JPS592559B2 - Microorganism removal device - Google Patents

Microorganism removal device

Info

Publication number
JPS592559B2
JPS592559B2 JP53135547A JP13554778A JPS592559B2 JP S592559 B2 JPS592559 B2 JP S592559B2 JP 53135547 A JP53135547 A JP 53135547A JP 13554778 A JP13554778 A JP 13554778A JP S592559 B2 JPS592559 B2 JP S592559B2
Authority
JP
Japan
Prior art keywords
ozone
water
removal device
adsorption
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53135547A
Other languages
Japanese (ja)
Other versions
JPS5561984A (en
Inventor
則一 田畑
繁樹 中山
敬典 難波
四郎 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53135547A priority Critical patent/JPS592559B2/en
Publication of JPS5561984A publication Critical patent/JPS5561984A/en
Publication of JPS592559B2 publication Critical patent/JPS592559B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、例えば発電所の冷却用水管など、用水管に
繁殖する微生物による閉塞障害を除去する装置の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a device for removing blockages caused by microorganisms that breed in water pipes, such as cooling water pipes in power plants.

従来、この種の装置として第1図に示すものがあった。Conventionally, there has been a device of this type as shown in FIG.

図において、1は冷却用水管で、送水ポンプ2によって
吸込まれた海水や河川水などが送水管3に送られ、熱交
換器4を冷却後、返水管5から排水されるよう構成され
ている。
In the figure, reference numeral 1 denotes a cooling water pipe, and the seawater, river water, etc. sucked in by a water pump 2 are sent to a water pipe 3, cooled a heat exchanger 4, and then drained from a return pipe 5. .

6は微生物除去装置で、上記冷却用水管1の使用中に送
水管3、返水管5や熱交換器4の壁面に微生物が付着繁
殖し、送水量を低下させるのを防止するためのものであ
る。
Reference numeral 6 denotes a microorganism removal device, which prevents microorganisms from adhering and propagating on the walls of the water supply pipe 3, water return pipe 5, and heat exchanger 4 while the cooling water pipe 1 is in use, thereby reducing the water supply amount. be.

この微生物除去装置6は、薬品貯留槽7に貯えられてい
る次亜塩素酸すl−IJウムのような塩素系の酸化剤や
、塩素ガスを水中に溶解させた塩素水などの薬品が定量
ポンプ8によって所定量だけ薬品注入管9を経て送水管
3の冷却用水中に混入される。
This microorganism removal device 6 is capable of quantitatively dissolving chemicals such as chlorine-based oxidizing agents such as sulfur-IJium hypochlorite and chlorine water in which chlorine gas is dissolved in water stored in a chemical storage tank 7. A predetermined amount of the chemical is mixed into the cooling water of the water pipe 3 via the chemical injection pipe 9 by the pump 8 .

この混入された塩素あるいは塩素系薬品の殺菌、殺藻作
用により、冷却用水管1の壁面での微生物の付着繁殖は
防止されている。
Due to the bactericidal and algicidal effects of the mixed chlorine or chlorine-based chemicals, adhesion and propagation of microorganisms on the wall surface of the cooling water pipe 1 is prevented.

上記微生物除去装置6の塩素混入量は、用水中の有効残
留塩素濃度が0.5ppm程度になるよう調整されてい
る。
The amount of chlorine mixed into the microorganism removal device 6 is adjusted so that the effective residual chlorine concentration in the water is about 0.5 ppm.

有効残留塩素濃度を0.5ppmに保つには塩素が水中
の汚濁物質と反応して消費される量だけ余分に注入しな
ければならず、水の汚濁度によってその値は異なるが、
一般的に1 ppm以上を注入することを要する。
In order to maintain the effective residual chlorine concentration at 0.5 ppm, it is necessary to inject an excess amount of chlorine that is consumed by reacting with pollutants in the water, and this value varies depending on the degree of contamination of the water.
Generally, it is necessary to implant 1 ppm or more.

