JPS5923835A - Production of boride diffused alloy - Google Patents

Production of boride diffused alloy

Info

Publication number
JPS5923835A
JPS5923835A JP13145782A JP13145782A JPS5923835A JP S5923835 A JPS5923835 A JP S5923835A JP 13145782 A JP13145782 A JP 13145782A JP 13145782 A JP13145782 A JP 13145782A JP S5923835 A JPS5923835 A JP S5923835A
Authority
JP
Japan
Prior art keywords
alloy
boride
gold
silver
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13145782A
Other languages
Japanese (ja)
Other versions
JPS6154109B2 (en
Inventor
Hironori Fujita
藤田 浩紀
Jiro Mizuno
水野 二郎
Toru Arai
新井 透
Osami Kasuya
糟谷 修身
Koichi Ono
浩一 大野
Hisahiro Ando
安藤 久弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Tokai Rika Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd, Toyota Central R&D Labs Inc filed Critical Tokai Rika Co Ltd
Priority to JP13145782A priority Critical patent/JPS5923835A/en
Priority to EP19830107389 priority patent/EP0101936B1/en
Priority to DE8383107389T priority patent/DE3377990D1/en
Publication of JPS5923835A publication Critical patent/JPS5923835A/en
Publication of JPS6154109B2 publication Critical patent/JPS6154109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To produce an electrical contact and sliding material having a surface part dispersed uniformly with borides and having excellent performance, by penetrating and dispersing B in a metallic material having the surface layer part consisting of a thin layer contg. gold, silver, etc. and Be, Mg, Al, etc. CONSTITUTION:>=1 Kinds among Be, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Ga, As, Zr, Nb, Mo, Pd, Cd, Ta, W and Pt are coated on the surface of gold, silver gold alloy, or silver alloy which is a base material by electroplating or the like; thereafter, the material is heat-treated to diffuse said element into the surface layer part, and metallic material of which the surface layer part from at least the surface down to 0.01-0.1mm. depth contains 0.5-40atom% the above-mentioned elements as an alloy or fine particles and the balance is gold, silver gold alloy, or silver alloy is obtd. B is penetrated and diffused in such metallic material to form the fine particles consisting of the borides of the above-mentioned elements in the surface layer part of the metallic material, whereby the boride diffused alloy is produced and a metallic material suited for an electrical contact material, a sliding material, etc. is obtd.

Description

【発明の詳細な説明】 本発明は、電気接貞祠料及び摺動月利等に使用される金
属材料の表層部に硼化物を分散させた合金の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an alloy in which boride is dispersed in the surface layer of a metal material used for electric implants, sliding plates, etc.

従来、硼化物と金属との複合材オ()を作るには、粉末
焼結法や溶解法が知られている。粉末焼結法は、微細な
硼化物粉末と例えば銅粉末とを適In混合し適当な温度
及び適当なガス雰囲気中で焼結して、微細硼化物分散銅
を得る方法である。しかし、この方法は、硼化物を均一
に分散さけることが困難であり生産コス1−が高くつく
という欠点を有している。
Conventionally, powder sintering methods and melting methods have been known to make composite materials of boride and metal. The powder sintering method is a method in which fine boride powder and, for example, copper powder are mixed with appropriate In and sintered at a suitable temperature and in a suitable gas atmosphere to obtain fine boride-dispersed copper. However, this method has the disadvantage that it is difficult to uniformly disperse the boride and the production cost is high.

また溶解法は、銅と硼化物を混合し、高温加熱によって
溶解し、冷却凝固して硼化物分散銅合金を10る方法で
ある。しかし、この方法は、溶融した合金を凝固させる
時に、硼化物が晶出するため硼化物粒が粗大となり、鍛
造によっても硼化物の微細化には自と限度があるという
欠点を有していlこ 。
The melting method is a method in which copper and boride are mixed, melted by high-temperature heating, and solidified by cooling to form a boride-dispersed copper alloy. However, this method has the disadvantage that when the molten alloy is solidified, the boride grains become coarse due to the crystallization of the boride, and there is a limit to the refinement of the boride even by forging. child .

さらには、両公知方法共に、金属材料の表層部にのみ硼
化物を分散させることができないlζめ例えば電気伝導
度が小さくなるという欠点があった。
Furthermore, both known methods have the disadvantage that the boride cannot be dispersed only in the surface layer of the metal material, resulting in a decrease in electrical conductivity, for example.

本発明は上記従来の方法とはまったく異なり、硼化物の
構成元素の金属と金または銀どの合金を作り、その合金
の表面から硼素を浸透拡散し、合金の表層部に硼化物の
微粒子が分散した層を生成させるものである。
The present invention is completely different from the conventional method described above, in that an alloy such as gold or silver is made with a metal as a constituent element of boride, boron is permeated and diffused from the surface of the alloy, and fine particles of boride are dispersed in the surface layer of the alloy. This method generates a layer of

