JPS5924554B2 - Structure of solar cell - Google Patents

Structure of solar cell

Info

Publication number
JPS5924554B2
JPS5924554B2 JP54128544A JP12854479A JPS5924554B2 JP S5924554 B2 JPS5924554 B2 JP S5924554B2 JP 54128544 A JP54128544 A JP 54128544A JP 12854479 A JP12854479 A JP 12854479A JP S5924554 B2 JPS5924554 B2 JP S5924554B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
thickness
solar cell
solar cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54128544A
Other languages
Japanese (ja)
Other versions
JPS5651881A (en
Inventor
一喜 平河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP54128544A priority Critical patent/JPS5924554B2/en
Publication of JPS5651881A publication Critical patent/JPS5651881A/en
Publication of JPS5924554B2 publication Critical patent/JPS5924554B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は薄膜を材料として用い、素子間の接続の簡単化
と薄型化をはかろうとする太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell that uses a thin film as a material to simplify connections between elements and to reduce the thickness of the solar cell.

近年、クリーンエネルギー利用の立場から太陽電池は大
きな注目を集めている。
In recent years, solar cells have attracted a lot of attention from the perspective of using clean energy.

利用範囲は人工衛生や燈台等に用いる電力用から、電卓
、ラジオ、時計等の民生機器用まで広範囲である。しか
し、太陽電池自身の起電力が小さいため、いずれの場合
も複数の太陽電池を直列に接続して利用している。従来
の太陽電池はシリコン単結晶を用いた太陽電池がほとん
どであり、その接続方法を第1図および第2図に示す。
The scope of use is wide ranging from power for artificial sanitation and lighthouses to consumer electronics such as calculators, radios, and watches. However, since the electromotive force of the solar cells themselves is small, in both cases, multiple solar cells are connected in series. Most conventional solar cells are solar cells using single crystal silicon, and their connection methods are shown in FIGS. 1 and 2.

第1図は一方の電極が表面、他方の電極が表面にある太
陽電池の接続方法である。
FIG. 1 shows a method of connecting solar cells in which one electrode is on the surface and the other electrode is on the surface.

同図で101は絶縁物基板、102a〜102dは表面
電極からの取り出し配線、103a〜103dはP型領
域、104a〜104dはN型領域、105a〜105
cは太陽電池間の接続配線である。一般に接続配線は小
型の民生機器ではワイヤボンディングが用いられる。ま
た複数個の太陽電池を接続したアレイから外部への取り
出しは106とIOTとから行なわれる。第2図は正負
の両電極が裏面にある太陽電池の接続方法の一例である
In the figure, 101 is an insulating substrate, 102a to 102d are wirings taken out from the surface electrodes, 103a to 103d are P type regions, 104a to 104d are N type regions, 105a to 105
c is a connection wiring between solar cells. Wire bonding is generally used for connection wiring in small consumer devices. Further, the output from the array in which a plurality of solar cells are connected is carried out from 106 and the IOT. FIG. 2 is an example of a method of connecting a solar cell in which both positive and negative electrodes are on the back side.

同図において、201はプリント基板等の絶縁物基板で
ある。202a〜202dは絶縁物基板上に形成された
金属配線、203a〜203cは太陽電池のP型領域、
204a〜204cはN型領域、205a〜205cは
N型領域と金属配線との接着剤であり導通を要するため
、ハンダや導電接着剤が用いられる。
In the figure, 201 is an insulating substrate such as a printed circuit board. 202a to 202d are metal wiring formed on an insulating substrate, 203a to 203c are P-type regions of a solar cell,
204a to 204c are N-type regions, and 205a to 205c are adhesives between the N-type regions and metal wiring, and since conduction is required, solder or conductive adhesive is used.

当然のことながら、第1図と第2図において、N型領域
とP型領域を逆にした場合、外部出力の極性が逆転する
たけである。
Naturally, if the N-type region and the P-type region are reversed in FIGS. 1 and 2, the polarity of the external output will simply be reversed.

第1図と第2図に示した従来の接続方法では次の欠点が
エネルギー源として利用する場合問題となる。
The conventional connection method shown in FIGS. 1 and 2 has the following drawbacks when used as an energy source.