このように塩素系薬品を使用した微生物除去装置によれ
ば、常時冷却用水に対し1 ppm以上の塩素を混入す
る必要があるため、塩素の使用量が多くなり運転費用が
高価となる。
According to such a microorganism removal device using chlorine-based chemicals, it is necessary to constantly mix 1 ppm or more of chlorine into the cooling water, which increases the amount of chlorine used and increases operating costs.

さらに、海水や河川水中に排出される塩素やその化合物
が、水中の有機性汚濁物質と毒性化合物を生成して公共
用水汚染などのおそれがあるとともにこれを防止するた
めの排水処理設備を設けなければならず、膨大な費用を
要するなどの欠点があった。
Furthermore, chlorine and its compounds discharged into seawater and river water may generate organic pollutants and toxic compounds in the water, potentially contaminating public water supplies, and wastewater treatment facilities must be installed to prevent this. However, it also had drawbacks such as requiring a huge amount of cost.

上記のような従来の装置による欠点を除去するためには
、塩素系薬品に代えて上記薬品より殺菌、殺藻作用が大
きく、かつ、自己分解時間も早く、分解後酸素以外のも
のを残さないオゾンを用いることにより、公害のおそれ
のない冷却用水管の微生物による閉塞障害を防止する装
置が提案されている。
In order to eliminate the drawbacks of conventional devices as mentioned above, we need to use chlorine-based chemicals instead, which have stronger bactericidal and algicidal effects than the above chemicals, have a faster self-decomposition time, and do not leave anything other than oxygen after decomposition. A device has been proposed that uses ozone to prevent clogging of cooling water pipes caused by microorganisms without the risk of causing pollution.

オゾンを用いて冷却用水管壁での微生物の付着繁殖を防
止するには有効残留オゾン濃度が0.lppm程度にな
るようなオゾンを連続して注入すればその目的が達成で
きることが知られている。
To prevent the adhesion and propagation of microorganisms on the walls of cooling water pipes using ozone, the effective residual ozone concentration is 0. It is known that this objective can be achieved by continuously injecting ozone at a concentration of about 1 ppm.

しかし、この有効残留オゾン濃度をO,]、 ppmに
保つには水中に含まれている汚濁物質とオゾンとの酸化
反応による消費分を補充しなければならず、注入される
オゾンは有効残留オゾン濃度の数倍に達し、0.5pp
m程度を必要とする。
However, in order to maintain this effective residual ozone concentration at O, ], ppm, it is necessary to replenish the amount consumed by the oxidation reaction between ozone and pollutants contained in the water, and the injected ozone is less than the effective residual ozone. Reaching several times the concentration, 0.5pp
It requires about 100 m.

従って、オゾンを用いて上記管壁での微生物の付着繁殖
を防止すれば公害を発生させない利点があるにもかかわ
らず、オゾンの価格が塩素系薬品の4倍位であることを
考慮すると経済的に問題があるため現実的には普及して
いない。
Therefore, although using ozone to prevent the adhesion and propagation of microorganisms on the pipe walls has the advantage of not causing pollution, it is not economical considering that the price of ozone is about four times that of chlorine-based chemicals. However, it is not widely used in reality due to problems.

ところで、有効残留オゾン濃度が0.lppm程度のオ
ゾンを送水管中に混入して微生物障害を防止するには連
続的にオゾンを注入しなければならない。
By the way, if the effective residual ozone concentration is 0. In order to prevent microbial damage due to the mixing of lppm of ozone into water pipes, ozone must be continuously injected.

しかしながら、高濃度のオゾンを発生させ、このオゾン
を送水管中に混入すれば用水管壁の微生物は完全に死滅
除去することができ、次に微生物が繁殖して閉塞障害が
現われるまでには相当の時間を要する。
However, by generating highly concentrated ozone and mixing this ozone into water pipes, it is possible to completely kill and remove microorganisms on the walls of water pipes, and it takes a considerable amount of time before microorganisms reproduce and blockage problems appear. It takes time.

