吊手により吊下げて搬送しながら加
熱炉内で加熱し、この加熱炉の出口から出た直
後、加熱ガラス板を熱処理する方法などによつて
も同様に製造することができる。 又、本発明の方法により熱処理する際、熱処理
炉6内で徐冷した後、第1の冷却吹口へ戻して2
次冷却を行なう様にすれば、第2の冷却吹口を省
くことができ、設備費を低減させることができ
る。 実施例 上記した装置を用いてソーダ・ライムガラス板
を第1表に示した条件で熱処理し、得られた熱処
理ガラス板の中央引張応力σt、表面圧縮応力σc、
σc/σt、耐風圧性を示す許容荷重(破壊確率1/10
00以下)、熱割れ試験結果(熱割れするまでのガ
ラス板中央部と周辺部の温度差)を同じく第1表
に示した。又実施例1〜6の熱処理ガラス板及び
比較例1〜2の熱処理ガラス板についてJIS R
3206の6−5に規定された破壊試験を行なつた時
の破砕パターンを第5〜12図に示した。
The present invention relates to a method for manufacturing a heat-treated glass plate that is highly safe and prevents the crack from moving on its own even if a crack occurs in the glass plate. For example, in high-rise buildings, extra-thick glass plates of about 10 to 20 mm are used to improve the wind pressure resistance of window glass plates. Using such extra-thick glass plates has the disadvantage of significantly increasing weight, and when using thick heat-absorbing glass or colored coated glass plates, there is a particular risk of thermal cracking. The disadvantage is that it is expensive. Although it is possible to use air-cooled tempered glass sheets to reduce weight and prevent heat cracking, air-cooled tempered glass sheets break into many small pieces when broken, so air-cooled tempered glass sheets are not used in high-rise buildings. It is undesirable to use glass panels because there is a risk that glass fragments may fall from the windows of high-rise buildings when they break. Also, as a type of tempered glass plate, there is a chemically strengthened glass plate that has a high surface compressive stress and a small number of fragments, but this chemically strengthened glass plate has a significant decrease in strength when scratched, and it is difficult to strengthen it. Since the process requires a long time, it is not suitable for practical use. The present invention is thinner than conventional extra-thickness glass plates for window glass plates of high-rise buildings, has the same or higher wind resistance strength, does not have thermal cracking, has no practical problems, and can be mass-produced. This was obtained as a result of repeated research with the aim of providing a manufacturing method for heat-treated glass plates that can be heated to 600°C to 660°C. , this glass plate costs 100-300Kcal/
The surface temperature of the glass plate is lowered to 450°C to 560°C by primary cooling for 1 to 20 seconds at a cooling capacity of m2hr・°C, and then immediately after that, it is placed in a heat treatment furnace in the range of 200°C to 500°C. The present invention relates to a method for manufacturing a heat-treated glass plate, which is characterized in that the glass plate is slowly cooled in a heat-treated glass plate to adjust the generated stress. Immediately after heating a glass plate made of soda-lime glass plate to a softening point temperature range of 600℃ to 700℃,
A conventional ordinary tempered glass plate, which is strengthened by blowing air on both sides of the glass plate and rapidly cooling it, weighs 1000 kg/
A surface pressure linear stress of cm 2 to 1500 Kg/cm 2 and a tensile stress of about 1/2 of the surface compressive stress are generated at the center in the cross-sectional direction, and the cross-sectional stress distribution is as shown in FIG. And when this tempered glass plate breaks,
The cracks generated in the glass plate propagate and break into small pieces with a crushing density, for example, 40 to 200 pieces/5 cm square, which is uniquely determined by the magnitude of the central tensile stress. Also, the semi-tempered glass plate is 300
Surface compressive stress σc of ~600Kg/ cm2 and 250~400Kg/ cm2
The central tensile stress σt is less than 1.5, and the cross-sectional stress distribution is as shown in Figure 2. Although the glass plate does not break, the cracks that occur in the glass plate propagate by themselves and extend to the edges of the glass plate. Also, chemically strengthened glass plate is 1000Kg/cm 2 ~ 3000
It has a surface compressive stress of Kg/ cm2 and a central tensile stress of 10 to 60Kg/ cm2 , and its cross-sectional stress distribution is as shown in Figure 3.This chemically strengthened glass sheet has a surface compressive stress layer. Because it is thin, its impact strength is significantly reduced when scratched. On the other hand, in the heat-treated glass plate manufactured according to the present invention, the central tensile stress is controlled to be low between 85 and 200 Kg/ cm2 , and the ratio of the surface compressive stress σc to the central tensile stress σt is σc/σt. is controlled in the range of 1.5 to 3.0, and the surface compressive stress is also 127 to 3.0.
