JPH1046268A - Manufacture of porous ni-cr alloy - Google Patents

Manufacture of porous ni-cr alloy

Info

Publication number
JPH1046268A
JPH1046268A JP19813196A JP19813196A JPH1046268A JP H1046268 A JPH1046268 A JP H1046268A JP 19813196 A JP19813196 A JP 19813196A JP 19813196 A JP19813196 A JP 19813196A JP H1046268 A JPH1046268 A JP H1046268A
Authority
JP
Japan
Prior art keywords
powder
alloy
gas
porous
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19813196A
Other languages
Japanese (ja)
Inventor
Jun Nishida
純 西田
Takashi Sakuma
孝 佐久間
Shigeru Kadokake
繁 角掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP19813196A priority Critical patent/JPH1046268A/en
Publication of JPH1046268A publication Critical patent/JPH1046268A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a porous Ni-Cr alloy having a skeleton composed of Ni-Cr alloy and also having sufficient toughness as well as high melting point owing to its low carbon content. SOLUTION: A slurry, containing Ni-Cr alloy powder, metallic Ni powder, metallic Cr powder, and Ni oxide powder in desired percentages, is formed. This slurry is applied to a foamed resin by coating. The coated material is heated to 700-900 deg.C under a reducing gas atmosphere containing water vapor or carbon dioxide gas, by which the foamed resin is thermally decomposed and carbon is dissipated. Then, heating is carried out up to 1100-1300 deg.C under a reducing gas atmosphere of 1100-1300 deg.C to perform sintering, by which the porous Ni-Cr alloy is obtained. It is preferable to regulate the amount of water vapor or carbon dioxide gas to 2.5-30vol.%. As reducing gas, gaseous hydrogen or ammonia decomposed gas can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性金属材
料、触媒若しくはその担体、発熱抵抗体等として使用す
ることができるNi−Cr合金からなる多孔質合金の製
造方法についての提案である。
The present invention relates to a method for producing a porous alloy comprising a Ni--Cr alloy which can be used as a wear-resistant metal material, a catalyst or its carrier, a heating resistor, and the like.

【0002】[0002]

【従来の技術】空孔率の大きな金属多孔体(多孔質金
属)は、触媒担体や電池用の基板とした場合には充填率
が大きいために良好な担体もしくは基板となり得る。
2. Description of the Related Art A porous metal body (porous metal) having a high porosity can be a good carrier or substrate because of its large filling rate when used as a catalyst carrier or a substrate for a battery.

【0003】このような多孔質金属のうち、気孔率が9
0%を超えるものについては、発泡性樹脂に金属をメッ
キする方法(以下、メッキ法と称する)、発泡樹脂のシ
ート等に金属粉末を含有するスラリーを含浸させ、その
後焼成により発泡樹脂を消失させ、金属粉末を焼結する
方法(以下、スラリー法と称する)により製造されてい
る。(特開昭57−17448号公報、特開平 −14
9183号公報)。
[0003] Among such porous metals, the porosity is 9
For those exceeding 0%, a method of plating a metal on a foamable resin (hereinafter referred to as a plating method), impregnating a slurry containing a metal powder in a sheet of a foamed resin, and then sintering the foamed resin to eliminate the foamed resin It is manufactured by a method of sintering metal powder (hereinafter, referred to as a slurry method). (JP-A-57-17448, JP-A-14
No. 9183).

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
方法により金属がNiとCrよりなるNi−Cr多孔質
合金をメッキ法で製造するには、先ず例えばニッケルの
多孔質金属を製造し、その後、ニッケルの表面にCrの
メッキ層を更に形成する。ところがこの方法によれば内
部はNiで表面はCrの二層構造となり、表面には金属
Crが露出されており、多孔質体全体が合金化されたも
のはできない。
By the way, in order to produce a Ni—Cr porous alloy composed of Ni and Cr by a plating method by such a method, first, for example, a porous metal of nickel is produced, and then a porous metal of nickel is produced. Then, a plating layer of Cr is further formed on the surface of nickel. However, according to this method, the inside has a two-layered structure of Ni and Cr on the surface, and metal Cr is exposed on the surface, and the porous body cannot be entirely alloyed.

