JPS592362A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS592362A
JPS592362A JP57109796A JP10979682A JPS592362A JP S592362 A JPS592362 A JP S592362A JP 57109796 A JP57109796 A JP 57109796A JP 10979682 A JP10979682 A JP 10979682A JP S592362 A JPS592362 A JP S592362A
Authority
JP
Japan
Prior art keywords
groove
capacitor
silicon oxide
oxide film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57109796A
Other languages
Japanese (ja)
Inventor
Takashi Morie
隆 森江
「峰」岸 一成
Kazunari Minegishi
Ban Nakajima
中島 蕃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57109796A priority Critical patent/JPS592362A/en
Publication of JPS592362A publication Critical patent/JPS592362A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body

Abstract

PURPOSE:To increase the capacitance of a capacitor while reducing a plane area of the capacitor by forming the capacitor to the side surface of a groove formed to a predetermined section on a substrate and forming an insulating film for isolation to the bottom of the groove. CONSTITUTION:A pad silicon oxide film 203 on the bottom 82 of the groove is removed through etching, a silicon oxide film 41 is formed only onto the bottom 82 of the groove through selective oxidation in wet oxygen while using silicon nitride films 72, 74 as masks, and the silicon nitride films 72, 74 and pad silicon oxide films 202, 203 are removed through etching. As a result of a series of said processes, the groove 10 with the thick silicon oxide film 41 for isolation is formed onto the bottom. A silicon oxide film 21 is formed to the whole surface as an insulating film for the capacitor, and a substance such as phosphorus doped polycrystalline silicon 31 is deposited so as to completely fill the groove 103 as a conductor thin-film and patterned, thus forming the phosphorus doped polycrystalline silicon 31 only to a desired section.

Description

【発明の詳細な説明】 不発明に溝底N5rcおいて絶縁体分離さn4cMOS
キャパシタヲ有する#p導体装置およびその製造方法に
関するものである。
[Detailed Description of the Invention] Inventively N4cMOS isolated by an insulator at the trench bottom N5rc
The present invention relates to a #p conductor device having a capacitor and a method for manufacturing the same.

例えは1個のトランジスタと1個のキャパシタからなる
セルから構成されているダイナミックランダムアクセス
メモリ(以−1ITr形dRAMと略記)では半導体基
板上に互いに電気的に分離された多数のキャパシタを形
成する必費かある0ここではキャパシタ8に重点をおい
てITr形dRA]VIセルの構造およびその製造方法
について説明する0従米技術により製造したI Tr形
d RAMのセル部の平面図およびA −A’線じ沿う
断面図を第1図u)、(ロ)に示す。なお以)の簡明で
はMOS トランジスタはnチャネル形でおるとする。
For example, in a dynamic random access memory (hereinafter abbreviated as -1ITr type dRAM) that is composed of a cell consisting of one transistor and one capacitor, a large number of capacitors that are electrically isolated from each other are formed on a semiconductor substrate. Is it necessary? 0Here, we will explain the structure of the ITr type dRA VI cell and its manufacturing method, with emphasis on the capacitor 8.0 A plan view and A-A of the cell part of the ITr type dRAM manufactured using conventional technology. Cross-sectional views taken along the line are shown in Figure 1 u) and (b). In the following explanation, it is assumed that the MOS transistor is an n-channel type.

pチャネル形の場合でも、後で述べるソース・トレイン
用拡散層およびチャネルストッパーの導電形が透しなる
外は全く同様である。
Even in the case of the p-channel type, the conductivity type of the source train diffusion layer and channel stopper, which will be described later, is completely the same except that the conductivity type is transparent.