りなわら本発明の硼化物分散合金の製造方法は少なくと
も表面より0.01〜Q、1mm深さまでの表層部がベ
リリウム(Be)、マグネシウム(Mg)、アルミニウ
ム(AI)、シリコン(Si)、チタン(’l−1)、
バナジウム(V)、クロム(Cr)、マンガン(Mn 
) 、鉄([C)、コバルト(Co)、ニッケル(Ni
)、ガリウム(Ga)、砒素(AS)、ジル:1ニウl
\(Zr)、二Aブ(Nb)、モリブデン(MO)、パ
ラジウム(Pd)、カドミウム(Cd)、タンタル(T
a)、タングステン(W)及び白金(Pt )からなる
群より選ばれた1種又は2種部十の元糸を合金あるいは
微細粒子として0.5〜/IO原子%含み、残部が金、
銀又は金合金、銀合金である金属月別を調整する第1工
程と、L記金属月別にボロンを浸透拡散さけ、該金属l
Δi’lの表層部に、上記群より選ばれた1種又は2種
以北の元素の硼化物よりなる微細な粒子を形成Jる第2
二F程とよりなることを特徴とするものである。
In addition, the method for manufacturing the boride dispersed alloy of the present invention is such that the surface layer at least from the surface to a depth of 0.01 to 1 mm contains beryllium (Be), magnesium (Mg), aluminum (AI), silicon (Si), and titanium. ('l-1),
Vanadium (V), chromium (Cr), manganese (Mn
), iron ([C), cobalt (Co), nickel (Ni
), gallium (Ga), arsenic (AS), zil: 1 ni
\(Zr), NiAl(Nb), Molybdenum (MO), Palladium (Pd), Cadmium (Cd), Tantalum (T
a) Contains 0.5 to IO atomic % of one or two selected from the group consisting of tungsten (W) and platinum (Pt) as an alloy or fine particles, the balance being gold,
The first step is to adjust the metal, which is silver or gold alloy, or silver alloy, and to avoid permeation and diffusion of boron into the metal,
Forming fine particles made of a boride of one or more elements selected from the above group on the surface layer of Δi'l.
It is characterized by being about 2F.

本発明の製造方法に用いられる金属材料にd3いて、表
面にす0,01〜0.1mm深さまでの少なくとも表層
部が、13e、M(1、Δl 、3i 、−1’i 、
V、   Cr   、   Mn   、   l二
 e、Co、Ni   、  Ga、As   、Zr
、Nb、Mo、Pd5Cd、l’a、W及びPtからな
る群より選ばれた1種又は2種以上の元素を0.5〜4
0原子%含み、残部が金、銀、金合金、銀合金である金
属月別であるとして表層部の金属組成を規定したのは、
表層部のみに硼化物を形成させるためである。したがっ
て金属材料の他の部分には、使用目的等に応じて任意の
金属のものを使用することができる。
In the metal material d3 used in the manufacturing method of the present invention, at least the surface layer to a depth of 0.01 to 0.1 mm has 13e, M(1, Δl, 3i, -1'i,
V, Cr, Mn, l2e, Co, Ni, Ga, As, Zr
, Nb, Mo, Pd5Cd, l'a, W, and Pt.
The metal composition of the surface layer was defined as 0 atomic percent, and the balance was gold, silver, gold alloy, and silver alloy.
This is to form boride only in the surface layer. Therefore, for the other parts of the metal material, any metal can be used depending on the purpose of use.

表層部を形成する金属を[3c 、MO、AI、St 
XT−i 、V、Cr、Mn、Fe、Go、Ni 。
The metal forming the surface layer is [3c, MO, AI, St
XT-i, V, Cr, Mn, Fe, Go, Ni.

Ga、△3.7r、Nb、MOlpd、Cd、T−a、
W及びl) (からなる群より選ばれた1種又は2種以
上としたのは、」二記Be、M(1、△1、等は、いず
れも金、銀、金合金、銀合金中に固溶あるいは分散し、
かつ金属材v1の表面から拡散浸透してきたボロン(B
 )と結合し、硼化物の微細4に粒子を分散形成づるこ
とができるためである。
Ga, △3.7r, Nb, MOLpd, Cd, T-a,
W and l) (One or more selected from the group consisting of ``2 Be, M (1, △1, etc.) are gold, silver, gold alloy, silver alloy. solid solution or dispersed in
In addition, boron (B) that has diffused and penetrated from the surface of metal material v1
) and can form fine particles of boride 4 in a dispersed manner.

又、その他の理由として上記元素の硼化物は、比較的硬
度が高く、固有抵抗が低く、融点が高く、このため本発
明の製造方法で得られる材料の有力な用途と考えられる
電気接点材料又は摺動材お1として優れた特性を右づる
ことが挙げられる。第1表に硼化物の物理的特性を従来
の接点月利と比較して挙げた。これによると上記硼化物
GELい覆”れし固有抵抗が20〜100X 10 ”
−6Ωctrあり、溶融点1270〜30/I 0℃、
硬度ト1v1500〜3000と従来タイプの接点材に
比較し溶融、硬度の点で優れている。
In addition, for other reasons, the borides of the above elements have relatively high hardness, low specific resistance, and high melting points, and for this reason, they are considered to be effective applications for electrical contact materials or materials obtained by the manufacturing method of the present invention. As a sliding material, it has excellent properties. Table 1 lists the physical properties of borides in comparison with those of conventional contacts. According to this, the specific resistance of the boride GEL coating is 20 to 100 x 10.
-6Ωctr, melting point 1270-30/I 0℃,
It has a hardness of 1v1500 to 3000, which is superior to conventional contact materials in terms of melting and hardness.