これに着目すれば、高濃度のオゾンを周期的に注入する
ことによって冷却用水管の微生物障害が防止できるので
、オゾンの総使用量を大幅に削減できることが考えられ
る。
Focusing on this, it is conceivable that by periodically injecting high-concentration ozone, microbial damage to cooling water pipes can be prevented, thereby significantly reducing the total amount of ozone used.

実験によれば、1日1回、5分間ずつ、5〜10ppm
の濃度のオゾン水を送水管中に注入すれば、微生物障害
が除去できる結果が得られている。
According to experiments, 5-10 ppm once a day for 5 minutes
It has been shown that microbial damage can be removed by injecting ozonated water with a concentration of .

この条件は微生物の種類と量、用水の温度、及び有機汚
濁物質の成分と量などによって異なり、一般的には、半
日〜3日毎に1回、それぞれ3〜10分間ずつ、数pp
m〜数10 ppm程度の濃度のオゾン水を注入すれば
よい。
This condition varies depending on the type and amount of microorganisms, the temperature of the water used, and the composition and amount of organic pollutants. Generally, it is necessary to apply several pp.
It is sufficient to inject ozone water with a concentration of about 100 ppm to several tens of ppm.

このように高濃度のオゾンを周期的に注入する方法によ
れば、低濃度のオゾンを連続して注入する方法に比して
に。
This method of periodically injecting high-concentration ozone is superior to the method of continuously injecting low-concentration ozone.

程度までオゾン使用量を減することができる。The amount of ozone used can be reduced to a certain extent.

なお、高濃度の塩素を周期的に注入して塩素の使用総量
を減少させる方法も考えられるが、塩素濃度を高くして
も殺菌、殺藻作用はそれほど大きくならず、しかも、高
濃度塩素が周期的に公共用水中に放出されれば総量は減
少されても公害が防止されるものではない。
Although it is possible to reduce the total amount of chlorine used by periodically injecting high-concentration chlorine, the bactericidal and algicidal effects are not so great even if the chlorine concentration is increased; Even if the total amount is reduced if periodically released into public waters, pollution will not be prevented.

第2図は上記高濃度のオゾンによる微生物除去装置を示
したもので、図において、冷却用水管1は第1図に示し
たものと同様、送水ポンプ2によって吸込まれた水が送
水管3に送られ、熱交換器4を冷却して返水管5から排
水されている。
Figure 2 shows the above-mentioned microorganism removal device using high-concentration ozone. The water is sent to cool the heat exchanger 4 and drained from the return pipe 5.

6は無声放電によって発生したオゾンを送水中の冷却用
水管1に注入して微生物の付着繁殖を防止する微生物除
去装置で、これに用いられるオゾンは、送風機10で加
圧された空気が空気乾燥器11で露点が一40℃以下に
なるまで乾燥されてオゾン発生器12に送られ、このオ
ゾン発生器12内で無声放電により上記空気中の酸素の
一部がオゾン化され、高濃度のオゾン含有空気となる。
6 is a microorganism removal device that prevents the adhesion and propagation of microorganisms by injecting ozone generated by silent discharge into the cooling water pipe 1 during water supply. It is dried in a container 11 until the dew point becomes 140 degrees Celsius or less and sent to an ozone generator 12, where a portion of the oxygen in the air is converted into ozone by silent discharge and becomes highly concentrated ozone. Contains air.

この高濃度オゾン含有空気はオゾン送気管13を経てガ
ス混合器14(この実施例では水エジェクター)に送ら
れ、ガス混合用ポンプ15から送られる水の中に微細泡
として注入啓解される。
This highly concentrated ozone-containing air is sent to a gas mixer 14 (water ejector in this embodiment) via an ozone air pipe 13, and is injected into water sent from a gas mixing pump 15 as fine bubbles.