第1図U)において破細で囲んだ領域が1トランジスタ
と1キヤパシタとより成るlメモリセルでめるdキャパ
シタはp形シリコン基板1と絶縁t4−薄II!12お
よび導電体薄膜3より形成されるMO8形キャパシタで
ある。絶縁体薄膜2は厚さがlOO〜500A相度で、
シリコン基板を熱酸化することによ!ll得られるシリ
コン酸化膜または化学的気相成長法(以下CVD法と略
記)等によp形成されるシリコン酸化膜またはシリコン
窒化膜等が用いられる。導電体薄膜3としてはリンなど
の不純物?ドープした多結晶シリコンtfcuアルミニ
ウム、モリブデンなどの金鵬が用いられる。また異なる
キャパシタ間に扛厚いシリコン酸化膜4があplさらに
その1都にチャネルストッパ領域llがあり電気的に分
離かなされる。キャパシタに隣接するMO8F’ETは
、ソース・ドレインとなる♂拡散r@lO>↓びケート
絶縁膜20およびゲート電極(ワード’[1l)30↓
9敗る。層間絶縁膜5を介してビット線6か形成されて
あ・す、スルーホール1000区より拡散層1OVc接
枕さ11でいる。
In FIG. 1 U), the region surrounded by broken lines is composed of one transistor and one capacitor. The d capacitor formed by the l memory cell is insulated from the p-type silicon substrate 1 by T4-thin II! 12 and a conductive thin film 3. The insulator thin film 2 has a thickness of lOO~500A,
By thermally oxidizing the silicon substrate! A silicon oxide film or a silicon nitride film formed by a chemical vapor deposition method (hereinafter abbreviated as CVD method) or the like is used. Is it an impurity such as phosphorus for the conductor thin film 3? Metals such as doped polycrystalline silicon TFCU aluminum, molybdenum, etc. are used. Further, a very thick silicon oxide film 4 is provided between different capacitors, and a channel stopper region 11 is provided in one of the capacitors for electrical isolation. MO8F'ET adjacent to the capacitor has ♂ diffusion r@lO>↓ which becomes the source/drain, a gate insulating film 20 and a gate electrode (word'[1l) 30↓
9 losses. After the bit line 6 is formed via the interlayer insulating film 5, the diffusion layer 1OVc is in contact with the diffusion layer 1OVc from the through hole 1000 area.

次に、上述したl Tr形dRAMセルの従来技術によ
る製造方法會第2図以下に具体的に祝用する0 1丁第2凶に示すように、シリコン基板l上にパッドシ
リコン酸化11i200會介して、CVD防匹エリ厚さ
1000λ相度のシリコン窒化膜7o全形敗し、次にバ
ターニングしたレジス) 111 ’にマスクに分離領
域(資)上のシリコン窒化膜およびパットシリコン酸化
9j′?r:エツチング除去し、素子領域81上にのみ
シリコン窒化膜70お工ひバッドシリコン酸化膜200
から取る積層機が残るようにする。
Next, as shown in FIG. 2 and below, a pad silicon oxide 11i200 layer is deposited on the silicon substrate 1 as shown in FIG. 2 and below. Then, the silicon nitride film 7o with a thickness of 1000λ was completely destroyed by CVD, and then the silicon nitride film 7o was patterned using a mask. r: Etching is removed and silicon nitride film 70 is etched only on the element region 81, and a bad silicon oxide film 200 is removed.
Take it from the laminating machine so that it remains.

次ニハターニングしたレジスト111 kマスクにホウ
素などのp形不純物をイオン注入し、熱処理を施丁こと
により、分離領域間の表面打返の基板濃度金高くシ、チ
ャネルストッパー領域11を形成する。
Next, a p-type impurity such as boron is ion-implanted into the turned resist 111k mask, and heat treatment is performed to form a channel stopper region 11 with a high substrate concentration of gold on the surface between the isolation regions.

次に第3図(示す工うに上Bc槓積層tマスクに、例え
ば1000℃、湿った酸素中で約4時間の酸化(以V−
選択酸化という)を行うことにより1分離領域冊上にの
み厚さ70005.相反のシリコン酸化膜4會形取する
。次にシリコン窒化膜7oお(3) よびシリコン酸化Ill 200 ’にエツチング除去
することにより、累子饋域81上にシリコン基板lの表
面全露出させる。
Next, the Bc laminated T mask shown in Figure 3 is oxidized (hereinafter V-
By performing selective oxidation (called selective oxidation), a thickness of 70,005. Four opposing silicon oxide films are formed. Next, the silicon nitride film 7o (3) and the silicon oxide film 200' are removed by etching to expose the entire surface of the silicon substrate 1 above the active region 81.

次に第4図に示すようvc1素子領域81上にキャパシ
タ用の絶縁体薄膜として2例えに熱酸化に↓リシリコン
酸化膜2會形成する。さらに導電体薄膜として1例えは
リントークの多結晶シリコン3′?r堆積し、バターニ
ング′に施す。以下。
Next, as shown in FIG. 4, two silicon oxide films are formed on the vc1 element region 81 as insulating thin films for the capacitor, for example by thermal oxidation. Furthermore, an example of a conductive thin film is Lintalk's polycrystalline silicon 3'? r is deposited and subjected to buttering. below.

第1図の構造を形成するためにゲート絶縁膜加を形成し
た後、例えはモリブデンなど會蒸層、バターニングして
ゲート電極30を形成し、次に導電体薄@3およびゲー
ト電極30會マスクに。
After forming a gate insulating film to form the structure shown in FIG. 1, a vaporized layer of molybdenum, for example, is patterned to form a gate electrode 30, and then a conductive thin film @3 and a gate electrode 30 are formed. into a mask.