硼化物形成元素の組成割合を0.5〜4o原子%とした
のは、0.5%にり少ないと、形成される硼化物の量が
少ないため、目的どする硼化物特有の効果が得られない
ためであり、40%J、り多くなると、形成される硼化
物の量が多り41つ、本発明で得られるI判の硼化物と
金、銀、金合金、銀合金との混合形態が悪くなり導電性
及び熱伝導性が低)づると共に被覆層のクラックや剥離
が生じやすくなるためである。
The reason why the composition ratio of the boride-forming element is set to 0.5 to 40 atomic % is because if it is less than 0.5%, the amount of boride formed is small, so the desired effect peculiar to boride cannot be obtained. This is because when the amount of J increases by 40%, the amount of boride formed increases. This is because the morphology deteriorates, the electrical conductivity and thermal conductivity become low, and the coating layer is likely to crack or peel.

硼化物を分散させる表層部を0.01〜0.1mmとし
たのは、硼化物が接点材わ1どし−C接点表面部に要求
される耐摩耗性、耐溶着性、耐ノ7−り性の諸効果を発
揮できる様にし、かつ表層下の母料内部では、高導電性
、高熱伝導性、高強度fl等の要求を具mづるようにづ
るためである。即ち、合金母材の内部全体に硼化物を分
散さけることは、必ずしも上記の内部母Hに要求される
高導電性又は高熱伝導性、高強度性を得るには得策では
ない。
The reason why the surface layer in which the boride is dispersed is set to 0.01 to 0.1 mm is because the boride has the wear resistance, welding resistance, and resistance required for the contact surface area. This is to enable the material to exhibit various effects of oxidation properties, and to meet the requirements of high electrical conductivity, high thermal conductivity, high strength, etc. inside the matrix below the surface layer. That is, avoiding dispersion of boride throughout the interior of the alloy matrix is not necessarily a good idea in order to obtain the high electrical conductivity, high thermal conductivity, and high strength required for the internal matrix H described above.

この様な目的には、上記表層部にのみ硼化物を分散させ
、表層部以下の内部は、要求される特性に応じて、金、
または銀の純度を向上したり、強化元素を添加したりす
るのが好ましい。
For this purpose, boride is dispersed only in the surface layer, and the interior below the surface layer is filled with gold, gold, etc. depending on the required properties.
Alternatively, it is preferable to improve the purity of silver or add a reinforcing element.

なお、表層部の母材合金材料の組成によっては、ボ〔1
ンの浸透拡散により微細な硼化物粒子が分呻した層が形
成されず、不均一な硼化物層が形成される場合がある。
Note that depending on the composition of the base alloy material in the surface layer, the
Due to the permeation and diffusion of ion, a layer of fine boride particles is not formed, and a non-uniform boride layer may be formed.

このような場合には母材合金中の硼化物形成金属元素の
組成を少なくしたり、母材合金中に硼化物を形成しやづ
い他の元素を添加して硼化物の分散を図るのが好ましい
In such cases, it is recommended to reduce the composition of boride-forming metallic elements in the base alloy or add other elements that tend to form borides in the base alloy to disperse the boride. preferable.

金属材料は表層部を含め全体を所定の硼化物形成元素と
金ま1=は銀の合金とすることができる。
The entire metal material including the surface layer portion can be an alloy of a predetermined boride-forming element and gold or silver.

この場合には目的とする組成の金属を溶解し、合金とす
るものである。
In this case, metals having the desired composition are melted to form an alloy.

従来、一般に銀系接点材料としてはA(]−Nt合金、
Ao −Cd O1Δ!]−11O祠が使用されている
。これら従来の銀系接点材11をそのまま、さらには硼
化物形成元素を加えて、本弁明の1u月合金とザること
ができる。Ni、Cuはアーク等による銀の消耗fil
を減少さ1.lno、CdQは表面浄化作用がある。
Conventionally, silver-based contact materials generally include A(]-Nt alloy,
Ao −Cd O1Δ! ]-11O shrine is used. These conventional silver-based contact materials 11 can be used as they are, or even a boride-forming element can be added thereto to form the IU alloy of the present invention. Ni and Cu are silver consumption fil due to arc etc.
1. lno and CdQ have a surface purifying effect.

表層部のみを所定の合金とJる金属月利を調整する代表
的な方法としては、母材を金または銀とし、その表面に
V、N+等を被覆し、さらに被覆され/j V等の金属
を加熱処理にJ、り母材中に拡散さけ、表層部のみを所
定の合金どりるものCある。
A typical method for adjusting the metal monthly rate in which only the surface layer is made of a specified alloy is to use gold or silver as the base material, coat the surface with V, N+, etc., and then coat the surface with V, etc. There is also a method in which the metal is heat-treated and diffused into the base material, leaving only the surface layer with a predetermined alloy.