1 接続方法が複雑であり、製造コストが高くなる。1. The connection method is complicated and the manufacturing cost is high.

2 アレイが厚くなり、時計や電卓等への応用が難しい
2. The array becomes thick, making it difficult to apply to watches, calculators, etc.

したがつて、利用範囲が制限される。接続方法をみると
、第1図の方法では1段ずつワイヤポンチシダ丁るため
、接続時間は素子の数に比例する。したがつて多数の素
子から成るアレイではコストアップとなる。また第2図
の方法も同様に、導電接着剤で接着する時間、あるいは
一・シダ付けをする時間が素子の数に比例する。さらに
、第1図、第2図とも太陽電池を基板に対して位置合せ
するのにもかなりの時間を要するこのように従来の接続
方法は、素子数の多いアレイについては組立て時間が多
く、それがコストアツプの要因となつている。次に厚さ
についてみると、従来は単結晶太陽電池を用いることか
ら、太陽電池そのものの厚みが少なくとも300μm程
度となる。
Therefore, the scope of use is limited. Looking at the connection method, in the method shown in FIG. 1, the wire punches are punched one stage at a time, so the connection time is proportional to the number of elements. Therefore, an array consisting of a large number of elements increases the cost. Similarly, in the method shown in FIG. 2, the time for bonding with a conductive adhesive or the time for fern is proportional to the number of elements. Furthermore, in both Figures 1 and 2, it takes a considerable amount of time to align the solar cells to the substrate. Conventional connection methods like these require a lot of assembly time for arrays with a large number of elements. has become a factor in increasing costs. Next, regarding the thickness, since a single crystal solar cell is conventionally used, the thickness of the solar cell itself is at least about 300 μm.

第1図の方法のようにワィヤボンテングを用いる場合、
ワイヤのたわみ等で約100μm、さらにボンデングに
耐えられる厚み基板を用いると基板の厚みが500〜6
00μmあり、アレイの厚さは約1Tf1Jtになつて
しまう。第2図の場合も、基板は強度が要求され、接着
剤の厚さも考慮するとアレイ全体の厚さは約1V!1と
なつてしまう。
When using wire bonding as in the method shown in Figure 1,
The thickness of the board is approximately 100μm due to wire bending, etc., and if a board with a thickness that can withstand bonding is used, the thickness of the board is 500μm to 6μm.
00 μm, and the thickness of the array is approximately 1Tf1Jt. In the case of Figure 2, the substrate is required to be strong, and considering the thickness of the adhesive, the thickness of the entire array is approximately 1V! It becomes 1.

腕時計、電卓、ラジオあるいは測定器等の民生機器にお
いては厚さの制限がきびしく、場合によつては50〜1
00μmを競うことさえある。
For consumer devices such as wristwatches, calculators, radios, and measuring instruments, there are strict limits on thickness, and in some cases, thickness is 50 to 1.
They even compete for 00μm.

上述の理由から従来の接続方式のように、アレイが厚い
ことは、今後応用範囲が狭められることになる。本発明
はかかる欠点を除去したものであつて、その目的とする
ところは、1)接続方法の簡単化 2)太陽電池アレイの薄型化 にある。
For the above-mentioned reasons, a thick array as in the conventional connection method will narrow the range of applications in the future. The present invention eliminates these drawbacks and aims to 1) simplify the connection method and 2) reduce the thickness of the solar cell array.