【0005】さらに、メッキ法による場合、Ni表面に
単にCrが析出しているだけでNiとCrが合金化され
た部分が殆どなく、金属間の密着性を持たせるために加
熱処理を行っても、合金化は不十分であった。またクロ
マイズ処理を行う方法もあるが表面しか合金化しないと
いう問題点がある。
Further, in the case of plating, there is almost no portion where Ni and Cr are alloyed because only Cr is precipitated on the Ni surface, and a heat treatment is performed to impart adhesion between metals. However, alloying was insufficient. There is also a method of performing chromizing treatment, but there is a problem that only the surface is alloyed.

【0006】スラリー法により、Ni粉末と金属Crの
粉末を混合しこれを用いてスラリーとを形成し、ついで
このスラリーを発泡性樹脂に塗着し、ついでこの塗着し
たものを焼成することによりNi−Cr多孔質合金を製
造することが考えられる。
[0006] According to the slurry method, Ni powder and metal Cr powder are mixed and used to form a slurry, the slurry is applied to a foaming resin, and then the coated material is fired. It is conceivable to produce a Ni-Cr porous alloy.

【0007】しかし、本発明者等の知見によるとこの方
法では、発泡性樹脂等が熱分解した時に発生する炭素が
合金に含有され、得られたNi−Cr多孔質合金は炭素
含有量が高く、炭素と合金の金属間化合物が生成し、融
点が低下するために発熱性抵抗体としての用途には不適
当であり、また金属間化合物が生成したNi−Cr多孔
質合金は伸びも小さい脆い材質となるため摺動部材とし
ても利用し得ないという問題点がある。
However, according to the findings of the present inventors, in this method, carbon generated when the foamable resin or the like is thermally decomposed is contained in the alloy, and the resulting Ni—Cr porous alloy has a high carbon content. Since an intermetallic compound of carbon and an alloy is generated and the melting point is lowered, it is unsuitable for use as a heat-generating resistor, and a Ni-Cr porous alloy produced by an intermetallic compound has a small elongation and is brittle. Since it is made of a material, it cannot be used as a sliding member.

【0008】本発明は、炭素の含有量が少ないために発
熱性抵抗体としても使用が可能であり、また十分な靭性
を有し摺動部材としても使用が可能なNi−Cr多孔質
合金を製造する方法の提供を課題としている。
The present invention provides a Ni—Cr porous alloy which can be used as a heat-generating resistor because of its low carbon content and has sufficient toughness and can be used as a sliding member. The task is to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】上記の課題を達成するた
めに本発明者らは、鋭意研究した。その結果、スラリー
法を用いて炭素含有量が低く金属間化合物を形成させな
い多孔質合金を製造する方法を見出し、本発明を完成し
た。
Means for Solving the Problems In order to achieve the above object, the present inventors have made intensive studies. As a result, they found a method for producing a porous alloy having a low carbon content and not forming an intermetallic compound by using a slurry method, and completed the present invention.

【0010】すなわち、本発明は(1)発泡性樹脂に、
Ni−Crの合金粉末を含有するスラリーを、あるいは
金属Ni粉末もしくはNi酸化物粉末と金属Cr粉末を
含有するスラリーを塗着する第一工程、次いで第一工程
で得られた塗着物を水蒸気または炭酸ガスを含む還元性
ガス雰囲気下で700℃〜900℃に加熱し前記発泡樹
脂を消失させかつ脱炭する第二工程、その後1100℃
〜1300℃の還元性ガス雰囲気下において前記Ni−
Crの合金粉末をあるいは金属Ni粉末もしくはNi酸
化物粉末と金属Cr粉末を焼結する第三工程を有する事
を特徴とするNi−Cr多孔質合金の製造方法である。
That is, the present invention provides (1) a foamable resin,
A first step of applying a slurry containing a Ni-Cr alloy powder, or a slurry containing a metal Ni powder or a Ni oxide powder and a metal Cr powder, and then applying the coated material obtained in the first step to steam or A second step of heating to 700 ° C. to 900 ° C. in a reducing gas atmosphere containing carbon dioxide to eliminate the foamed resin and decarburize, and then 1100 ° C.
The above-mentioned Ni-
A method for producing a Ni—Cr porous alloy, comprising a third step of sintering a Cr alloy powder or a metal Ni powder or a Ni oxide powder and a metal Cr powder.