母材の表面にV等を被覆づ゛る方法どしく゛は、電気メ
ッキ、化学メッキ、真空蒸着、スパッタリング、溶(ト
)等公知の方法が採用できる。V”jの母材中への拡散
は高温にお()る金属元素の熱拡散現象を利用して達成
する。
As a method for coating the surface of the base material with V or the like, known methods such as electroplating, chemical plating, vacuum deposition, sputtering, and melting can be employed. Diffusion of V''j into the base material is achieved using the thermal diffusion phenomenon of metal elements at high temperatures.

金属材わ1の形状は板状、棒状、線状等、使用[1的に
応じて任意の形状とり−ることかできる。
The shape of the metal material 1 can be any shape depending on the use, such as a plate, a rod, or a line.

金属月利の表面に硼素を浸透、拡散さけ、表層部にポラ
イドの微細粒子が分散しt、−pを形成させる工程は、
通常公知の浸11]11素処理法により達成される。代
表的な浸硼素処理法としては、硼素をビ解した溶融塩浴
に金m材Y1を浸漬して処理覆る溶融塩法、炭化硼素等
の粉末とノツ化ボウ累、塩化アンモン等の粉末の混合粉
末中に金属材料を埋設し、加熱処理をJ5こなう粉末法
、真空中で硼素を蒸着さける等の物理的蒸着法が利用で
きる。金属材料中に浸透した硼素は母材合金中のV等と
化合し、硼化物を形成づる。得られる硼化物は、△IB
2、△l B、、、 AS B1△33e、Qd[3s
、CO213、COD、Crl−3、Cr 132 、
Fe 13、Fe 2B、VB2、MQ B2、Mg8
4、MO132、MO2B、 Nb B、Nb 82、
Pt B。
The process of penetrating and diffusing boron into the surface of metal metal and dispersing fine particles of polide in the surface layer to form t and -p is as follows:
This can be achieved by the commonly known immersion treatment method. Typical boron treatment methods include the molten salt method, in which the gold material Y1 is immersed in a molten salt bath in which boron is dissolved in vinyl, and the molten salt method, in which the gold material Y1 is immersed in a molten salt bath in which boron has been decomposed. A powder method in which a metal material is embedded in a mixed powder and subjected to heat treatment, and a physical vapor deposition method in which boron is vapor-deposited in a vacuum can be used. The boron that has penetrated into the metal material combines with V, etc. in the base alloy to form boride. The obtained boride is △IB
2, △l B, , AS B1△33e, Qd[3s
, CO213, COD, Crl-3, Cr132,
Fe 13, Fe 2B, VB2, MQ B2, Mg8
4, MO132, MO2B, Nb B, Nb 82,
PtB.

PL 2[33,1−a B、Ta B2.W2B5、
Zr132等のうち1種又は2種以上の混合物である。
PL 2[33,1-a B, Ta B2. W2B5,
It is one type or a mixture of two or more types of Zr132 and the like.

これらの方法により、金、銀、金合金、銀合金中に硼化
物粒子が分散した層が形成される。硼化物粒子の大きさ
は小さく)れば小さい程よい。本発明の方法では0.1
〜10ミクロン程度の粒径をもつ硼化物が1りられる。
By these methods, a layer in which boride particles are dispersed in gold, silver, a gold alloy, or a silver alloy is formed. The smaller the size of the boride particles, the better. In the method of the present invention, 0.1
One boride with a particle size of ~10 microns is collected.

なお、表層部に占める硼化物粒子の割合は容量%で0.
6〜50%が望ましい。表層部の層の厚さは0.01=
0.1mmが良い。なお、厚い層を得るには、硼素の浸
透拡散始期時間を長くしたり、処班1渇度を高くづるこ
とにより達成できる。
The proportion of boride particles in the surface layer is 0.0% by volume.
6 to 50% is desirable. The thickness of the surface layer is 0.01=
0.1mm is good. Note that a thick layer can be achieved by lengthening the initial time for permeation and diffusion of boron or by setting a high degree of thirst in the treatment group 1.

本発明に係る製造方法は以上の描成よりなる。The manufacturing method according to the present invention consists of the above description.

本発明の製造方法によれば、金属月利の表層部にのみ硼
化物を微細かつ均一に分散さけることが容易にできる。
According to the manufacturing method of the present invention, boride can be easily and finely and uniformly dispersed only in the surface layer of the metal.

かつ、従来の焼結法による硼化物分散合金に比較し製造
コストが安く、得られる硼化物分散合金の性質もJぐれ
−Cいる。
In addition, the manufacturing cost is lower than that of boride-dispersed alloys produced by conventional sintering methods, and the obtained boride-dispersed alloys have excellent properties.