この微細泡を含んだ高濃度オゾン水はオゾン水注入管1
6を通って冷却用水管1の送水管3中に注入され、上記
冷却用水管1の壁面に付着している微生物を完全に死滅
させて障害を防止する。
This highly concentrated ozonated water containing microbubbles is supplied to the ozonated water injection pipe 1.
6 and is injected into the water supply pipe 3 of the cooling water pipe 1 to completely kill microorganisms adhering to the wall surface of the cooling water pipe 1 and prevent trouble.

このとき、高濃度オゾン水の注入は周期的に行なわれる
ので、微生物除去装置6は次の注入時まで運転が休止さ
れている。
At this time, since the injection of highly concentrated ozone water is performed periodically, the operation of the microorganism removal device 6 is suspended until the next injection.

上記のように高濃度オゾンを周期的に注入する微生物除
去装置によれば、オゾン使用量は従来の低濃度オゾンを
連続して注入する装置に比して大幅に減することができ
るし、塩素の使用コストよりも低置とすることができる
According to the microorganism removal device that periodically injects high-concentration ozone as described above, the amount of ozone used can be significantly reduced compared to the conventional device that continuously injects low-concentration ozone. The usage cost can be lower than that of

しかし一方、上記装置は高濃度オゾンを発生させるわず
かの時間だけ運転され、他の大部分の時間は休止されて
いるので、稼動率が低く、かつ、高濃度オゾンを短時間
で発生させるために設備建設費が高価になる欠点があっ
た。
However, on the other hand, the above-mentioned equipment is operated only for a short time to generate high concentration ozone, and is stopped most of the time, so the operating rate is low, and it is necessary to generate high concentration ozone in a short time. The disadvantage was that the equipment construction costs were high.

この発明は上記欠点を除去するためになされたもので、
オゾン注入時点前に長時間かけてオゾンを発生させ、こ
のオゾンを低温に保たれたシリカゲルなどの吸着剤に吸
着貯留させておき、所定周期毎に、減圧吸引してオゾン
を取出すことにより、小規模の設備で、かつ、稼動率の
高い装置を提供することを目的としたものである。
This invention was made to eliminate the above-mentioned drawbacks.
Ozone is generated over a long period of time before the ozone injection point, and this ozone is adsorbed and stored in an adsorbent such as silica gel that is kept at a low temperature.The ozone is extracted at predetermined intervals by vacuum suction. The purpose is to provide a large-scale facility with a high operating rate.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図において、1は従来装置と同様の冷却用水管、6
は微生物除去装置である。
In Fig. 3, 1 is the same cooling water pipe as in the conventional device;
is a microorganism removal device.

この微生物除去装置6において、酸素貯留槽17の内の
原料酸素は酸素循環用の送風機18によりオゾン発生器
12に送られる。
In this microorganism removal device 6, raw oxygen in an oxygen storage tank 17 is sent to an ozone generator 12 by a blower 18 for oxygen circulation.

このオゾン発生器12内で上記酸素の一部が無声放電に
よってオゾン化され、オゾン含有酸素になる。
Within this ozone generator 12, a portion of the oxygen is converted into ozone by silent discharge and becomes ozone-containing oxygen.

このオゾン含有酸素は熱交換器19で冷却された後、オ
ゾン吸脱着装置20に入り、オゾンだけが吸着貯留され
る。
After this ozone-containing oxygen is cooled by a heat exchanger 19, it enters an ozone adsorption/desorption device 20, where only ozone is adsorbed and stored.

なお、残った酸素は熱交換器19で熱交換して(例えば
常温となり)酸素貯留槽17にもどって原料酸素として
使用される。
Note that the remaining oxygen undergoes heat exchange in the heat exchanger 19 (for example, becomes room temperature), returns to the oxygen storage tank 17, and is used as raw material oxygen.