ヒ素などのn形不純物をイオン注入し、熱処理を施すこ
とによ!lln+拡散層lOを形成する。次に層間絶縁
膜5會形成し、スルーホール1000を形成した後、例
えはアルミニウムなど會蒸庸、バターニングしてビット
#6ffi形成する〇以上従来技術によるI Tr形d
RAMの形成法を飲用した。素子の筒密度化のためには
キャパシタ面積の細小が有効でおる0しかし第1図のよ
(4) うな構造ではキャパシタ領域の面積全縮小すると容量が
減少するため蓄積電向暑がVV、ノイズ等に対するマー
ジンが少なくなるという欠点がある。また選択酸化時に
キャパシタ形成領域に酸化か進行し、いわゆるバーズビ
ークが形成されるため、分離部の微細化が困難であった
By ion-implanting n-type impurities such as arsenic and applying heat treatment! lln+diffusion layer lO is formed. Next, after forming 5 interlayer insulating films and forming 1000 through holes, a bit #6ffi is formed by vaporizing and buttering, for example, aluminum.
The method of forming RAM was used. In order to increase the cylindrical density of the device, it is effective to make the capacitor area smaller. However, in a structure like (4) shown in Figure 1, if the total area of the capacitor region is reduced, the capacitance will decrease, so the storage current will increase in VV and noise. The disadvantage is that there is less margin for etc. Further, during selective oxidation, oxidation progresses to the capacitor forming region, forming a so-called bird's beak, making it difficult to miniaturize the isolation portion.

さらに分離部とキャパシタ都には表面段差が形成される
ため、電極や配線の断線が生じやすいという欠点かあっ
た。
Furthermore, since a surface level difference is formed between the separation part and the capacitor, there is a drawback that electrodes and wiring are easily disconnected.

不発明はこれらの欠点全除去するため、半導体基板上の
虐足部分じ形成した溝の側面にキャパシタ會形成し、力
・つ該溝底部r分離用絶縁膜を形成するもので、これe
こよってキャパシタの谷tt大ならしめうると共Icキ
ャパシタの平向的な面積會小ならしめることを目的とす
るものである。
In order to eliminate all of these drawbacks, the present invention forms a capacitor on the side surface of a groove formed in the bottom part of the semiconductor substrate, and forms an insulating film for isolation at the bottom of the groove.
The purpose of this is to make it possible to increase the valley tt of the capacitor and to reduce the planar area of the Ic capacitor.

前記の目的を達成するため、本発明は少なくとも2個以
上のキャパシタ會有する半導体装置において、半導体基
板の主表面の助足頚域に形成された少なくとも1個の溝
のglIITIiJ′に含む餉域vcキャパシタが形成
され、かつ該溝底1tllK該キャパシタ會電気的1分
離1−る領域が形敗されていることケ特徴とする半導体
装置全発明の要旨とするものである。
In order to achieve the above object, the present invention provides a semiconductor device having at least two or more capacitor groups, in which a hook region vc included in glIITIiJ' of at least one groove formed in an auxiliary neck region of a main surface of a semiconductor substrate is provided. The gist of the invention is a semiconductor device characterized in that a capacitor is formed and a region electrically isolated from the bottom of the trench is destroyed.

さらト率発明は半導体基板の主表面の所定領域に溝を形
成し、少なくとも畝溝の側面會含む饋域vc第1の絶縁
膜を形成する工程と、該溝底部vc第2の絶縁膜t・形
成する工程と、該第1の絶縁膜に槓1−シて、導電体薄
膜を形成すること匹より、該溝底部において電気的し分
離された2個以上のキャパシタ葡、少なくとも畝溝の側
面會含む領域[形成する工程と會含むことを特徴とする
半導体装置の製造方法全発明の要旨とするものである。
The present invention includes a step of forming a groove in a predetermined region of the main surface of a semiconductor substrate, forming a first insulating film in the groove area including at least the side surface of the groove, and forming a second insulating film at the bottom of the groove.・By forming a conductive thin film on the first insulating film, two or more capacitors are electrically isolated at the bottom of the groove, at least in the groove. The gist of the invention is a method of manufacturing a semiconductor device characterized by including a step of forming a region including a side surface.

次t(C不発明の実施例會添附図向について説明する。Next, the accompanying drawings of the uninvented embodiments will be explained.

なお実施例は一つの例示であって、不発明の精神を逸脱
しない範囲内で、柚々の変*わるいは改良全行いうるこ
とはNf)葦でもない。
It should be noted that the embodiments are merely illustrative, and we reserve the right to make any changes or improvements without departing from the spirit of non-invention.