硼化物は、表に示したように従来の接点材料に比べて硬
度、溶融温度及び分解温度が高く化学的にも安定してい
る。このため本発明方法によって表層部にのみ硼化物を
分散さげて製造しIs金属41判は、耐摩耗性、耐溶着
性及び耐アーク竹に優れた表層部を有づることになり、
該表層部を接y気部拐とする特性の優れた電気接点月別
及び電気摺動材料として使用することができる。又硼化
物は、比較的高い導電性を有し、しかも表層部のみに微
細に分散せしめ、かつ、母材金属は導電性のさらによい
金、銀合金であるため電気接点材料として十分な高伝導
性J5よび高熱伝導性を得ることができる。りなわら、
表層部にのみ硼化物分散層を形成づるため、接点制F1
全体の抵抗値を低く押さえることができる。
As shown in the table, boride has higher hardness, higher melting temperature, higher decomposition temperature, and is chemically more stable than conventional contact materials. For this reason, the Is Metal 41 size manufactured by dispersing boride only in the surface layer by the method of the present invention has a surface layer with excellent wear resistance, welding resistance, and arc resistance.
The surface layer part can be used as an electrical contact material and an electrical sliding material with excellent properties as a contact part. In addition, boride has relatively high conductivity, and is finely dispersed only in the surface layer, and the base metal is gold and silver alloys, which have even better conductivity, so it has a high enough conductivity as an electrical contact material. J5 and high thermal conductivity can be obtained. Rinawara,
Since the boride dispersion layer is formed only on the surface layer, the contact system F1
The overall resistance value can be kept low.

本発明製造方法によれば硼化物分散合金の母材内部の組
成をほぼ任意に構成できるため、曲げ、打抜き、コイニ
ング等の加工が容易になる様又熱伝導性を高くづる様に
母料内部の組成を選択りることかできる。
According to the manufacturing method of the present invention, the composition inside the matrix of the boride-dispersed alloy can be configured almost arbitrarily, so that the composition inside the matrix can be configured to facilitate bending, punching, coining, etc., and to increase thermal conductivity. You can choose the composition of

以上実施例により説明する。The above will be explained using examples.

実施例1 △【195重量部とCO5重量部を溶解し、△U85.
0原子%、Go15.0原子%よりなる直径1(1mの
コバルト金合金を1q)〔。これをスーL−ジングマシ
ンで直径4.mmに鍛造した後、さらに圧延ロールによ
り1mml9さの板材にした。この板材にす4Xb を硼砂(Na 213407)60重Φ部、炭化樹木(
84G>粉末(粒径79〜149μm > 40ff1
m部よりなる900℃の溶融塩浴中に4時間浸漬保持し
、硼素を試料中に拡散浸透させ、その後浴より取り出し
空冷した。
Example 1 △[195 parts by weight and CO5 parts by weight were dissolved, and △U85.
Diameter 1 (1 q of 1 m of cobalt-gold alloy) [. This is 4mm in diameter using a soothing machine. After forging to a size of 1 mm, it was further rolled into a plate of 1 mm. For this plate material, 4Xb was mixed with borax (Na 213407) 60 weight Φ part, carbonized wood (
84G>Powder (particle size 79-149μm>40ff1
The sample was immersed and held in a 900° C. molten salt bath for 4 hours to diffuse and infiltrate boron into the sample, and then taken out from the bath and cooled in the air.

得られた試料の一部を切断し、その切断面を顕微鏡で調
べた。この顕微鏡写真を第1図に示づ一0図中領域1は
硼化物の分散層、領域2はコバルト金合金よりなる母材
を表わ1−oこの結果、表面より約o、oamtnの深
さまで粒径2〜10μmの硼化物が分散していることが
分る。また硼化物の表層部に占める割合LL面積比ぐ約
18%であつ1.:。
A part of the obtained sample was cut and the cut surface was examined under a microscope. This micrograph is shown in Fig. 1. In Fig. 1, region 1 represents the boride dispersed layer, and region 2 represents the base material made of cobalt-gold alloy. It can be seen that boride particles with a particle size of 2 to 10 μm are dispersed. In addition, the proportion of boride in the surface layer is about 18% compared to the area of LL, and 1. :.

この硼化物はX線回析およびE l’) M△の測定の
結果CoBであることが確認された。また、硼化物の周
囲の金属はΔUであった。
This boride was confirmed to be CoB as a result of X-ray diffraction and E1') MΔ measurement. Moreover, the metal surrounding the boride was ΔU.

実施例2 △u 90重量部とNi10重量部を溶解し、△IJ7
313’?、子%Ni 27原子%にりなるニッケル金
合金を得た。これを実施例1ど同じ方法で硼素を拡散浸
透さけた。これにより表面より約0.1qmmの深さよ
で粒径5〜20μmの硼化物が分散した表層部をもつ硼
化物分散合金をを111だ。この硼化物はN:zDであ
り、この硼化物の表層部に占める割合は面積で約32%
であった。
Example 2 90 parts by weight of △u and 10 parts by weight of Ni were dissolved, and △IJ7
313'? A nickel-gold alloy having a Ni content of 27 atomic % was obtained. The same method as in Example 1 was used to avoid boron diffusion and penetration. As a result, a boride-dispersed alloy 111 having a surface layer in which boride particles with a grain size of 5 to 20 μm are dispersed at a depth of about 0.1 qmm from the surface is obtained. This boride is N:zD, and the proportion of this boride in the surface layer is about 32% in terms of area.
Met.