Range of 600Kg/ cm2 , more preferably 250-350Kg/
cm 2 and has a cross-sectional stress distribution as shown in Figure 4, so when a crack occurs in this heat-treated glass plate, the fracture line does not travel on its own and it does not break into small pieces. . Moreover, this heat-treated glass plate has a thickness of 5 mm or more and less than 10 mm, and has a thickness of 127 to 600 mm.
Kg/ cm2 , more preferably 250 to 350Kg/ cm2 , which has a surface compressive stress, so the wind pressure strength is more than twice that of a raw board of the same thickness, which is sufficient for practical use, and it is also resistant to thermal cracking. do not have. For example, when the plate thickness is 6 mm, the central tensile stress σt is 250
Kg/cm 2 , surface compressive stress σ is 370Kg/cm 2 (σc/σt=
1.48) If the central tensile stress in the heat-treated glass plate is too high and a crack occurs in the glass plate, the broken pieces become fine even when the crack moves on its own, resulting in a fracture pattern as shown in Figure 5. This is undesirable as it increases the risk of debris falling from the window. Also, the plate thickness is 8mm and the central tensile stress σc is 580Kg/
cm 2 , surface compressive stress σt is 390Kg/cm 2 (σc/σt=1.49)
Similarly to the above example, in the heat-treated glass plate, if a crack occurs in the glass plate because the central tensile stress is too high, when the crack moves on its own, the broken pieces become finer and become a broken pattern as shown in Fig. 6. This is undesirable as it increases the risk of the person falling out of the window. Also, the plate thickness is 6mm and the central tensile stress σt is 60Kg/
cm 2 , and the surface compressive stress σc is 120Kg/cm 2 (i.e. σc/σt=
The glass plate of 2.0) has a low central tensile stress, so if a crack occurs in the glass plate, the crack will not move by itself, but the wind resistance strength is low, which is not preferable. For example, the surface compressive stress required to withstand sufficient wind pressure, e.g.
If it is lower than 250Kg/cm 2 , the wind pressure resistance strength decreases, which is not preferable. On the other hand, the fracture patterns of the heat-treated glass plates manufactured according to the present invention, for example, the heat-treated glass plates of the samples of Examples 1 to 6 described later, are 7th to 1st, respectively.
As shown in Figure 2, when a crack occurs in the glass plate, the self-propulsion of the crack is suppressed and no lines of breakage extend from one end of the glass plate to the other, causing broken pieces of the glass plate to fall from the window. You can prevent it from happening. In addition, the surface compressive stress required to prevent thermal cracking and wind pressure fracture is 127Kg/cm 2 or more, preferably 250Kg/cm 2 or more.