【0011】また(2)上記第二工程の水蒸気または炭
酸ガスを含む還元性ガスが、水蒸気または炭酸ガスを
2.5〜30vol%含有する水素ガスまたはアンモニア
分解ガスであることを特徴とする前記(1)に記載のN
i−Cr多孔質合金の製造方法である。
(2) The reducing gas containing water vapor or carbon dioxide in the second step is a hydrogen gas or an ammonia decomposition gas containing 2.5 to 30 vol% of water vapor or carbon dioxide. N described in (1)
This is a method for producing an i-Cr porous alloy.

【0012】また(3)上記第三工程の還元性ガスが、
水素ガスまたはアンモニア分解ガスであることを特徴と
する前記(1)または(2)に記載のNi−Cr多孔質
合金の製造方法である。
(3) The reducing gas in the third step is:
The method for producing a Ni—Cr porous alloy according to the above (1) or (2), wherein the method is hydrogen gas or ammonia decomposition gas.

【0013】[0013]

【発明の実施の形態】本発明において、金属粉末あるい
は合金粉末を含有するスラリーを発泡樹脂に含浸させる
方法は、従来のスラリー法に開示された技術を用いる。
即ち、平均粒径1〜15ミクロンの金属Ni粉末もしく
は酸化Ni粉末と金属Cr粉末の混合粉末をあるいはN
iとCrの合金の粉末を樹脂溶液中に分散させ、スラリ
ーとする。ついで、このスラリーを発泡樹脂に含浸さ
せ、乾燥し、焼成する。この第一工程により、発泡樹脂
の骨格の表面には金属粉末あるいは合金粉末を含有する
スラリーが塗着される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a technique disclosed in a conventional slurry method is used for impregnating a foamed resin with a slurry containing a metal powder or an alloy powder.
That is, a mixed powder of metallic Ni powder or metallic oxide powder and metallic Cr powder having an average particle size of 1 to 15 microns or N
A powder of an alloy of i and Cr is dispersed in a resin solution to form a slurry. Next, the slurry is impregnated with a foamed resin, dried, and fired. In this first step, a slurry containing a metal powder or an alloy powder is applied to the surface of the skeleton of the foamed resin.

【0014】本発明の特徴は、次の焼成工程にあり、ま
ず、第二工程として、700〜900℃の温度で、好ま
しくは2.5〜30vol%の水蒸気または炭酸ガスを含
む還元性ガス雰囲気下において、焼成し、発泡樹脂を消
失させかつ発泡樹脂の熱分解で生成した炭素を酸化除去
する焼成工程を行う。ついで、第三工程として1100
〜1300℃でかつ、水蒸気または炭酸ガスを含まない
還元雰囲気下で焼成し酸化物を還元し、金属粉末を焼結
し合金化して、多孔質合金を得る。本発明の焼成工程の
特徴は、この第二工程と第三工程の2段階焼成を行うと
ころにある。
The feature of the present invention lies in the following calcination step. First, as a second step, a reducing gas atmosphere containing steam or carbon dioxide gas at a temperature of 700 to 900 ° C., preferably 2.5 to 30 vol%. Below, a baking step is performed in which baking is performed to eliminate the foamed resin and oxidize and remove carbon generated by thermal decomposition of the foamed resin. Then, as a third step, 1100
The oxide is reduced by firing in a reducing atmosphere containing no steam or carbon dioxide gas at 1300 ° C., and the metal powder is sintered and alloyed to obtain a porous alloy. The feature of the firing step of the present invention resides in that the two-step firing of the second step and the third step is performed.

【0015】格別の工夫を行わないで焼成工程を行う
と、焼成工程で発泡樹脂は熱分解し、熱分解の結果炭素
が発生し、この炭素は金属粉末や合金粉末に混入して焼
成される。この結果炭素を多量含有する多孔質合金とな
る。
If the firing step is performed without special measures, the foamed resin is thermally decomposed in the firing step, and carbon is generated as a result of the thermal decomposition, and this carbon is mixed with the metal powder or alloy powder and fired. . As a result, a porous alloy containing a large amount of carbon is obtained.