実施例ご3 Δ(夏どVを溶解し、Δu701量子%、V30原子%
の合金を得た。これまり自在6、/lmIn長さ24m
mの円+、を状試料を作った。この試r1を、75)%
の炭化硼素粉末と5市品%の塩化アンモ−ラム粉末およ
び20%重吊部のノフルミノ粉末を混合した処理拐粉末
中に埋設し、アルミナ製のルツボ中に入れ900℃で1
時間加熱し、ぞの後ルツボのまま空冷した。
Example 3 Δ(Natsudo V is dissolved, Δu701 quantum%, V30 atomic%
An alloy of This is flexible 6, /lmIn length 24m
A sample was made in the shape of a circle of m +. This trial r1 is 75)%
Boron carbide powder, 5% commercially available ammorum chloride powder, and 20% noflumino powder were embedded in treated powder, and the mixture was placed in an alumina crucible and heated at 900°C.
The mixture was heated for an hour and then air cooled in the crucible.

これにより第2図にその断面顕微銃’Z7負を承り一分
散層1をもつ硼化物分散合金を製造した。
As a result, a boride dispersed alloy having a monodispersed layer 1 was produced, the cross section of which was shown in FIG.

分散層1の厚さは約0.Q6mm、硼化物の粒径(よ約
5〜15μm、硼化物GJ V [32−’Cあった。
The thickness of the dispersion layer 1 is approximately 0. Q6 mm, boride particle size (approximately 5-15 μm, boride GJ V [32-'C).

また分散層にお【)る硼化物の占める割合は面積(゛約
36%であった。
The proportion of boride in the dispersed layer was approximately 36% by area.

実施例4 Δ(197重量部とCot3ip串部とを溶解し、△9
95原子%、C1Ox;%J:りなる合金をj!1k。
Example 4 Δ(197 parts by weight and Cot3ip skewer part were dissolved, Δ9
95 atomic%, C1Ox; %J: Rinaru alloy j! 1k.

この合金を実施例1と同じ方法で硼素を拡散浸透させ、
硼化物分散合金を製造した。
Boron was diffused into this alloy in the same manner as in Example 1,
A boride dispersed alloy was produced.

この硼化物分散合金は直径約0.5μmの極めて微細な
C013よりなる硼化物が分散した分散層を右するもの
であった。分散層の厚さは0.09mmrあった。硼化
物の占める割合は面積で約6%であった。
This boride-dispersed alloy had a dispersion layer in which extremely fine boride of C013 having a diameter of about 0.5 μm was dispersed. The thickness of the dispersion layer was 0.09 mmr. The proportion of boride was approximately 6% in terms of area.

実施例5) へ〇97重量部と1−13車M部を溶解し、△g93原
子%、王17原子%よりなる合金を冑だ。
Example 5) 97 parts by weight of 〇 and 1-13 parts by weight were melted to obtain an alloy consisting of 93 atomic % of △g and 17 atomic % of iron.

この合金を実施例1ど同じ方法C硼素を拡散浸透さ け
 lこ 。
This alloy was diffused and infiltrated with boron in the same manner as in Example 1.

これにより、第3図にその断面顕微鏡写真を示づ分散層
1をつ硼化物分散合金を製造した。
As a result, a boride-dispersed alloy having a dispersion layer 1 was manufactured, a cross-sectional micrograph of which is shown in FIG.

分散層1の厚さは約0.25111m、硼化物の粒径は
約2〜15μm1分散層1におりる硼化物の占める割合
は面積で約8%であった。X線回析により硼化物はTi
Bzであることが確認された。
The thickness of the dispersion layer 1 was about 0.25111 m, and the particle size of the boride was about 2 to 15 μm.The proportion of boride in the dispersion layer 1 was about 8% in terms of area. Boride is Ti by X-ray diffraction
It was confirmed that it was Bz.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は△U85原子%C015原子%の合金1rζ を母材とする実施例1により!ll造された硼化物分散
合金の厚さ方向切断面の組成を表1顕微鏡写真、第2図
はA1170%原子%V30原子%の合金を母材どする
実施例2により製造された硼化物分散合金の厚さ方向切
断面の組成を表1顕微鏡写真、第3図はAg93原子%
Ti 7原子%の合金を母材とする実施例5により製造
された硼化物分散合金の厚さ方向切断面の組成を表す顕
微鏡写真である。図中1は分散層、2は母材領域を示づ
。 特許出願人  株式会ネ] 豊0」中火?tlI究所同
     株式会社 東海理化電気製作所代理人  弁
理士  大 川  穴 間   弁理士  藤 谷  修
Figure 1 is based on Example 1 in which the base material is alloy 1rζ containing △U85 at% and C015 at%! Table 1 shows the composition of the cross-section in the thickness direction of the manufactured boride-dispersed alloy. Figure 2 shows the composition of the boride-dispersed alloy produced in Example 2 using an alloy of 70% A11, 70% V, and 30% V as the base material. Table 1 shows the composition of the cut surface in the thickness direction of the alloy. Figure 3 shows Ag93 atomic %.
2 is a micrograph showing the composition of a cross-section in the thickness direction of a boride-dispersed alloy manufactured in Example 5 using an alloy containing 7 atomic % Ti as a base material. In the figure, 1 indicates the dispersion layer and 2 indicates the base material region. Patent applicant: Co., Ltd.] Yutaka 0” medium heat? tlI Research Institute Tokai Rika Denki Seisakusho Co., Ltd. Agent Patent Attorney Anama Okawa Patent Attorney Osamu Fujitani