Since it has a surface compressive stress higher than cm 2 , there is little risk of thermal cracking, and it also has sufficient wind pressure resistance. In addition, when a glass plate breaks, the self-propelled crack is suppressed so that the fracture line (crack) does not extend from one side of the glass to the other, so there is a risk of broken glass pieces falling from the window. Although less is preferable,
Fracture line (crack) extending from one side of the glass plate to the other
The presence of a single fracture line (crack) of this kind does not necessarily limit the fracture pattern of the heat-treated glass produced according to the present invention, since the risk of broken pieces falling from the window is practically small even if there is only one fracture line. It is allowed as. Next, a specific example of the method for manufacturing the heat-treated glass plate of the present invention will be described. FIG. 13 shows a specific example of the apparatus used for manufacturing the heat-treated glass plate of the present invention, and in the figure, 1 indicates the glass plate to be heat-treated;
2 is a roller hearth, 3 is a conveyor roll for glass plates, 4 is a heating device for glass plates, 5 is a first cooling outlet provided vertically facing each other, 6 is a heat treatment furnace provided vertically facing each other, Reference numeral 7 indicates a second cooling outlet provided vertically to face each other. The glass plate 1 is conveyed horizontally in the roller hearth by a conveyor roller, or while sliding horizontally, to a temperature sufficient to heat-treat the glass plate, for example.
Heated to 600-660℃. The glass plate taken out from the roller hearth is moved between the first blower ports provided adjacent to the outlet of the roller hearth, and air is pumped through the first blower port 5 at a rate of 100 to 300 Kcal/m 2 .
Spray the glass plate for 1 to 20 seconds to achieve a cooling capacity of hr・℃ until the surface temperature reaches the solidification temperature of the glass plate,
That is, it is cooled to about 450-560℃, then heated to 200℃.
The glass plate is placed in a heat treatment furnace at a temperature of ℃ to 500℃ and slowly cooled for 2 to 5 minutes to adjust the generated stress. When the surface temperature of the glass plate has decreased to 400 to 450℃, it is taken out from the heat treatment furnace. Furthermore, the glass plate is further cooled at the second cooling outlet 7 to obtain a heat-treated glass plate having a predetermined stress value and stress distribution. In the present invention, in order to obtain predetermined surface compressive stress, central tensile stress, and cross-sectional stress distribution, the above-mentioned
Heating of glass plate to 600~660℃, 100~
Cooling capacity of 300Kcal/m 2・hr・℃, primary cooling for 1 to 20 seconds, cooling to 450 to 560℃ by primary cooling, surface temperature of glass plate in a heat treatment furnace of 200 to 500℃
Slow cooling to 400-450°C and a combination of these conditions are important. The method for manufacturing the heat-treated glass plate of the present invention described above uses a roller hearth, but the method is not limited to this method. Immediately after that, the heated glass plate is heat-treated, or the glass plate is suspended from a hanger and heated in a heating furnace while being transported, and the heated glass plate is heat-treated immediately after it comes out of the outlet of the heating furnace. It can also be manufactured in the same way. In addition, when performing heat treatment by the method of the present invention, after being slowly cooled in the heat treatment furnace 6, it is returned to the first cooling nozzle 2.
If the secondary cooling is performed, the second cooling outlet can be omitted and the equipment cost can be reduced. Example A soda-lime glass plate was heat-treated using the above-mentioned apparatus under the conditions shown in Table 1, and the resulting heat-treated glass plate had a central tensile stress σt, a surface compressive stress σc,
σc/σt, allowable load indicating wind pressure resistance (probability of failure 1/10
00 or less), and the thermal cracking test results (temperature difference between the central part and the peripheral part of the glass plate until thermal cracking occurs) are also shown in Table 1. Also, JIS R for the heat-treated glass plates of Examples 1 to 6 and the heat-treated glass plates of Comparative Examples 1 to 2.
Figures 5 to 12 show the fracture patterns obtained when the destructive test specified in 6-5 of 3206 was carried out.