【0016】本発明の第二工程では水蒸気または炭酸ガ
スを含有する雰囲気下で焼成するが、発泡樹脂の熱分解
により発生した炭素は水蒸気または炭酸ガスにより酸化
されて消失する。本発明者等の知見によると、700℃
未満では酸化に長時間を要するために効率が低く、90
0℃超では炭素が金属粉末に含有されて多孔質合金の炭
素含有量が高くなる。また水蒸気や炭酸ガスの含有量が
2.5vol%未満では炭素の除去効率が低く、30vol%
超では金属粉末が過度に酸化される。
In the second step of the present invention, firing is performed in an atmosphere containing water vapor or carbon dioxide gas, but carbon generated by thermal decomposition of the foamed resin is oxidized by the water vapor or carbon dioxide gas and disappears. According to the findings of the present inventors, 700 ° C.
If it is less than 90%, it takes a long time for oxidation, resulting in low efficiency.
If the temperature exceeds 0 ° C., carbon is contained in the metal powder, and the carbon content of the porous alloy increases. If the content of water vapor or carbon dioxide gas is less than 2.5 vol%, the carbon removal efficiency is low, and 30 vol%.
Above this, the metal powder is excessively oxidized.

【0017】本発明の第三工程では、第二工程よりも高
温の1100〜1300℃で焼成するが、第三工程は水
蒸気や炭酸ガスを含有しない強い還元性雰囲気下である
ため、金属粉末は酸化される事なく焼結され、酸化物は
還元され焼結される。尚第三工程の焼成温度が1100
℃未満では焼成が不十分であり、1300℃超では溶融
し易く多孔体を形成し難い。
In the third step of the present invention, calcination is performed at 1100 to 1300 ° C., which is higher than in the second step. However, since the third step is in a strong reducing atmosphere containing no steam or carbon dioxide gas, the metal powder is It is sintered without being oxidized, and the oxide is reduced and sintered. The firing temperature in the third step is 1100
If the temperature is lower than 0 ° C, the sintering is insufficient.

【0018】このような焼成によって、まず、発泡樹脂
を消失させる工程においては、水蒸気または炭酸ガスに
よって発泡樹脂の熱分解により生成した炭素は酸化を受
けて除去され、次の金属の還元工程では、強い還元性雰
囲気であるために酸化物は還元されて、Ni−Cr多孔
質合金を形成する。
[0018] By such calcination, first, in the step of eliminating the foamed resin, carbon generated by the thermal decomposition of the foamed resin by steam or carbon dioxide is oxidized and removed, and in the subsequent metal reduction step, Due to the strong reducing atmosphere, the oxide is reduced to form a Ni-Cr porous alloy.

【0019】なお、例えば第二工程の領域と第三工程の
領域を有する連続炉を用いて、第二工程と第三工程を連
続して行う事が考えられるが、この際は第三工程で強い
還元性雰囲気を形成し難く、従って第二工程で形成され
た酸化Crの還元が不十分となり、例えば強度が不十分
なNi−Cr多孔質金属となり易い。このため、第二工
程と第三工程はそれぞれ独立して別途に行う事が望まし
い。また本発明によるとFe,Al等の第3成分を含有
するNi−Cr多孔質合金も製造できることは自明であ
り、従って本発明のNi−Cr多孔質合金にはこれ等の
第3成分を含有するものも含まれる。
Incidentally, it is conceivable that the second step and the third step are performed continuously by using, for example, a continuous furnace having an area for the second step and an area for the third step. It is difficult to form a strong reducing atmosphere, and therefore, the Cr oxide formed in the second step is insufficiently reduced, and for example, a Ni-Cr porous metal having insufficient strength is likely to be formed. For this reason, it is desirable that the second step and the third step be performed independently and separately. It is obvious that a Ni-Cr porous alloy containing a third component such as Fe or Al can also be produced according to the present invention. Therefore, the Ni-Cr porous alloy of the present invention contains these third components. Some of them are included.

【0020】[0020]

【実施例】平均粒径4μmの金属Ni粉と金属Cr粉を
Ni:Cr=80:20の割合に調合し、水溶性フェノ
ール樹脂を用いて、金属Ni粉末と金属Cr粉末を含有
するスラリーを形成した。またNi:Crが80:20
の合金鋳塊を粉砕し、Ni:Cr=80:20で平均粒
径が4μmのNi−Cr合金粉末を作成し、水溶性フェ
ノール樹脂を用いて、Ni−Cr合金粉末を含有するス
ラリーを形成した。
EXAMPLE A metal Ni powder and a metal Cr powder having an average particle size of 4 μm were prepared in a ratio of Ni: Cr = 80: 20, and a slurry containing the metal Ni powder and the metal Cr powder was prepared using a water-soluble phenol resin. Formed. Ni: Cr is 80:20.
Is crushed to prepare a Ni—Cr alloy powder having a Ni: Cr = 80: 20 average particle diameter of 4 μm, and a slurry containing the Ni—Cr alloy powder is formed using a water-soluble phenol resin. did.