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも表面より0.01〜0.1mm深さま
での表層部がベリリウム(Be ) 、マグネシウム(
Mill)、アルミニウム(△1)、シリコン(Si>
、ヂタン(Ti)、バナジウム(V)、りI」ム(Cr
)、?ンガン(Mn)、鉄(Fe )、コバルト(CO
)、ニッケル(Ni>、ガリウム(Ga)、砒素(△S
)、ジルコニウム(Zr )、二Δブ(Nb)、モリブ
デン(MO) 、パラジウム(Pd)、カドミウム(C
d)、タンタル(Ta)、タングステン(W)及び白金
(PL)からなる群より選ばれた1種又は2種以上の元
素を合金あるいは微細粒子として0.5〜40原子%含
み、残部が金、銀又は金合金、銀合金である金属材料を
調整する第1工程と、 上記金属材お1にボロンを浸透拡散さL1該金属材料の
表層部に、上記群より選ばれた1種又は2種以上の元素
の硼化物よりなる微細な粒子を形成づる第2工程とより
なることを特徴とする硼化物分散合金の製造方法。
(1) The surface layer at least 0.01 to 0.1 mm below the surface contains beryllium (Be), magnesium (
Mill), aluminum (△1), silicon (Si>
, titanium (Ti), vanadium (V), rim (Cr)
),? Ngan (Mn), iron (Fe), cobalt (CO
), nickel (Ni>, gallium (Ga), arsenic (△S
), zirconium (Zr), di-Δb (Nb), molybdenum (MO), palladium (Pd), cadmium (C
d) contains 0.5 to 40 atomic percent of one or more elements selected from the group consisting of tantalum (Ta), tungsten (W), and platinum (PL) as an alloy or fine particles, with the balance being gold. , a first step of adjusting a metal material that is silver or a gold alloy, or a silver alloy, and boron is permeated and diffused into the metal material (L1), and one or two types selected from the above group are added to the surface layer of the metal material (L1). A method for producing a boride-dispersed alloy, comprising a second step of forming fine particles of borides of one or more elements.
(2)金、銀、金合金、銀合金の表面に上記群より選ば
れた1種又は2種部」この元素を被覆し、その後加熱処
理を施し被覆した金属を表層部に拡散させることにより
上記第1工程の金属材料を調整する特許請求の範囲第1
項記載の製造方法。
(2) By coating the surface of gold, silver, gold alloy, or silver alloy with one or two elements selected from the above group, and then applying heat treatment to diffuse the coated metal into the surface layer. Claim 1 for adjusting the metal material in the first step
Manufacturing method described in section.
JP13145782A 1982-07-28 1982-07-28 Production of boride diffused alloy Granted JPS5923835A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13145782A JPS5923835A (en) 1982-07-28 1982-07-28 Production of boride diffused alloy
EP19830107389 EP0101936B1 (en) 1982-07-28 1983-07-27 Boride-dispersed alloy material and process for manufacturing same
DE8383107389T DE3377990D1 (en) 1982-07-28 1983-07-27 Boride-dispersed alloy material and process for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13145782A JPS5923835A (en) 1982-07-28 1982-07-28 Production of boride diffused alloy

Publications (2)

Publication Number Publication Date
JPS5923835A true JPS5923835A (en) 1984-02-07
JPS6154109B2 JPS6154109B2 (en) 1986-11-20

Family

ID=15058401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13145782A Granted JPS5923835A (en) 1982-07-28 1982-07-28 Production of boride diffused alloy

Country Status (3)

Country Link
EP (1) EP0101936B1 (en)
JP (1) JPS5923835A (en)
DE (1) DE3377990D1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104467A (en) * 1982-12-06 1984-06-16 Mitsubishi Metal Corp Surface-hardened au alloy member for ornamental use
JPS59143032A (en) * 1983-02-04 1984-08-16 Mitsubishi Metal Corp Surface hardened pt alloy member for decoration
JPS6021347A (en) * 1983-07-12 1985-02-02 Mitsubishi Metal Corp High-strength au alloy member having surface layer hardened by boriding
JPS6052540A (en) * 1983-09-01 1985-03-25 Mitsubishi Metal Corp Hard au alloy tip material joined to substrate member and used
JPS60110867A (en) * 1983-11-18 1985-06-17 Mitsubishi Metal Corp Surface hardened ag alloy member having excellent resistance to wear and corrosion
JPS6175271U (en) * 1984-10-24 1986-05-21
US4899673A (en) * 1988-03-03 1990-02-13 Brother Kogyo Kabushiki Kaisha Control device for cyclic sewing machine
JPH03166327A (en) * 1989-11-22 1991-07-18 Seiko Instr Inc Hard-facing colored gold alloy
US6274254B1 (en) * 1999-08-23 2001-08-14 Lucent Technologies Inc. Electrodeposited precious metal finishes having wear resistant particles therein
CN102277524A (en) * 2010-06-13 2011-12-14 厦门鑫柏龙仪器仪表有限公司 Au-Fe-Ni-Cr alloy
CN114107725A (en) * 2021-12-07 2022-03-01 扬州亚光电缆有限公司 Heat-resistant anti-oxidation silver alloy material and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225655A (en) * 1989-02-28 1990-09-07 Agency Of Ind Science & Technol Gold alloy capable of coloring into bright black color and coloring method therefor
DE4313272C1 (en) * 1993-04-23 1994-05-05 Degussa Objects made of platinum@ and palladium@ - comprise hard scratch-resistant surface layer contg. boron@ in the metal lattice