第4図はオゾンが吸着貯留される上記オゾン吸脱着装置
20を詳細に示したもので、内部には例えば2個の吸脱
着基2L22が設けられている。
FIG. 4 shows in detail the ozone adsorption/desorption device 20 in which ozone is adsorbed and stored, and for example, two adsorption/desorption groups 2L22 are provided inside.

今、オゾン吸着過程にある一方の吸脱着基21では、流
入管23から送られるオゾン含有酸素が電動弁24を経
て上記吸脱着基21の白基に入る。
In one of the adsorption/desorption groups 21 currently in the process of adsorbing ozone, ozone-containing oxygen sent from the inflow pipe 23 enters the white group of the adsorption/desorption group 21 through the electric valve 24 .

オゾン含有酸素はこの内筒に充填されているシリカゲル
と接触してオゾンだけがシリカゲルに吸着される。
Ozone-containing oxygen comes into contact with the silica gel filled in this inner cylinder, and only ozone is adsorbed by the silica gel.

なお、シリカゲルのオゾン吸着量はシリカゲルの温度が
低いほど増大する。
Note that the amount of ozone adsorbed by silica gel increases as the temperature of silica gel decreases.

このため、吸脱着基21の外筒部には冷凍機25によっ
て冷却された低温ブラインが循環され、上記シリカゲル
を冷却している。
Therefore, low-temperature brine cooled by the refrigerator 25 is circulated through the outer cylinder portion of the adsorption/desorption group 21 to cool the silica gel.

ブラインの冷却温度は冷凍機25、ブライン循環用ポン
プ26、ブライン流路管28、電動弁29,30、冷却
水用ポンプ27など、冷却装置の経済性を考慮して実用
的には一408C〜−60℃程度で用いられている。
The cooling temperature of the brine is practically 1408C or higher considering the economic efficiency of the cooling equipment such as the refrigerator 25, the brine circulation pump 26, the brine flow pipe 28, the electric valves 29 and 30, and the cooling water pump 27. It is used at about -60°C.

吸脱着基21内のシリカゲルがオゾンで飽和されると、
オゾン吸着過程を他方の吸脱着基22に切換え、上記と
同様の動作によってオゾンが貯留される。
When the silica gel in the adsorption/desorption group 21 is saturated with ozone,
The ozone adsorption process is switched to the other adsorption/desorption group 22, and ozone is stored by the same operation as above.

2個の吸脱着基21.22内のシリカゲルがそれぞれ飽
和されると、オゾン発生器12はその運転を停止し、さ
らに全ての電動弁24,3L32及び33.34.35
が閉じてオゾン脱着過程を待つ。
When the silica gel in the two adsorption/desorption groups 21.22 is saturated, the ozone generator 12 stops its operation, and all electric valves 24, 3L32 and 33.34.35
closes and waits for the ozone desorption process.

ところで、シリカゲルからオゾンを脱着(分離)させる
には温度が高い方が容易に行なえるため、冷却装置は用
水管1にオゾンを注入する時点よりも前にその運転を停
止し、オゾン脱着時にはシリカゲルの温度は所定温度に
まで上昇回復するようにしている。
By the way, desorption (separation) of ozone from silica gel is easier at higher temperatures, so the operation of the cooling device is stopped before the ozone is injected into the water pipe 1, and the silica gel is desorbed when ozone is desorbed. The temperature is raised and recovered to a predetermined temperature.

従って、用水管1にオゾンを注入する時点よりも所定時
間(シリカゲルの温度がオゾン脱着を容易に行なえるま
で上昇回復するに要する時間)前の時点で吸脱着基21
.22内のシリカゲルにオゾンが飽和あるいは吸着完了
するようオゾン発生器12を運転制御(すなわち、運転
開始時点、あるいは運転中のオゾン発生量を制御)する
ことにより、オゾン発生器12と冷却装置との運転を同
期させることができ、それだけ運転制御が容易になると
ともに、冷却装置の運転に要する時間が不必要に長くな
らず短縮でき運転費が経済的となるものである。
Therefore, the adsorption/desorption group 2
.. By controlling the operation of the ozone generator 12 (i.e., controlling the amount of ozone generated at the start of operation or during operation) so that the ozone is saturated or completely adsorbed into the silica gel in the ozone generator 12, the connection between the ozone generator 12 and the cooling device is improved. Since the operations can be synchronized, the operation control becomes easier, and the time required to operate the cooling device is not unnecessarily lengthened, but the operating cost becomes economical.