【0021】[0021]

【表1】 [Table 1]

【0022】30ppi(1インチ当たりの開孔数が3
0)のポリウレタン発泡樹脂を前記のスラリーに含浸
し、乾燥後、表1に示した条件で焼成した。尚表1で第
2工程と第3工程には別異の焼成炉を用い、第2工程の
焼成の後で第3工程の焼成を行った。
30 ppi (3 holes per inch)
The above-mentioned slurry was impregnated with the polyurethane foamed resin of 0), dried, and fired under the conditions shown in Table 1. In Table 1, different firing furnaces were used for the second step and the third step, and the firing of the third step was performed after the firing of the second step.

【0023】表1の実施例1〜5の如く、本発明の多孔
質合金は、酸素含有量が60〜90ppmで低く、C含
有量も50〜110ppmで低い。この結果25〜35
kgf/cm2の圧縮強度を有し好ましい靭性を備えて
いる。
As shown in Examples 1 to 5 in Table 1, the porous alloy of the present invention has a low oxygen content of 60 to 90 ppm and a low C content of 50 to 110 ppm. This result 25-35
It has a compressive strength of kgf / cm 2 and has favorable toughness.

【0024】比較例1〜2は第2工程では炭酸ガスを用
いないで、第3工程で炭酸ガスを用いた例であるが、炭
素含有量は低減するが酸素含有量が高く、圧縮強度も低
い。比較例3は第2工程、第3工程の何れにおいても炭
酸ガスを用いなかった例で、炭素含有量が高い。また比
較例4は第2工程を行わなかった例であるが、多孔質合
金のC含有量が顕著に高く、靭性がない。比較例5は第
3工程の焼成温度を、本発明よりも高温の1350℃に
した例であるが、溶融し、このため多孔質合金を得る事
ができなかった。
Comparative Examples 1 and 2 are examples in which carbon dioxide is not used in the second step and carbon dioxide is used in the third step. The carbon content is reduced but the oxygen content is high and the compressive strength is also low. Low. Comparative Example 3 was an example in which carbon dioxide was not used in both the second step and the third step, and had a high carbon content. Comparative Example 4 is an example in which the second step was not performed. However, the C content of the porous alloy was remarkably high and there was no toughness. Comparative Example 5 was an example in which the firing temperature in the third step was 1350 ° C., which was higher than that of the present invention, but it was melted, and thus a porous alloy could not be obtained.

【0025】[0025]