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2001017A (en) * 1930-09-13 1935-05-14 Feussner Otto Metal article
US1990277A (en) * 1930-09-13 1935-02-05 Feussner Otto Metals of the platinum group and certain alloys
FR1231094A (en) * 1959-03-27 1960-09-26 Soc Metallurgique Imphy Process for producing borided metal parts and parts obtained by this process
NL265282A (en) * 1960-06-22
DE3307182A1 (en) * 1982-05-26 1983-12-01 Technical Materials, Inc., Lincoln, R.I. Alloy for electrical contacts and use for such an alloy

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104467A (en) * 1982-12-06 1984-06-16 Mitsubishi Metal Corp Surface-hardened au alloy member for ornamental use
JPS61904B2 (en) * 1982-12-06 1986-01-11 Mitsubishi Metal Corp
JPS59143032A (en) * 1983-02-04 1984-08-16 Mitsubishi Metal Corp Surface hardened pt alloy member for decoration
JPS621469B2 (en) * 1983-02-04 1987-01-13 Mitsubishi Metal Corp
JPS6123252B2 (en) * 1983-07-12 1986-06-05 Mitsubishi Metal Corp
JPS6021347A (en) * 1983-07-12 1985-02-02 Mitsubishi Metal Corp High-strength au alloy member having surface layer hardened by boriding
JPS6052540A (en) * 1983-09-01 1985-03-25 Mitsubishi Metal Corp Hard au alloy tip material joined to substrate member and used
JPS6123253B2 (en) * 1983-09-01 1986-06-05 Mitsubishi Metal Corp
JPS60110867A (en) * 1983-11-18 1985-06-17 Mitsubishi Metal Corp Surface hardened ag alloy member having excellent resistance to wear and corrosion
JPS622626B2 (en) * 1983-11-18 1987-01-21 Mitsubishi Metal Corp
JPS6175271U (en) * 1984-10-24 1986-05-21
JPH0415177Y2 (en) * 1984-10-24 1992-04-06
US4899673A (en) * 1988-03-03 1990-02-13 Brother Kogyo Kabushiki Kaisha Control device for cyclic sewing machine
JPH03166327A (en) * 1989-11-22 1991-07-18 Seiko Instr Inc Hard-facing colored gold alloy
US6274254B1 (en) * 1999-08-23 2001-08-14 Lucent Technologies Inc. Electrodeposited precious metal finishes having wear resistant particles therein
CN102277524A (en) * 2010-06-13 2011-12-14 厦门鑫柏龙仪器仪表有限公司 Au-Fe-Ni-Cr alloy
CN114107725A (en) * 2021-12-07 2022-03-01 扬州亚光电缆有限公司 Heat-resistant anti-oxidation silver alloy material and preparation method and application thereof

Also Published As

Publication number Publication date
EP0101936A2 (en) 1984-03-07
EP0101936A3 (en) 1985-01-30
DE3377990D1 (en) 1988-10-20
JPS6154109B2 (en) 1986-11-20
EP0101936B1 (en) 1988-09-14

Similar Documents

Publication Publication Date Title
US4436560A (en) Process for manufacturing boride dispersion copper alloys
US5134039A (en) Metal articles having a plurality of ultrafine particles dispersed therein
EP0738782A2 (en) Iron aluminide useful as electrical resistance heating elements
JPS5923835A (en) Production of boride diffused alloy
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
US4012230A (en) Tungsten-nickel-cobalt alloy and method of producing same
US4999050A (en) Dispersion strengthened materials
JPH1046268A (en) Manufacture of porous ni-cr alloy
JPH0820831A (en) Production of metallic porous body
US5455001A (en) Method for manufacturing intermetallic compound
CN113199024B (en) Ternary layered compound, metal-based composite material, and preparation method and raw materials thereof
JPH04325648A (en) Production of sintered aluminum alloy
JPH08225865A (en) Production of metallic porous body having three-dimensional network structure
US4381955A (en) Gold based electrical contact materials, and method therefor
JP2005015827A (en) Aluminum sliding member, and its production method
US4436559A (en) Process for manufacturing boride dispersion copper alloys
US3201236A (en) Method of making metal bodies incorporated with non-metallic refractory material andproduct thereof
EP0408257B1 (en) Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
EP3418406B1 (en) Method for producing porous member
US3692596A (en) Dispersion strengthened nickel-chromium alloys
US3695868A (en) Preparation of powder metallurgy compositions containing dispersed refractory oxides and precipitation hardening elements
JP2846941B2 (en) Electrode material and method for manufacturing electrode material
US3454431A (en) Method of producing dispersion strengthened nickel-chromium alloys
JP2696567B2 (en) Method for producing ceramic particle reinforced metal matrix composite
JPH0645833B2 (en) Method for manufacturing aluminum alloy-based composite material