なお実施151111お工び2に不発明ぺよるキャパシ
タ構造幹よびその製造方法t%実施し113tIc該キ
ヤパシタ・分離併用構造を用いたITr形d RAMセ
ルvci用した場合について説明する。
A description will be given of a case in which an ITr type d RAM cell vci using the capacitor/separation combined structure is implemented by implementing the capacitor structure and its manufacturing method according to the uninvented method 151,111 and 2 by 113tIc.

(実施例1) 1す第5図に示″′tようV’−h シリコン基板1(
p形、比抵抗2〜5ncrn)上に熱酸化によりバッド
シリコン酸化膜201葡形成し、ちらにCVD法などに
よりシリコン窒化膜71會形成し、その上rCバターニ
ングしたレジスト9を形成する。
(Example 1) As shown in FIG.
A bad silicon oxide film 201 is formed by thermal oxidation on the p-type (specific resistance: 2 to 5 ncrn), a silicon nitride film 71 is formed by CVD method, and a resist 9 subjected to rC patterning is formed thereon.

次に第6図に示すように、レジスト9をマスクにシリコ
ン窒化膜71.ハツトシリコン酸化膜201お↓ひシリ
コン基板l葡エツチングすることにより、溝100 全
形成する。なお上記エツチングには異方性の強いエツチ
ング方法として、例えば半行平板電極形プラズマエツチ
ング装置あるいは反応性スパッタエツチング装[k用い
る。
Next, as shown in FIG. 6, using the resist 9 as a mask, a silicon nitride film 71. The groove 100 is completely formed by etching the silicon oxide film 201 and the silicon substrate. For the above-mentioned etching, a highly anisotropic etching method is used, for example, a semi-rectangular plate electrode type plasma etching apparatus or a reactive sputter etching apparatus [k].

次に第7図に示すようVCl レジスト9を除去した後
、シリコン窒化1la72をマスクに熱酸化を行い、[
100の内面にのみパッドシリコン酸化膜203を形成
し、さらに、例えはCVD法によp鍵内面を含む主表面
全曲にシリコン窒化膜73を(7) 形成する。ここで内面にシリコン窒化膜73が形成され
た溝vc瞥号101 ”k何す。次に第8図に示すよう
VCs上に掲げたような異方性の強いエツチング方法r
Cよpシリコン窒化膜73′にエツチングすることに工
9、溝101の飼面にのみシリコン窒化膜74を残す0
ここで、911面にのみシリコン窒化膜74が形成され
fc溝に査号102を何す0次にチャ坏ルストッパーと
してホウ本音溝102の底面82に例えは、40ke 
■、 4 X 10”m の朱件でイオン注入し5例え
は、 1ooo℃、窒素中、30分間の熱処理金施すこ
とKj9溝底面82の表面付近にp形不純物濃度の篩い
領域すなわちチャネルストツバ−11を形成する。次に
緩衝フッ酸液によp溝底面82上のパッドシリコン酸化
膜203をエツチング除去した後、第9図r示すようr
c1シリコン窒化膜72お工び74をマスクにして。
Next, as shown in FIG. 7, after removing the VCl resist 9, thermal oxidation is performed using silicon nitride 1la 72 as a mask.
A pad silicon oxide film 203 is formed only on the inner surface of the key 100, and a silicon nitride film 73 (7) is further formed on the entire main surface including the inner surface of the p key, for example, by CVD. Here, the groove VC 101 with the silicon nitride film 73 formed on its inner surface is etched.Next, as shown in FIG.
Step 9 is to etch the C-p silicon nitride film 73', leaving the silicon nitride film 74 only on the groove surface of the groove 101.
Here, the silicon nitride film 74 is formed only on the 911 plane, and the symbol 102 is formed on the fc groove.
■Ion implantation with a size of 4 x 10"m and heat treatment for 30 minutes at 100°C in nitrogen to form a sieve region with a p-type impurity concentration, that is, a channel stop bulge, near the surface of the Kj9 groove bottom surface 82. -11 is formed.Next, after etching and removing the pad silicon oxide film 203 on the p-groove bottom surface 82 with a buffered hydrofluoric acid solution, as shown in FIG.
c1 Use the silicon nitride film 72 and the cut 74 as a mask.