【表】 本発明の方法により、中央引張応力σtが85〜
200Kg/cm2の範囲となり、かつその表面圧縮応力
σcと中央引張応力σtとの比σc/σtが1.5〜3.0の範
囲にある熱処理ガラス板が得られる理由について
は次の様に考えられる。 軟化したガラス板を急冷すると、ガラス板断面
の温度分布は遷移状態を経て定常状態になる。通
常ガラス板中心部の温度が固化温度(560〜567
℃)を通過する時の温度分布(表面と中心の温度
差)がガラス板の強化度即ち中央引張応力と表面
圧縮応力を決定する。 本発明はこのガラス板固化前後の温度の変化を
単純な冷却とはちがつた履歴を与えることにより
操作し好ましい応力を得るものである。即ち、ガ
ラス板表面温度のみ固化温度以下になつた状態
(この時点で中央部はまだ軟化している)で、ガ
ラス板の冷却を中止し200〜500℃の雰囲気で徐冷
することにより、表面の温度、固化状態は変化さ
せず、中央部のみ固化を遅らせることにより残留
応力を緩和させ中央引張応力を小さくすることが
可能となるのである。 上記実施例及び比較例におけるガラス板の表面
圧縮応力は東芝風冷強化硝子表面応力計FSM−
30により測定し、又中央引張応力は次の様に測定
したものである。 Γ中央引張応力の測定 第14図の様にガラス板サンプル11を水平に
保持し、端面に垂直にHe−Neレーザ12を光源
に偏光子13、レンズ14、絞り15を通した直
線偏光Aを入射する。ガラス板面に平行および垂
直な方向を各々y、Zとし、入射方向をxとす
る。入射光の振動方向はy−z面で各軸に対し、
45゜の角度になるようにする。 ガラス板の端面から入射された直線偏光Aはガ
ラスに内在するy−z平面の主応力差によつて、
位相差を生じ、第15図の様にy−z軸と45゜の
角度に軸を持つ楕円→円→楕円→直線(入射光と
直交)→楕円→円→楕円→直線と偏光が変わり、
位相差360゜で元の入射光と振動方向が同じ直線偏
向に戻る。 この偏光はガラスの中で散乱され、光軸と直角
をなすy−z平面内の、y、z軸と45゜の方向か
ら観察すると、第16図のB又は第17図の様に
1波長ごとのドツト状に見える。 フロート・ガラス板の散乱は非常に小さいた
め、観察しようとする散乱光は微弱である。この
ため、マイクロ・チヤンネル・イメージ・インテ
ンシフアイヤーを内蔵した暗視装置を使い、高感
度テレビ・カメラ16を通してモニタテレビ17
上に散乱光のドツト・パターンを映し出す。ポジ
シヨン・アナライザー18と組み合わせて実時間
で長さを読みとる。 このドツトの1つが360゜(1波長)の位相差に
対応するので、この実長さを測定することにより
光弾性定数を使い、主応力差を知ることができ
る。 ここで求めた主応力差△σより中央引張応力
σyを下式により求める。 主応力差 △σ △σ=σy−σz=σy=λ/c・1/lλ σy:応力の平面方向の成分、即ち中央引張応力 σz:応力の厚み方向の成分(σz≒0) λ:レーザ光波長(632.8mμ−He−Neレーザ) l〓:360゜の位相差に対応する光路差(cm) C:光弾性定数2.63mμ/cm/Kg/cm2(フロート
板) なお、本発明の中央引張応力σtが85〜200Kg/
cm2、表面圧縮応力σcが127〜600Kg/cm2、更に好
ましくは250〜350Kg/cm2の熱処理ガラス板の上記
各応力値とは、第18図の様に熱処理ガラス板の
周辺部の4点Pと中央部の1点Qの5点における
測定値を平均したものを示したものであり、平均
値として捕えたものである。 以上の様に、本発明によれば、耐風圧強度が実
用上充分で、かつ熱割れすることがなく更にクラ
ツクがガラス板に入つてもクラツクが自走せず、
細かい破片に割れることがない熱処理ガラス板を
提供することができる。このガラス板は割れても
破片の一部あるいは全体が窓枠から脱落する危険
性が少なく、ビル、住宅等の建築用ガラス板とし
て有用である。特にガラス板の破片の落下の危険
性のないガラス板が要求される中、高層ヒル用の
窓用ガラス板として本発明の熱処理ガラス板は最
適である。 中でも、熱割れの危険性の高い窓用、あるいは
スパンドレル用に使用される熱線吸収ガラス板、
着色コートガラス板、熱線反射ガラス板等のガラ
ス板に対し本発明により製造された熱処理ガラス
板は好適である。 又、本発明により製造されたガラス板は耐風圧
強度及び熱割れ強度が向上され、又クラツク自走
防止がなされているので、例えば、従来10mm厚の
ガラス板が使用されていた中央層用の生板窓ガラ
ス板を本発明による6mm厚の熱処理ガラス板に、
又12mm厚の従来の生板窓ガラス板を本発明による
8mm厚の熱処理ガラス板に置き換えることがで
き、ガラス板の軽量化を計ることができる。
[Table] By the method of the present invention, the central tensile stress σt is 85~
The reason why a heat-treated glass plate can be obtained in which the surface compressive stress σc and the central tensile stress σt are in the range σc/σt of 1.5 to 3.0 is considered to be as follows. When a softened glass plate is rapidly cooled, the temperature distribution in the cross section of the glass plate goes through a transition state and becomes a steady state. Normally, the temperature at the center of the glass plate is the solidification temperature (560 to 567