以下に本発明を実施例をもつて説明する。本発明の太陽
電池の実施例を第3図にしめす。絶縁物、あるいは表面
を絶縁化した段差を有する基板301の全面にN型非晶
質半導体303a,303b,303c、真性非晶質半
導体304a,304b,304c,.P型非晶質半導
体305a,305b,305cの順に形成する。その
後、両端の非晶質半導体に引き出し配線302を設ける
。その際、重要な事は該段差を有する基板301におけ
る段差の形状と高さ、及びその上に蒸着する薄膜の膜厚
との関係である。本発明においては、該段差によつて全
面の蒸着された各薄膜が、段差の部分で切断されること
、および切断された薄膜のうち、下層の薄膜であるN型
非晶質半導体303a,303b,303cと、上層の
薄膜であるP型非晶質半導体305a,305b,30
5cが、ほぼ同じ高さに位置することによつて、接続さ
れることが要求される。その為には、段差の形状はほぼ
直角(80れ以上)であるか、オーバーハングの状態で
あることが必要であり、また段差の高さと各薄膜の膜厚
の比率は約2倍以上にしなければならない。また、N型
非晶質半導体303a,303b,303c,5P型非
晶質半導体305a,305b,305cとを接続した
場合の電流特性は、よく知られている様に非晶質である
ために、バンドギヤツプ中に準位が多く存在することか
ら、ジヤンクシヨンを形成されず各半導体を導電物質で
つないた時と同じ特性を持つ。
The present invention will be explained below using examples. An embodiment of the solar cell of the present invention is shown in FIG. N-type amorphous semiconductors 303a, 303b, 303c, intrinsic amorphous semiconductors 304a, 304b, 304c, . P-type amorphous semiconductors 305a, 305b, and 305c are formed in this order. After that, lead wiring 302 is provided in the amorphous semiconductor at both ends. In this case, what is important is the relationship between the shape and height of the step in the substrate 301 having the step and the thickness of the thin film deposited thereon. In the present invention, each thin film deposited on the entire surface due to the step is cut at the step, and among the cut thin films, the lower N-type amorphous semiconductors 303a and 303b are thin films. , 303c, and P-type amorphous semiconductors 305a, 305b, 30 which are upper thin films.
5c are required to be connected by being located at approximately the same height. To achieve this, the shape of the step must be approximately at right angles (80 degrees or more) or overhang, and the ratio of the height of the step to the thickness of each thin film must be approximately twice or more. There must be. In addition, the current characteristics when the N-type amorphous semiconductors 303a, 303b, 303c and the 5P-type amorphous semiconductors 305a, 305b, 305c are connected are, as is well known, because they are amorphous. Because there are many levels in the bandgap, no junctions are formed and it has the same characteristics as when semiconductors are connected with a conductive material.

この様な性質を有する為に、本発明の様にN型非晶質半
導体303a,303b,303cとP型非晶質半導体
305a,305b,305cが、単に密着していても
通常の導通状態にある。次に本実施例の製造方法につい
て詳細に説明する。
Because of these properties, even if the N-type amorphous semiconductors 303a, 303b, 303c and the P-type amorphous semiconductors 305a, 305b, 305c are in close contact with each other as in the present invention, they are not in a normal conductive state. be. Next, the manufacturing method of this example will be explained in detail.

Sl基板上に、1μmの段差を、3段作る場合、半導体
製造で、通常、使用されているホトリングラフィ一と、
反応性イオンエツチングを使用する。
When creating three steps of 1 μm on a Sl substrate, photolithography, which is commonly used in semiconductor manufacturing, is used.
Use reactive ion etching.

まず、第4図の1aの様に、所望のパターンに、レジス
トを形成し、反応性イオンエツチングにより、レジスト
のついていない部分を、1μmエツチングする。次に、
形成した段差を覆う様に、所望のパターンのレジストを
形成し、同様に、1μmエツチングをする事によつて、
2段目の段差を形成する。以下、同様の方法で、3段の
段差をSi基板上に形成する。段差の形状は、反応性イ
オンエツチングの条件により、直角に近い角度にする事
ができる。なお、Si基板、以外の基板例えばガラス基
板等でも、反応性イオンエツチングの条件をかえること
によつて、所定のパターンを形成できる。
First, as shown in 1a of FIG. 4, a resist is formed in a desired pattern, and the portions without the resist are etched by 1 .mu.m by reactive ion etching. next,
By forming a resist with a desired pattern so as to cover the formed step and etching it by 1 μm in the same way,
Form the second step. Thereafter, three steps are formed on the Si substrate using the same method. The shape of the step can be made to have an angle close to a right angle depending on the conditions of reactive ion etching. Note that a predetermined pattern can be formed on a substrate other than a Si substrate, such as a glass substrate, by changing the conditions of reactive ion etching.