1000℃、湿つli&索中で選択酸化を行−1溝底面
82上にの与、例えは、厚さ0.3〜l/Jmのシリコ
ン酸化膜41を形敗し、その後シリコン蓋化験72お工
び74.およびハツトシリコン酸化膜202(8) および203ヲエツチング除去する。以上の一連の工程
の結果、底部にのみ分離用の厚いシリコン酸化膜41を
有する溝103が形成される。次に第1O図に示すよう
に、キャパシタ用絶縁膜として1例えは熱酸化によりキ
ャパシタ用絶縁膜としてシリコン酸化膜21を全1fl
Vc形成し、次に導電体薄膜として、例えはリンド−グ
多結晶シリコン31を溝103 ’i完全に埋込むよう
に堆積し、パターニング音節すことにより、所望部分に
のみリント′−プ多結晶シリコン31ヲ杉欣する。
Selective oxidation is carried out at 1000° C. in a moist Li&O layer to destroy the silicon oxide film 41 with a thickness of 0.3 to 1/Jm on the bottom surface 82 of the groove 1, and then a silicon lid is formed. 72 Work 74. Then, the silicon oxide films 202 (8) and 203 are removed by etching. As a result of the above series of steps, a trench 103 having a thick silicon oxide film 41 for isolation only at the bottom is formed. Next, as shown in FIG. 1O, a silicon oxide film 21 is formed as a capacitor insulating film by thermal oxidation, for example, by thermal oxidation.
Vc is formed, and then, as a conductive thin film, for example, lind polycrystalline silicon 31 is deposited so as to completely fill the groove 103'i, and by patterning, rind polycrystalline silicon is formed only in desired areas. I agree with Silicon 31.

以上、実施例1として、選択酸化伝を利用して溝底部に
分離絶縁8mを形成し、〃・つ少なくとも溝側面を含む
領域にキャパシタを形成する方法全説明したが、次に実
施例2として絶縁体1ヨル溝埋込みの方法を利用して溝
底部に分離絶縁膜を形成する方法を説明する。
Above, as Example 1, the method of forming 8 m of isolation insulation at the bottom of the trench using selective oxidation and forming a capacitor in the area including at least the side surfaces of the trench has been explained. Next, as Example 2, A method of forming an isolation insulating film at the bottom of a trench using a method of burying an insulator into a trench will be described.

(実施例2) まず第11図に示すように、例えば熱敵化筐たはCVD
法rcより、シリコン基板1上rシリコン敵化膜會形成
し、バターニングしたレジストをマスクに該シリコン酸
化膜およびシリコン基板1會エツチングすることによp
l シリコン酸化膜42と溝100〔溝幅(0,5μm
 < W≦1.2/un)。
(Example 2) First, as shown in FIG.
According to the method, a silicon oxide film is formed on a silicon substrate 1, and the silicon oxide film and the silicon substrate 1 are etched using a patterned resist as a mask.
l Silicon oxide film 42 and groove 100 [groove width (0.5 μm
<W≦1.2/un).

溝深さd (1,0/jm≦d < 5.OPtn)〕
k形成する。
Groove depth d (1,0/jm≦d<5.OPtn)]
k form.

なお1韻エツチングVCは実施例1で述べたような異方
性の強いエツチング方法を用いる。次にチャネルストッ
パーとしてホウ素をシリコン酸化膜42をマスクにして
、例えは、実施例1で述べたような条件でイオン注入し
、熱処理音節して、溝100の底面82に、P形不純物
濃度の高い領域チャネルストツバ−11會形成する。次
に第12図に示すようにシリコン酸化膜42會緩衝フツ
酸液Vこよりエツチング除去し、熱酸化により全面にパ
ッド酸化膜204を形成した後、溝100を完全VC埋
込むように、全面にシリコン散化膜荀を、シリコンの熱
酸化以外の方法として1例えは、基板温度700〜90
0℃トて、シラン(St)I、)二酸化炭素(COり験
よひ水素(H冨)を用いたCVD法により、厚さt/j
m(0,5W≦t≦W〕堆積する0次に第13図に示す
ようr、シリコygll化膜43お工ひバッドシリコン
酸化膜204 ’!r 、例えは、緩衝フッ酸液により
部分的にエツチングし、#tlooの底部にのみシリコ
ン酸化膜全厚さtox (0,3−s tox < 1
.0 、但し、toXはd工り光分小さいプたけ残し、
該シリコン酸化膜に番号44を何す。このとき、バット
シリコン酸化膜204の一部もエツチングされ、該シリ
コン酸化膜44とシリコン基板lとの間にのみバットシ
リコン酸化膜205が残る。底部にシリコン酸化膜44
が形成された溝に番号i04に何す0以−ト、第14−
r示すように、実施例1と同様な工程によりキャパシタ
用絶縁膜21および導電体薄膜31を形成するO 次VC,不発E!AklTr形dRAM (/J セル
部r適用した場合について説明する。
Note that the one-line etching VC uses the highly anisotropic etching method described in the first embodiment. Next, boron is ion-implanted as a channel stopper using the silicon oxide film 42 as a mask under the conditions described in Example 1, and heat-treated to form a P-type impurity concentration on the bottom surface 82 of the trench 100. A high area channel stopper 11 is formed. Next, as shown in FIG. 12, the silicon oxide film 42 is removed by etching using a buffered hydrofluoric acid solution and a pad oxide film 204 is formed on the entire surface by thermal oxidation. An example of a silicon dispersion film method other than thermal oxidation of silicon is a substrate temperature of 700 to 90°C.
At 0°C, the thickness t/j was measured by CVD using silane (St) I, carbon dioxide (CO) and hydrogen (H).
m(0,5W≦t≦W) As shown in FIG. The total thickness of silicon oxide film tox (0,3-s tox < 1
.. 0, however, toX leaves a small amount of light for d processing,
Add a number 44 to the silicon oxide film. At this time, a portion of the butt silicon oxide film 204 is also etched, leaving the butt silicon oxide film 205 only between the silicon oxide film 44 and the silicon substrate l. Silicon oxide film 44 on the bottom
What number i04 is 0 or more in the groove in which the 14th mark is formed?
r As shown, the capacitor insulating film 21 and the conductor thin film 31 are formed by the same process as in Example 1. The case where AklTr type dRAM (/J cell part r is applied) will be explained.