【発明の効果】本発明を実施すると、多孔質合金の骨格
の表面と内部とが均一な組成のNi−Cr合金で形成さ
れている多孔質合金が得られる。本発明によるこの多孔
質合金は、炭素含有が低くかつ酸素含有量も低い。この
結果、炭素と合金の金属間化合物が生成する事がなく、
従って融点が低下することがなく、発熱性抵抗体として
使用する事ができる。また十分な靭性を備えているため
に成形加工が可能であり、摺動部材や電極部材や触媒担
体等に使用する事ができる。
According to the present invention, a porous alloy is obtained in which the surface and the inside of the skeleton of the porous alloy are formed of a Ni--Cr alloy having a uniform composition. This porous alloy according to the invention has a low carbon content and a low oxygen content. As a result, no intermetallic compound of carbon and alloy is generated,
Therefore, it can be used as a heat-generating resistor without lowering the melting point. In addition, since it has sufficient toughness, it can be formed, and can be used for sliding members, electrode members, catalyst carriers, and the like.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】発泡性樹脂に、Ni−Crの合金粉末を含
有するスラリーを、あるいは金属Ni粉末もしくはNi
酸化物粉末と金属Cr粉末を含有するスラリーを塗着す
る第一工程、次いで第一工程で得られた塗着物を水蒸気
または炭酸ガスを含む還元性ガス雰囲気下で700℃〜
900℃に加熱し前記発泡樹脂を消失させかつ脱炭する
第二工程、その後1100℃〜1300℃の還元性ガス
雰囲気下において前記Ni−Crの合金粉末をあるいは
金属Ni粉末もしくはNi酸化物粉末と金属Cr粉末を
焼結する第三工程を有する事を特徴とするNi−Cr多
孔質合金の製造方法。
A slurry containing Ni-Cr alloy powder in a foamable resin, metallic Ni powder or Ni powder.
The first step of applying a slurry containing an oxide powder and a metal Cr powder, and then applying the coated product obtained in the first step in a reducing gas atmosphere containing steam or carbon dioxide gas at 700 ° C.
A second step of heating to 900 ° C. to eliminate the foamed resin and decarburize, and then, in a reducing gas atmosphere at 1100 ° C. to 1300 ° C., the Ni—Cr alloy powder or the metal Ni powder or Ni oxide powder A method for producing a Ni-Cr porous alloy, comprising a third step of sintering a metal Cr powder.
【請求項2】上記第二工程の水蒸気または炭酸ガスを含
む還元性ガスが、水蒸気または炭酸ガスを2.5〜30
vol%含有する水素ガスまたはアンモニア分解ガスであ
ることを特徴とする請求項1に記載のNi−Cr多孔質
合金の製造方法。
2. The reducing gas containing water vapor or carbon dioxide gas in the second step, wherein the reducing gas contains water vapor or carbon dioxide gas in an amount of 2.5 to 30.
The method for producing a Ni-Cr porous alloy according to claim 1, wherein the gas is hydrogen gas or ammonia decomposition gas containing vol%.
【請求項3】上記第三工程の還元性ガスが、水素ガスま
たはアンモニア分解ガスであることを特徴とする請求項
1または2に記載のNi−Cr多孔質合金の製造方法。
3. The method for producing a Ni—Cr porous alloy according to claim 1, wherein the reducing gas in the third step is a hydrogen gas or an ammonia decomposition gas.
JP19813196A 1996-07-26 1996-07-26 Manufacture of porous ni-cr alloy Pending JPH1046268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19813196A JPH1046268A (en) 1996-07-26 1996-07-26 Manufacture of porous ni-cr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19813196A JPH1046268A (en) 1996-07-26 1996-07-26 Manufacture of porous ni-cr alloy

Publications (1)

Publication Number Publication Date
JPH1046268A true JPH1046268A (en) 1998-02-17

Family

ID=16385972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19813196A Pending JPH1046268A (en) 1996-07-26 1996-07-26 Manufacture of porous ni-cr alloy

Country Status (1)

Country Link
JP (1) JPH1046268A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065020A1 (en) * 1999-06-29 2001-01-03 Sumitomo Electric Industries, Ltd. Metal porous bodies, method for preparation thereof and metallic composite materials using the same
LU90721B1 (en) * 2001-01-25 2002-07-26 Circuit Foil Luxembourg Trading Sarl Method for producing metal foams and furnace for producing same
WO2002100582A1 (en) * 2001-06-11 2002-12-19 Sumitomo Electric Industries, Ltd. Porous metal article, metal composite material using the article and method for production thereof
US7740795B2 (en) 2002-02-08 2010-06-22 Howmedica Osteonics Corp. Porous metallic scaffold for tissue ingrowth
JP2012186033A (en) * 2011-03-07 2012-09-27 Sumitomo Electric Ind Ltd Porous heating element, manufacturing method of porous heating element and gas decomposition element
JP2012209021A (en) * 2011-03-29 2012-10-25 Sumitomo Electric Ind Ltd Porous heating element, manufacturing method for porous heating element, and gas decomposition element
JP2012238415A (en) * 2011-05-10 2012-12-06 Sumitomo Electric Ind Ltd Gas heating device and gas decomposition device
JP2013010090A (en) * 2011-06-30 2013-01-17 Sumitomo Electric Ind Ltd Gas sorption recovery element, method of manufacturing gas sorption recovery element, and gas sorption recovery apparatus
JP2013013837A (en) * 2011-07-01 2013-01-24 Sumitomo Electric Ind Ltd Device and method for sorption and recovery of gas
JP2013020847A (en) * 2011-07-12 2013-01-31 Sumitomo Electric Ind Ltd Porous heating body, porous heating element, and gas decomposition element
JP2013094761A (en) * 2011-11-04 2013-05-20 Sumitomo Electric Ind Ltd Gas sorption and recovery element, method of manufacturing gas sorption and recovery element, and gas sorption and recovery device
CN106825575A (en) * 2017-04-12 2017-06-13 广东工业大学 A kind of honeycomb alloy material and its application