その後、冷却用水管1ヘオゾンを注入する周期時点に達
すると、吸脱着基21.22の電動弁31.34が開か
れ、貯留されていたオゾンは、第3図に示すエジェクタ
ー用ポンプ36が駆動し、水エジェクター37のエジェ
クション効果によって吸脱着基21.22内のオゾンが
送気管13を経て減圧吸引される。
Thereafter, when the period for injecting ozone into the cooling water pipe 1 is reached, the electric valve 31.34 of the adsorption/desorption group 21.22 is opened, and the stored ozone is driven by the ejector pump 36 shown in FIG. However, due to the ejection effect of the water ejector 37, the ozone in the adsorption/desorption groups 21 and 22 is sucked under reduced pressure through the air pipe 13.

吸引されたオゾンはエジェクター用ポンプ36から送ら
れてくる水中に微細泡として注入され、溶解されてオゾ
ン水となり、オゾン水注入管16から冷却用水管1の送
水管3へ送られる。
The sucked ozone is injected as microbubbles into the water sent from the ejector pump 36, dissolved into ozone water, and sent from the ozone water injection pipe 16 to the water pipe 3 of the cooling water pipe 1.

水エジェクター37は、吸脱着基21.22の吸着オゾ
ンを減圧吸引する作用(オゾンは低圧状態において分解
しにくくなる)と、オゾンを水中に溶解させるための作
用とを果たしている。
The water ejector 37 has the function of sucking the ozone adsorbed by the adsorption/desorption groups 21.22 under reduced pressure (ozone becomes difficult to decompose in a low pressure state) and the function of dissolving ozone in water.

なお、オゾン脱着時には上述のようにシリカゲルの温度
は上昇して、オゾンが容易に脱着される状態になってい
る。
Note that during ozone desorption, the temperature of the silica gel increases as described above, and ozone is easily desorbed.

なお、オゾン吸脱着装置内の吸脱着基の個数は、吸脱着
基のオゾン貯留容量、及びオゾン注入の周期、オゾン濃
度、注入量、オゾン発生器の運転時間などによって経済
的な個数を決めればよく、2個に限定されるものではな
い。
The number of adsorption/desorption groups in the ozone adsorption/desorption device can be determined economically based on the ozone storage capacity of the adsorption/desorption groups, ozone injection period, ozone concentration, injection amount, ozone generator operating time, etc. Well, it is not limited to two.

さらにまた、上記実施例では冷却用水管の管壁に付着繁
殖する微生物を除去する場合について説明したが、冷却
用水管に限らず全ての用水管、あるいは用水槽、用水溝
などに用いても上記実施例と同様の効果を奏する。
Furthermore, in the above embodiment, a case was explained in which microorganisms adhering and propagating on the walls of cooling water pipes are removed. The same effects as in the embodiment are achieved.