(実施例3) 第15図(イ)および(ロ)は、不発明による溝形キャ
パシタ分S構造を用いたメモリセルの、それぞれ半面図
と断面−を示す。たたし断面図(ロ)は平面図(イ)に
おいてA −A’の線に沿って切断したと(11) きのものである。また平面図(イ)において、破線で囲
trtfC,ta域が1トランジスタと1キヤバシメよ
り成るセルの1単位である。
(Embodiment 3) FIGS. 15(a) and 15(b) show a half view and a cross section, respectively, of a memory cell using the groove-type capacitor S structure according to the invention. The cross-sectional view (b) is taken along the line A-A' in the plan view (a) (11). In the plan view (A), the trtfC, ta area surrounded by broken lines is one unit of a cell consisting of one transistor and one capacitor.

セルの中心のn+の拡M 層10に、スルーホール10
00 を介して、ビット紳6が接続される。スルーホー
ル1000會囲むように、ワード@32が形成されてい
る。セルの周辺VCは、実施例1または2で説明した方
法により形成した。溝キヤパシタ分離併用構造が設けら
れている。
A through hole 10 is formed in the n+ expansion M layer 10 at the center of the cell.
Bit 6 is connected via 00. Word @32 is formed so as to surround 1000 through holes. The peripheral VC of the cell was formed by the method described in Example 1 or 2. A groove capacitor isolation combination structure is provided.

以上説明したように、不発明によると、半導体基板1匹
#11を形成し、該溝底部yc分離部會形成し、該溝側
面にキャパシタを形成するから、半導体装置において分
離都とキャパシタ部の微細化全同時に行うことができる
という利点がある0また実施例IVcおいては選択酸化
侍医形成されるバーズビークは溝11tlliflに縦
方向に形成されるので、従来技術を用いたときのように
分離面積の増大會もたらすことはない。実施例2におい
ては1選択酸化法を用いてないためにバーズビークの問
題は全くない0さらr上記溝は最(12) 終曲に導電体薄膜で埋込1れてし筐うから、キャパシタ
部と分離都の間の表面段差という問題も解決されている
As explained above, according to the invention, one semiconductor substrate #11 is formed, the groove bottom yc isolation part is formed, and the capacitor is formed on the groove side surface, so that the separation capital and the capacitor part in the semiconductor device are formed. There is an advantage that miniaturization can be carried out at the same time. In addition, in Example IVc, the bird's beak formed by selective oxidation is formed vertically in the groove 11tllifl, so the separation area is reduced as when using the conventional technique. It will not bring about an increase in the number of people. In Embodiment 2, there is no problem with bird's beak because the single-selective oxidation method is not used.The above-mentioned groove (12) is filled with a conductive thin film at the end (12) and is separated from the capacitor section. The problem of the difference in surface level between the capitals has also been resolved.