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065020A1 (en) * 1999-06-29 2001-01-03 Sumitomo Electric Industries, Ltd. Metal porous bodies, method for preparation thereof and metallic composite materials using the same
US6387149B1 (en) 1999-06-29 2002-05-14 Sumitomo Electric Industries, Ltd. Metal porous bodies, method for preparation thereof and metallic composite materials using the same
LU90721B1 (en) * 2001-01-25 2002-07-26 Circuit Foil Luxembourg Trading Sarl Method for producing metal foams and furnace for producing same
WO2002059396A1 (en) * 2001-01-25 2002-08-01 Efoam S.A. Method for producing metal foams and furnace for producing same
WO2002100582A1 (en) * 2001-06-11 2002-12-19 Sumitomo Electric Industries, Ltd. Porous metal article, metal composite material using the article and method for production thereof
US6840978B2 (en) 2001-06-11 2005-01-11 Sumitomo Electric Industries, Ltd. Porous metal article, metal composite material using the article and method for production thereof
US7740795B2 (en) 2002-02-08 2010-06-22 Howmedica Osteonics Corp. Porous metallic scaffold for tissue ingrowth
JP2012186033A (en) * 2011-03-07 2012-09-27 Sumitomo Electric Ind Ltd Porous heating element, manufacturing method of porous heating element and gas decomposition element
JP2012209021A (en) * 2011-03-29 2012-10-25 Sumitomo Electric Ind Ltd Porous heating element, manufacturing method for porous heating element, and gas decomposition element
JP2012238415A (en) * 2011-05-10 2012-12-06 Sumitomo Electric Ind Ltd Gas heating device and gas decomposition device
JP2013010090A (en) * 2011-06-30 2013-01-17 Sumitomo Electric Ind Ltd Gas sorption recovery element, method of manufacturing gas sorption recovery element, and gas sorption recovery apparatus
JP2013013837A (en) * 2011-07-01 2013-01-24 Sumitomo Electric Ind Ltd Device and method for sorption and recovery of gas
JP2013020847A (en) * 2011-07-12 2013-01-31 Sumitomo Electric Ind Ltd Porous heating body, porous heating element, and gas decomposition element
JP2013094761A (en) * 2011-11-04 2013-05-20 Sumitomo Electric Ind Ltd Gas sorption and recovery element, method of manufacturing gas sorption and recovery element, and gas sorption and recovery device
CN106825575A (en) * 2017-04-12 2017-06-13 广东工业大学 A kind of honeycomb alloy material and its application

Similar Documents

Publication Publication Date Title
US6387149B1 (en) Metal porous bodies, method for preparation thereof and metallic composite materials using the same
WO1997031738A1 (en) Porous materials and method for producing
US20140004259A1 (en) Open-porous metal foam body and a method for fabricating the same
EP0921210B1 (en) Method of preparing porous nickel-aluminium structures
JPH1046268A (en) Manufacture of porous ni-cr alloy
JPH0813129A (en) High corrosion resistant metal porous body and its production
JPH0584032B2 (en)
CN102282278A (en) Process for manufacturing a part comprising a block of dense material constituted of hard particles and of binder phase having a gradient of properties, and resulting part.
JPS6119583B2 (en)
JPH07112135A (en) Exhaust gas purification filter medium and its production
CN114799193A (en) High-entropy alloy active catalytic material and preparation method thereof
US2827407A (en) Method of producing powdered steel products
JPS6140723B2 (en)
JPS5923835A (en) Production of boride diffused alloy
JP4788878B2 (en) Whisker coating material and manufacturing method thereof
US4021373A (en) Method of preparing a catalytic structure
JPH10251710A (en) Production of metallic porous body containing ceramic particles
JPH0820831A (en) Production of metallic porous body
US11548067B2 (en) Method for producing an open-pored metal body having an oxide layer and metal body produced by said method
US5429793A (en) Scaleable process for producing Ni-Al ODS anode
US20200263306A1 (en) Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method
US4111849A (en) Low copper NOx reduction catalyst
US5330703A (en) Process for firing alloys containing easily oxidizable elements
CA1080201A (en) Method of preparing a catalytic structure
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property