The temperature distribution (difference in temperature between the surface and the center) when passing through the glass plate (°C) determines the degree of reinforcement of the glass plate, that is, the central tensile stress and the surface compressive stress. The present invention obtains a preferable stress by manipulating the change in temperature before and after solidifying the glass plate by giving a history different from that of simple cooling. In other words, when only the surface temperature of the glass plate is below the solidification temperature (at this point, the central part is still softened), cooling of the glass plate is stopped and the surface is gradually cooled in an atmosphere of 200 to 500°C. By delaying solidification only in the center without changing the temperature and solidification state, it is possible to relax the residual stress and reduce the central tensile stress. The surface compressive stress of the glass plate in the above examples and comparative examples was determined by the Toshiba air-cooled tempered glass surface stress meter FSM-
30, and the central tensile stress was measured as follows. Measurement of Γ central tensile stress Hold the glass plate sample 11 horizontally as shown in Figure 14, and emit linearly polarized light A perpendicular to the end face using a He-Ne laser 12 as a light source and passing through a polarizer 13, lens 14, and aperture 15. incident. Let y and Z be the directions parallel and perpendicular to the glass plate surface, respectively, and x be the direction of incidence. The vibration direction of the incident light is on the y-z plane, and for each axis,
Make it at a 45° angle. Linearly polarized light A incident from the end surface of the glass plate is due to the principal stress difference in the yz plane inherent in the glass,
A phase difference is generated, and as shown in Figure 15, the polarization changes as an ellipse with its axis at an angle of 45 degrees with the y-z axis → circle → ellipse → straight line (perpendicular to the incident light) → ellipse → circle → ellipse → straight line,
With a phase difference of 360°, the vibration direction returns to the same linear polarization as the original incident light. This polarized light is scattered in the glass, and when observed from a direction of 45 degrees to the y and z axes in the y-z plane perpendicular to the optical axis, it has one wavelength as shown in B in Figure 16 or Figure 17. It looks like a dot shape. Since the scattering of the float glass plate is very small, the scattered light to be observed is weak. For this purpose, a night vision device with a built-in micro-channel image intensifier is used to monitor the monitor television 17 through a high-sensitivity television camera 16.