不発明はITr形dRAMのメモリセル部じ利用でき、
その場合電気容量會変えずにキャパシタ部の基板上の平
面的な面積を数分の1に縮小できるのでメモリセル部の
微細化に大きく貢献できる等の効果ケ有する。
The invention can be used for the memory cell part of ITr type dRAM,
In this case, the planar area of the capacitor section on the substrate can be reduced to a fraction of that of the substrate without changing the capacitance, which has the effect of greatly contributing to the miniaturization of the memory cell section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図@)、(ロ)は従来技術によp製造したI Tr
形d RAMセルの一部構造図で(イ)は平面図、(ロ
)は(イ)においてA −A’線に沿う断面図、第2図
ないし第4図は従来技術による製造方法會胱明するため
の工程図、第5図ないし第1θ図は不発明rよる製造方
法(実施例1)を説明するための工程図、第11図ない
し第14図は不発QIHCよる製造方法(実施例2)を
説明するための工程図、第15図(イン、(りは不発明
會用いて製造した(実施例3)ITr形d RAMのメ
モリセルの一部構造図で、(イ)は半面図、(ロ)は(
イ)rおいてA −A’線r沿う断面図を示す。 ■・・・・・・シリコン基板、2・・・・・・キャパシ
タ用絶縁膜、3・・・・・・多結晶シリコン、4・・・
・・・シリコン酸化膜、5・・・・・・層間絶縁膜、6
・・・・・・ビット11!、9・・ レジスト、IO・
・・・・・拡散層、11・・・・・・チャネルストッパ
ー、20・・・・・・ケート絶縁膜、 21・・・・・
・キャパシタ用絶縁膜、シリコン絶縁膜、30・・・・
・・ゲート電極、31・・・導電体薄膜%32・・・・
・・ワード線、41〜45・・・・・・シリコン酸(I
JI、7o〜77・・・・・・シリコン窒化膜、80・
・・・・・素子間分離領域、 81・・・・・・素子領
域、82・・・・・・キャパシタ分離用溝底面、83・
・・・・・溝分離鎖酸、100〜104・・・・・溝%
 111・・・・・・レジスト、200〜209・・・
・・・パッドシリコン酸化膜、1000・・・・・・ス
ルーホール 特許出願人 1不電信電話公社 (15)
Figure 1 @) and (b) are I Tr manufactured by conventional technology.
In the partial structural diagrams of a type D RAM cell, (a) is a plan view, (b) is a sectional view taken along the line A-A' in (a), and Figs. 2 to 4 show the manufacturing method according to the conventional technology. 5 to 1θ are process diagrams to explain the manufacturing method (Example 1) based on the non-inventive r, and FIGS. Figure 15 is a partial structural diagram of the memory cell of the ITr type d RAM (Example 3) manufactured using the Uninventive Society, and (A) is a half-plane diagram for explaining 2). Figure, (b) is (
b) A sectional view taken along line A-A' at r. ■...Silicon substrate, 2...Insulating film for capacitor, 3...Polycrystalline silicon, 4...
...Silicon oxide film, 5...Interlayer insulating film, 6
...Bit 11! , 9... Resist, IO・
... Diffusion layer, 11 ... Channel stopper, 20 ... Kate insulating film, 21 ...
・Insulating film for capacitors, silicon insulating film, 30...
...Gate electrode, 31...Conductor thin film%32...
...Word line, 41-45...Silicon acid (I
JI, 7o~77...Silicon nitride film, 80.
. . . Inter-element isolation region, 81 . . . Element region, 82 . . . Bottom surface of capacitor isolation groove, 83.
...Groove separation chain acid, 100-104 ...Groove%
111...Resist, 200-209...
...Pad silicon oxide film, 1000 ...Through hole patent applicant 1 Telegraph and Telephone Corporation (15)

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも2個以上のキャパシタ全有する半導体
装置において、半導体基板の主表面のPJI足領域に形
成でれた少なくとも1個の溝の側面會含む領域vc千ヤ
バシタが形成され、かつ該溝底部に該キャパシタを電気
的に分離する領域が形成されていることを特徴とする半
導体装置0(2)半導体基板の主表面の19T足領域に
溝を形成し、少なくとも畝溝の側面を會む領域に第1の
絶縁膜音形成する工程と、該溝底部に第2の絶縁膜を形
成する工程と、該第1の絶縁llaに積層して導電体薄
膜全形Fy、″j″ることにニジ、該溝底部において電
気的に分離された2個以上のキャパシタt1少なくとも
畝溝のItlll而會含む面域Vこ形成する工程とを含
むこと全特徴とする半導体装置の製造方法。
(1) In a semiconductor device having at least two or more capacitors, a region VC chiyabashita is formed including the side surface of at least one trench formed in the PJI foot region of the main surface of the semiconductor substrate, and the bottom of the trench A semiconductor device characterized in that a region electrically isolating the capacitor is formed in the semiconductor device 0 (2) A groove is formed in the 19T foot region of the main surface of the semiconductor substrate, and a region that meets at least the side surfaces of the ridge groove. A step of forming a first insulating film on the bottom of the groove, a step of forming a second insulating film on the bottom of the groove, and a step of forming a conductive thin film in the entire shape Fy, "j" by laminating it on the first insulating layer. 2. A method for manufacturing a semiconductor device, comprising: forming a surface area V including at least two or more capacitors t1 electrically isolated at the bottom of the groove.
JP57109796A 1982-06-28 1982-06-28 Semiconductor device and manufacture thereof Pending JPS592362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57109796A JPS592362A (en) 1982-06-28 1982-06-28 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57109796A JPS592362A (en) 1982-06-28 1982-06-28 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS592362A true JPS592362A (en) 1984-01-07