なお、フオトエツチングを用いないで、予め所望の段差
のあるもので、ラツピングする事によつても、同じ形状
の基板を得ることができる。又、アモルフオスシリコン
薄膜は以下の条件で生成する。太陽電池を作る為のa−
Siの反応条件はブラズマCVD法を用い以下の通りで
ある。
Note that a substrate of the same shape can also be obtained by wrapping a substrate with a desired level difference in advance, without using photoetching. Further, an amorphous male silicon thin film is produced under the following conditions. a- for making solar cells
The reaction conditions for Si were as follows using the plasma CVD method.

基板の大きさ&ζ 10いXlOCfILである。RF
l3.56MHZPOw er2OW 反応温度 25『C 圧力 0.8/TOrr ガス 100% SiH4 1. P型非晶質半導体の形成の場合 上記のガスのガス流量は、下記の通り。
The size of the substrate &ζ is 10XlOCfIL. RF
l3.56MHZPOwer2OW Reaction temperature 25'C Pressure 0.8/TOrr Gas 100% SiH4 1. In the case of forming a P-type amorphous semiconductor, the gas flow rate of the above gas is as follows.

2. 真性非晶質半導体を形成する場合 上記のガスのガス流量!虱下記の通り。2. When forming an intrinsic amorphous semiconductor Gas flow rate of the above gas! Lice as below.

3. N型非晶質半導体を形成する場合 上記のガスのガス流量は、下記の通り。3. When forming an N-type amorphous semiconductor The gas flow rates for the above gases are as follows.

素子は、電卓用太陽電池として、3段構造において1C
TrL×4cm角のものを、10?XlO?の基板より
、18ケ作成した。
The device can be used as a solar cell for a calculator at 1C in a three-stage structure.
TrL x 4cm square one, 10? XlO? 18 pieces were made from this board.

素子の厚みは、基板をクラツキングする前に、ラツピン
グを行なう事によつて、約100μmとした。素子内の
段数は、3段で、各基板段差は、1μmの各段に形成さ
れた太陽電池の厚みは、1.2μmであり、全段の太陽
電池薄膜の厚みは、3.2μmである。上述の如く本発
明は、薄膜を用いた段差構造としたから、絶絶された基
板の厚み!虱通常、半導体構造で用いられているSiウ
エハ一にラツピング加工をほどこしたものは、約400
μmであるため、アレイの厚さは、0.4uとなる。
The thickness of the device was made approximately 100 μm by wrapping the substrate before cracking. The number of stages in the device is 3, and the height difference between each substrate is 1 μm. The thickness of the solar cells formed at each stage is 1.2 μm, and the thickness of the solar cell thin film in all stages is 3.2 μm. . As mentioned above, since the present invention has a step structure using a thin film, the thickness of the substrate can be completely reduced! Usually, about 400 Si wafers, which are used in semiconductor structures, are processed by wrapping.
μm, so the thickness of the array is 0.4u.

さらに、時計用太陽電池の様に、アレイの面積が、1?
X1礪となると、強度的に、さらに薄くする事が可能で
あり、アレイ基板加工上りで、100μm程度まで、薄
くする事ができる効果を有する。
Furthermore, like solar cells for watches, the area of the array is 1?
When it comes to X1 thickness, it can be made even thinner in terms of strength, and it has the effect of being able to be made thinner to about 100 μm after processing the array substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、従来の太陽電池の説明であり、第3
図は、本発明の太陽電池の説明である。 第4図は、段差の形成方法について工程図である。10
1・・・・・・絶縁物基板、102a〜102d・・・
・・・取り出し配線、103a〜103d・・・・・・
P型領域、104a〜104d・・・・・・N型領域、
105a〜105c・・・・・・按続配線、201・・
・・・・絶縁物基板、202a〜202d・・・・・・
金属配線、203a〜203c・・・・・・P型領域、
204a〜204c・・・・・・N型領域、205a〜
205c・・・・・・N型領域と金属配線との接着斉L
3Ol・・・・・・段差を有する基板、302・・・・
・・引き出し配線、303a〜303c・・・・・・N
型非晶質半導体、304a〜304c・・・・・・基性
非晶質半導体、305a〜305c・・・・・・P型非
晶質半導体。
Figures 1 and 2 are explanations of conventional solar cells;
The figure is an illustration of the solar cell of the invention. FIG. 4 is a process diagram of a method for forming a step. 10
1... Insulator substrate, 102a to 102d...
...Extracting wiring, 103a to 103d...
P-type region, 104a to 104d...N-type region,
105a to 105c...Connection wiring, 201...
...Insulator substrate, 202a to 202d...
Metal wiring, 203a to 203c...P type region,
204a-204c...N-type region, 205a-
205c...Adhesion level L between N-type region and metal wiring
3Ol...Substrate with steps, 302...
・・Output wiring, 303a to 303c・・・・・・N
type amorphous semiconductor, 304a to 304c...basic amorphous semiconductor, 305a to 305c...p type amorphous semiconductor.