A dot pattern of scattered light is projected on top. In combination with the position analyzer 18, the length can be read in real time. One of these dots corresponds to a phase difference of 360° (one wavelength), so by measuring this actual length, the principal stress difference can be determined using the photoelastic constant. The central tensile stress σy is determined from the principal stress difference Δσ determined here using the formula below. Principal stress difference △σ △σ=σy−σz=σy=λ/c・1/lλ σy: Component of stress in the plane direction, i.e. central tensile stress σz: Component of stress in the thickness direction (σz≒0) λ: Laser Light wavelength (632.8 mμ-He-Ne laser) l〓: Optical path difference (cm) corresponding to a phase difference of 360° C: Photoelastic constant 2.63 mμ/cm/Kg/cm 2 (float plate) Central tensile stress σt is 85~200Kg/
cm 2 , and the surface compressive stress σc is 127 to 600 Kg/cm 2 , more preferably 250 to 350 Kg/cm 2 . It shows the average of the measured values at five points, point P and one point Q in the center, and is captured as an average value. As described above, according to the present invention, the wind pressure resistance strength is sufficient for practical use, the crack does not cause thermal cracking, and even if the crack enters the glass plate, the crack does not move on its own.
It is possible to provide a heat-treated glass plate that does not break into small pieces. Even if this glass plate breaks, there is little risk that some or all of the pieces will fall off the window frame, and it is useful as a glass plate for construction of buildings, houses, etc. In particular, there is a demand for a glass plate that is free from the risk of glass fragments falling, and the heat-treated glass plate of the present invention is most suitable as a glass plate for windows for high-rise hills. Among them, heat-absorbing glass sheets used for windows and spandrels with a high risk of thermal cracking,
The heat-treated glass plate produced according to the present invention is suitable for glass plates such as colored coated glass plates and heat-reflecting glass plates. In addition, the glass plate manufactured according to the present invention has improved wind pressure strength and thermal cracking strength, and also prevents cracks from running on their own. A raw window glass plate is made into a 6 mm thick heat treated glass plate according to the present invention,
Furthermore, a conventional green window glass plate having a thickness of 12 mm can be replaced with a heat-treated glass plate having a thickness of 8 mm according to the present invention, and the weight of the glass plate can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第3図は、従来の強化ガラス板の厚さ方
向の断面の応力分布図、第4図は本発明により製
造された熱処理ガラス板の厚さ方向の断面の応力
分布図、第5,6図は比較例に係るガラス板の破
砕パターン図、第7〜12図は本発明に係る熱処
理ガラス板の破砕パターン図、第13図は本発明
を実施するための装置の一具体例に係る概略図、
第14図はガラス板の中央引張応力を測定するた
めの装置の概略図、第15〜17図はガラス板の
中央引張応力の測定原理を示すための説明図;第
18図は応力の測定点を示す説明図である。 1:熱処理されるガラス板、2:ローラーハー
ス、3:搬送ロール、4:ガラス板の加熱装置、
5:第1の冷却吹口、6:熱処理炉、7:第2の
冷却吹口。
1 to 3 are stress distribution diagrams of a cross section in the thickness direction of a conventional tempered glass plate, FIG. 4 is a stress distribution diagram of a cross section of a heat treated glass plate manufactured according to the present invention in the thickness direction, and FIG. , 6 is a diagram of a crushing pattern of a glass plate according to a comparative example, Figures 7 to 12 are diagrams of a crushing pattern of a heat-treated glass plate according to the present invention, and Figure 13 is a specific example of an apparatus for carrying out the present invention. Such a schematic diagram,
Figure 14 is a schematic diagram of a device for measuring the central tensile stress of a glass plate; Figures 15 to 17 are explanatory diagrams showing the principle of measuring the central tensile stress of a glass plate; Figure 18 is a stress measurement point. FIG. 1: Glass plate to be heat treated, 2: Roller hearth, 3: Conveyance roll, 4: Glass plate heating device,
5: first cooling outlet, 6: heat treatment furnace, 7: second cooling outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 板厚5mm以上10mm未満のガラス板を600℃〜
660℃に加熱した後、このガラス板を100〜
300Kcal/m2・hr・℃の冷却能で1秒〜20秒間1
次風冷してガラス板の表面温度をガラス板の固化
温度450〜560℃まで低下させ、次いでその直後に
200℃〜500℃の範囲の熱処理炉に2〜5分間入れ
てガラス板を冷却し発生応力を調整することを特
徴とする熱処理ガラス板の製法。
1 Glass plates with a thickness of 5 mm or more and less than 10 mm at 600℃
After heating to 660℃, this glass plate is heated to 100~
300Kcal/m 2・hr・℃ cooling capacity for 1 to 20 seconds 1
Next, air cooling is performed to lower the surface temperature of the glass plate to the solidification temperature of the glass plate, 450 to 560℃, and then immediately after that,
A method for producing a heat-treated glass plate, which comprises placing the glass plate in a heat treatment furnace at a temperature of 200°C to 500°C for 2 to 5 minutes to cool the glass plate and adjust the generated stress.