以上のようにこの発明によれば、オゾンを長時間かけて
貯留し短時間で放出する吸脱着装置のオゾンを減圧吸引
によって周期的に間歇的に短時間で脱着して水中に高濃
度のオゾンを混合するオゾン混合装置を設けているので
、一時的に大量に使用される高濃度のオゾンを小形のオ
ゾン発生器を用いて事前に発生させ、吸脱着装置に貯留
することができ、設備が小形化できるとともに、装置の
稼動率を向上できる効果があり、さらにオゾンを連続的
に注入する従来のものに比ベオゾン使用量を著しく低減
でき、実用化に適するという効果がある。
As described above, according to the present invention, the ozone in the adsorption/desorption device, which stores ozone over a long period of time and releases it in a short period of time, is periodically and intermittently desorbed in a short period of time by vacuum suction, resulting in a high concentration of ozone in the water. Since we are equipped with an ozone mixing device that mixes ozone, high-concentration ozone that is temporarily used in large quantities can be generated in advance using a small ozone generator and stored in the adsorption/desorption device, making it possible to save time on equipment. This method has the effect of being able to be made smaller and improving the operating rate of the device, and furthermore, the amount of ozone used can be significantly reduced compared to the conventional method in which ozone is continuously injected, making it suitable for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は塩素系薬品を用いた用水管の微生物除去装置を
示す説明図、第2図はオゾンを用いた用水管の微生物除
去装置を示す説明図、第3図はこの発明の一実施例を示
す説明図、第4図はこの発明によるオゾン吸脱着装置を
示す説明図である。 図において、1は冷却用水管、6は微生物除去装置、1
2はオゾン発生器、20はオゾン吸脱着装置、21,2
2は吸脱着基、37は水エジェクターである。 なお、図中同一符号は同−又は相当部分を示している。
Fig. 1 is an explanatory diagram showing a water pipe microorganism removal device using chlorine-based chemicals, Fig. 2 is an explanatory diagram showing a water pipe microorganism removal device using ozone, and Fig. 3 is an embodiment of the present invention. FIG. 4 is an explanatory diagram showing the ozone adsorption/desorption device according to the present invention. In the figure, 1 is a cooling water pipe, 6 is a microorganism removal device, 1
2 is an ozone generator, 20 is an ozone adsorption/desorption device, 21, 2
2 is an adsorption/desorption group, and 37 is a water ejector. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 水管壁に繁殖する微生物をオゾンにより除去するよ
うにした微生物除去装置において、オゾンを発生させる
オゾン発生装置と、上記オゾン発生装置で長時間にわた
って発生されたオゾンを貯留する吸脱着装置と、この吸
脱着装置で貯留されたオゾンを減圧吸引によって周期的
に短時間で脱着して高濃度のオゾンを水中に混合するオ
ゾン混合装置とを備えていることを特徴とする微生物除
去装置。 2 オゾンの混合装置が水エジェクターである特許請求
の範囲第1項記載の微生物除去装置。
[Claims] 1. A microorganism removal device that uses ozone to remove microorganisms that propagate on water pipe walls, comprising: an ozone generator that generates ozone; and a storage of the ozone generated by the ozone generator over a long period of time. and an ozone mixing device that periodically desorbs ozone stored in the adsorption/desorption device in a short period of time by vacuum suction and mixes highly concentrated ozone into water. Microorganism removal device. 2. The microorganism removal device according to claim 1, wherein the ozone mixing device is a water ejector.
JP53135547A 1978-11-02 1978-11-02 Microorganism removal device Expired JPS592559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53135547A JPS592559B2 (en) 1978-11-02 1978-11-02 Microorganism removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53135547A JPS592559B2 (en) 1978-11-02 1978-11-02 Microorganism removal device

Publications (2)

Publication Number Publication Date
JPS5561984A JPS5561984A (en) 1980-05-10
JPS592559B2 true JPS592559B2 (en) 1984-01-19

Family

ID=15154326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53135547A Expired JPS592559B2 (en) 1978-11-02 1978-11-02 Microorganism removal device

Country Status (1)

Country Link
JP (1) JPS592559B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003698A1 (en) * 1984-12-25 1986-07-03 Kawasaki Steel Corporation Method of cooling rolls in a cold rolling machine
JPH0390962U (en) * 1989-12-27 1991-09-17