Family

ID=14519433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57109796A Pending JPS592362A (en) 1982-06-28 1982-06-28 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS592362A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117258A (en) * 1982-12-24 1984-07-06 Hitachi Ltd Semiconductor device and manufacture thereof
JPS6012752A (en) * 1983-07-01 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof
JPS6126253A (en) * 1984-07-16 1986-02-05 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof
JPS6151868A (en) * 1984-08-21 1986-03-14 Nec Corp Semiconductor device
JPS61144059A (en) * 1984-12-18 1986-07-01 Toshiba Corp Semiconductor memory storage
JPS62243358A (en) * 1986-04-15 1987-10-23 Matsushita Electronics Corp Semiconductor storage device
JPS62273764A (en) * 1986-05-21 1987-11-27 Matsushita Electronics Corp Semiconductor memory
JPS6394669A (en) * 1986-10-08 1988-04-25 Mitsubishi Electric Corp Semiconductor storage device
JPS63104466A (en) * 1986-10-22 1988-05-09 Mitsubishi Electric Corp Mos type dynamic random access memory (ram)
JPS63110746A (en) * 1986-10-29 1988-05-16 Nec Corp Method for forming device isolation region
JPS63124454A (en) * 1986-11-13 1988-05-27 Mitsubishi Electric Corp Semiconductor storage device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117258A (en) * 1982-12-24 1984-07-06 Hitachi Ltd Semiconductor device and manufacture thereof
JPH0566027B2 (en) * 1982-12-24 1993-09-20 Hitachi Ltd
JPH0326547B2 (en) * 1983-07-01 1991-04-11 Nippon Telegraph & Telephone
JPS6012752A (en) * 1983-07-01 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof
JPS6126253A (en) * 1984-07-16 1986-02-05 Nippon Telegr & Teleph Corp <Ntt> Semiconductor memory device and manufacture thereof
JPH0351112B2 (en) * 1984-07-16 1991-08-05 Nippon Telegraph & Telephone
JPS6151868A (en) * 1984-08-21 1986-03-14 Nec Corp Semiconductor device
JPS61144059A (en) * 1984-12-18 1986-07-01 Toshiba Corp Semiconductor memory storage
JPS62243358A (en) * 1986-04-15 1987-10-23 Matsushita Electronics Corp Semiconductor storage device
JPS62273764A (en) * 1986-05-21 1987-11-27 Matsushita Electronics Corp Semiconductor memory
JPS6394669A (en) * 1986-10-08 1988-04-25 Mitsubishi Electric Corp Semiconductor storage device
JPS63104466A (en) * 1986-10-22 1988-05-09 Mitsubishi Electric Corp Mos type dynamic random access memory (ram)
JPS63110746A (en) * 1986-10-29 1988-05-16 Nec Corp Method for forming device isolation region
JPS63124454A (en) * 1986-11-13 1988-05-27 Mitsubishi Electric Corp Semiconductor storage device

Similar Documents

Publication Publication Date Title
US5061651A (en) Method of making dram cell with stacked capacitor
US4742018A (en) Process for producing memory cell having stacked capacitor
US5384276A (en) Method of fabricating a memory device with a multilayer insulating film
JPS63120462A (en) Dynamic random access memory cell
JPH0878533A (en) Semiconductor device and fabrication thereof
JPH0326547B2 (en)
JPH04266061A (en) Formation method of improved stacked capacitor
KR20010051294A (en) Semiconductor device and manufacturing the same
US4322881A (en) Method for manufacturing semiconductor memory devices
US20050020018A1 (en) Method of manufacturing a semiconductor integrated circuit device
JPS592362A (en) Semiconductor device and manufacture thereof
JPH04317358A (en) Manufacture of semiconductor device
JPS6156445A (en) Semiconductor device
JP2002076300A (en) Semiconductor device and its manufacturing method
JPH0294561A (en) Semiconductor storage device and manufacture thereof
JPH0888333A (en) Manufacture of semiconductor device
JP2772375B2 (en) Semiconductor storage device
JPS59184555A (en) Semiconductor integrated circuit device and manufacture thereof
JPS61107768A (en) Semiconductor memory device
JP2740202B2 (en) Method for manufacturing semiconductor device
JPH0834303B2 (en) Method for manufacturing semiconductor memory device
JPH1197529A (en) Manufacture of semiconductor device
US5160988A (en) Semiconductor device with composite surface insulator
JPH01265556A (en) Semiconductor memory and manufacture thereof
JPH0336309B2 (en)