Claims (1)

【特許請求の範囲】[Claims] 1 相互に段差を有する複数の平面を有する基板と、該
平面上に形成された第1導電型の第1非晶質半導体薄膜
と、該第1の薄膜上に形成された真性の第2非晶質半導
体薄膜と、該第2の薄膜上に形成された第2導電型の第
3非晶質半導体薄膜とからなり、該第1の薄膜は隣接す
る平面上の第3の薄膜とほぼ同一高さを有し、かつ、直
接接続されてなることを特徴とする太陽電池の構造。
1. A substrate having a plurality of planes having mutual steps, a first conductivity type first amorphous semiconductor thin film formed on the planes, and an intrinsic second non-crystalline semiconductor thin film formed on the first thin film. It consists of a crystalline semiconductor thin film and a third amorphous semiconductor thin film of a second conductivity type formed on the second thin film, and the first thin film is substantially the same as the third thin film on an adjacent plane. A structure of a solar cell characterized by having a height and being directly connected.
JP54128544A 1979-10-05 1979-10-05 Structure of solar cell Expired JPS5924554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54128544A JPS5924554B2 (en) 1979-10-05 1979-10-05 Structure of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54128544A JPS5924554B2 (en) 1979-10-05 1979-10-05 Structure of solar cell

Publications (2)

Publication Number Publication Date
JPS5651881A JPS5651881A (en) 1981-05-09
JPS5924554B2 true JPS5924554B2 (en) 1984-06-09

Family

ID=14987374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54128544A Expired JPS5924554B2 (en) 1979-10-05 1979-10-05 Structure of solar cell

Country Status (1)

Country Link
JP (1) JPS5924554B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659179A (en) * 1995-03-07 1997-08-19 Motorola Ultra-small semiconductor devices having patterned edge planar surfaces

Also Published As

Publication number Publication date
JPS5651881A (en) 1981-05-09

Similar Documents

Publication Publication Date Title
US7498508B2 (en) High voltage solar cell and solar cell module
US4849029A (en) Energy conversion structures
US20050022857A1 (en) Solar cell interconnect structure
US4454372A (en) Photovoltaic battery
CN101874304A (en) Wiring member between elements, photoelectric conversion element, and photoelectric conversion element connecting body and photoelectric conversion module using the wiring member between elements and the photoelectric conversion element
WO2006101741A2 (en) Scalable photovoltaic cell and solar panel manufacturing with improved wiring
WO1994027327A1 (en) Series interconnected photovoltaic cells and method for making same
CN109463014A (en) Solar cell module
JP2000150944A (en) Solar cell module
JPH1065198A (en) Right-angled triangular solar cell module and manufacturing method thereof
US11575053B2 (en) Photovoltaic device and solar cell module including same
JPS5924554B2 (en) Structure of solar cell
JPH0660155U (en) Integrated solar cell module
JPH0319379A (en) Solar cell
JPS58196060A (en) Thin film semiconductor device
JPS6161551B2 (en)
JPH0650997Y2 (en) Translucent solar cell
JP6792709B2 (en) Photoelectric converter, solar cell string with it, and solar cell module with any of them
JPS5942994B2 (en) Method for manufacturing thin film solar cells
JPH0228906B2 (en)
JPS58196061A (en) Electrode formation for thin film semiconductor device
JPS60107872A (en) Photoelectromotive force device
JPS6138205Y2 (en)
Nath et al. Amorphous silicon alloy tandem devices and modules on thin polymide substrates
JPH03132080A (en) Photovoltaic device