JP11399582A 1982-07-02 1982-07-02 Heat-treated glass plate and preparation thereof Granted JPS598626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11399582A JPS598626A (en) 1982-07-02 1982-07-02 Heat-treated glass plate and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11399582A JPS598626A (en) 1982-07-02 1982-07-02 Heat-treated glass plate and preparation thereof

Publications (2)

Publication Number Publication Date
JPS598626A JPS598626A (en) 1984-01-17
JPH0331656B2 true JPH0331656B2 (en) 1991-05-08

Family

ID=14626415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11399582A Granted JPS598626A (en) 1982-07-02 1982-07-02 Heat-treated glass plate and preparation thereof

Country Status (1)

Country Link
JP (1) JPS598626A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005691B2 (en) 2014-07-31 2018-06-26 Corning Incorporated Damage resistant glass article
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
WO2017123573A2 (en) 2016-01-12 2017-07-20 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
TWI785156B (en) 2017-11-30 2022-12-01 美商康寧公司 Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
CN113727954A (en) 2019-04-23 2021-11-30 康宁股份有限公司 Glass laminates having defined stress profiles and methods of making same
WO2021025981A1 (en) 2019-08-06 2021-02-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515983A (en) * 1978-07-21 1980-02-04 Nippon Sheet Glass Co Ltd Strengthened glass plate and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515983A (en) * 1978-07-21 1980-02-04 Nippon Sheet Glass Co Ltd Strengthened glass plate and production thereof

Also Published As

Publication number Publication date
JPS598626A (en) 1984-01-17

Similar Documents

Publication Publication Date Title
CN109912238B (en) Glass-based articles having stress distribution for high energy storage and methods of manufacture
KR102579100B1 (en) Ultra-thin glass ceramic article and method for manufacturing ultra-thin glass ceramic article
US20020106519A1 (en) Laminated glass and glass plate used for producing laminated glass
US6881485B2 (en) Tempered glass sheet and method therefor
CN105698985B (en) One kind being suitable for the physical toughened stress detection device of large format plate glass
JPS5925736B2 (en) Improved method for manufacturing heat-treated glass plates
JPH0331656B2 (en)
JPS6238288B2 (en)
JPS5925734B2 (en) Glass plate heat treatment method
JPH0653585B2 (en) Heat treatment method for glass plate
JPH0348143B2 (en)
JPH0649586B2 (en) Heat-treated glass plate and its manufacturing method
JPS5925735B2 (en) Manufacturing method of heat treated glass plate
JP3505755B2 (en) Glass plate heat treatment equipment
JPS55104935A (en) Tempered glass plate, said plate manufacturing method and apparatus
US20190047893A1 (en) Thermally strengthened photochromic glass and related systems and methods
US3776709A (en) Method of toughening glass sheets
US20110271716A1 (en) Method for producing thermally tempered glasses
WO2020262293A1 (en) Tempered glass plate and method for producing same
JPS6335581B2 (en)
Rantala Heat transfer phenomena in float glass heat treatment processes
KR20220107218A (en) 3D glass-ceramic articles and methods of making them
US3477834A (en) Method for strengthening glass
JPH09208246A (en) Fireproof glass
US3506423A (en) Glass strengthening by ion exchange