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158536A (en) * 1981-03-25 1982-09-30 Mitsubishi Electric Corp Water collecting device for water quality sensor
JPS583104A (en) * 1981-06-30 1983-01-08 Toshiba Corp Magnetic disc device
JPS588142U (en) * 1981-07-07 1983-01-19 三菱電機株式会社 Water sampling device
JPS58210537A (en) * 1982-05-31 1983-12-07 Mitsubishi Electric Corp Water sampling equipment for water quality sensor
JPS61150708A (en) * 1984-12-25 1986-07-09 Kawasaki Steel Corp Method for treating roll-cooling water by using ozone
JPS61150706A (en) * 1984-12-25 1986-07-09 Kawasaki Steel Corp Roll cooling method of cold rolling mill
JPS61150709A (en) * 1984-12-25 1986-07-09 Kawasaki Steel Corp Method for treating roll cooling water of cold mill by using ozone
JP3980091B2 (en) * 1996-03-01 2007-09-19 三菱電機株式会社 Ozone storage equipment
JPH1143309A (en) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp Apparatus for producing ozone
JPH1143308A (en) 1997-07-24 1999-02-16 Mitsubishi Electric Corp Apparatus for producing ozone
JP3734341B2 (en) * 1997-07-24 2006-01-11 三菱電機株式会社 Cooling water system biological obstacle prevention method and apparatus
JP4087927B2 (en) * 1997-07-24 2008-05-21 三菱電機株式会社 Ozone supply device
JPH1143307A (en) 1997-07-24 1999-02-16 Mitsubishi Electric Corp Apparatus for producing ozone
JP3670451B2 (en) 1997-07-24 2005-07-13 三菱電機株式会社 Ozone supply device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952447A (en) * 1972-09-22 1974-05-21
JPS501545A (en) * 1973-05-09 1975-01-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952447A (en) * 1972-09-22 1974-05-21
JPS501545A (en) * 1973-05-09 1975-01-09

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003698A1 (en) * 1984-12-25 1986-07-03 Kawasaki Steel Corporation Method of cooling rolls in a cold rolling machine
DE3590663T1 (en) * 1984-12-25 1987-02-19
JPH0390962U (en) * 1989-12-27 1991-09-17

Also Published As

Publication number Publication date
JPS5561984A (en) 1980-05-10

Similar Documents

Publication Publication Date Title
JPS592559B2 (en) Microorganism removal device
EP0567860B2 (en) System and microorganism removing method
CA2344174A1 (en) Method and apparatus for continuous or intermittent supply of ozonated water
JP3974929B1 (en) Waste water treatment method and waste water treatment equipment
KR101815916B1 (en) Activated carbon regeneration method using ozone, hydroxyl radical and strong base
JP3734341B2 (en) Cooling water system biological obstacle prevention method and apparatus
JP2007038044A (en) Bio-desulfurization method and bio-desulfurization apparatus
KR100918758B1 (en) Progress apparatus of water treatment system used in advanced ultraviolet and oxidation, and method for progressing the same
JP2018008237A (en) Waste water treatment system
KR100615455B1 (en) The pipe laying cleaning equipment for utilization a ozone water
JPH04135694A (en) Water treating device
JPS59193192A (en) Device for supplying ozone intermittently
KR100472711B1 (en) Waste-water treatment system and method
KR100554109B1 (en) ozone injection and contact systems for water and wastewater treatment
JPH05305288A (en) Microbe removal
JPS6026081Y2 (en) Biofouling control device
Nakayama et al. An antibiofouling ozone system for cooling water circuits. I-Application to fresh water circuits
JP4193239B2 (en) Air circulation type contact aeration bioreactor
JPH03143595A (en) Device for preventing hindrance by living thing
JPH05305290A (en) Plankton attachment preventive device
CN100444934C (en) Method and apparatus for removing ozone
JP2001146722A (en) Raw water conveyance system for cooling equipment
JPS6211918B2 (en)
SU1664754A1 (en) Installation for treating sewage with ozone
JPH07980A (en) Ozonization of sea water and its device