JPS5923476A - Photocell - Google Patents

Photocell

Info

Publication number
JPS5923476A
JPS5923476A JP57133416A JP13341682A JPS5923476A JP S5923476 A JPS5923476 A JP S5923476A JP 57133416 A JP57133416 A JP 57133416A JP 13341682 A JP13341682 A JP 13341682A JP S5923476 A JPS5923476 A JP S5923476A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
light
container
transmission part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57133416A
Other languages
Japanese (ja)
Inventor
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57133416A priority Critical patent/JPS5923476A/en
Publication of JPS5923476A publication Critical patent/JPS5923476A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To increase quantum efficiency of a photocell by arranging a photosensitive electrode in the inside of a light transmission part of a cell container and placing an electrolyte thin layer between the photosensitive electrode and the light transmission part of the container. CONSTITUTION:A mixture of AgX (X=halogen) and CuX is melted and casted to a plate, and the plate is rolled with a hot roller to form a photosensitive electrode 1. This electrode 1 is arranged in the inside of a light transmission part 6' of a cell container 6. A separator 3 made of an electrolyte resistant resin nonwoven fabric is placed between the electrode 1 and a counter electrode 4 obtained by applying a small quantity of platinum black to the surface of graphite. An electrolyte comprising a KX solution containing HX is impregnated in the separator 3. Recesses 7 are installed in the inside of the light transmission part 6' of the container 6, and the electrolyte is filled in the recesses to form an electrolyte thin layer. Light is irradiated from the side of the light transmission part 6' to reduce light absorption by the electrolyte and faciliate dissolution of X generating on the light incidence side in the electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 不発明は、)・ロゲン化銀の光分解を利用して、光によ
り充電するようにした光電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a photovoltaic cell which is charged by light by utilizing photodecomposition of silver halide.

従来例の構成とその問題点 2ページ ハロゲン化銀の光分解は写真やホトクロガラスに利用さ
扛ているが、電池に利用する試みもある。
Structures of conventional examples and their problems Page 2 Photodecomposition of silver halide has been used in photography and photochromic glass, but there are also attempts to use it in batteries.

例えば、電解質にハロゲン化銀を用い、その片側に透明
電極、他の側に黒鉛電極を設け、透明電極を通して入射
する光によって分解したハロゲンを黒鉛電極に吸収させ
、こ扛と透明電極上に生成した銀との間で放電させて電
池とする試みもなさnている。この構成では、固体電解
質の厚みを10μm程度以下にしないと出力画たりのコ
ストが実用的でない。また、この程度の厚みであるとせ
いぜい数回の繰り返し寿命しaxn<、t、かも黒鉛へ
のハロゲン吸着速度が遅く、かつ少ないので、童子効率
が低い欠点がある。
For example, silver halide is used as an electrolyte, a transparent electrode is provided on one side, and a graphite electrode is placed on the other side, and the halogen decomposed by the light incident through the transparent electrode is absorbed by the graphite electrode, and then generated on the transparent electrode. There has also been no attempt to make a battery by discharging it with silver. In this configuration, the cost per output image is not practical unless the thickness of the solid electrolyte is approximately 10 μm or less. In addition, if the thickness is at this level, the life is repeated several times at most, and since the rate of halogen adsorption to graphite is slow and small, there is a drawback of low doji efficiency.

一万、ハロゲン化銀を含む感光性電極と、白金を含む透
明電極からなる対極との間にハロゲン化カリウム7水溶
液からなる電解液を満たし、対極及び電解液を通して、
感光性電極に光を入射させる構成の光電池が提案さ扛て
いる。
10,000, an electrolytic solution consisting of a potassium halide 7 aqueous solution is filled between a photosensitive electrode containing silver halide and a counter electrode consisting of a transparent electrode containing platinum, and the electrolytic solution is passed through the counter electrode and the electrolytic solution.
Photovoltaic cells have been proposed that have a configuration in which light is incident on a photosensitive electrode.

この電池に、光分解によって感光性電極に銀が生成し、
同時に生成するハロゲンをポリハライド3ページ カリウム錯体として電解液が吸収し、感光性電極を負極
、対極を正極として放電させるものである。
In this battery, silver is produced on the photosensitive electrode by photolysis,
The electrolytic solution absorbs the halogen produced at the same time as a polyhalide 3-page potassium complex, and discharges using the photosensitive electrode as a negative electrode and the counter electrode as a positive electrode.

この場合、感光性電極にハロゲン化銅や増感色素を加え
ることにより、量子効率が増大することも既に提案さn
ている。
In this case, it has already been proposed that quantum efficiency can be increased by adding copper halide or sensitizing dye to the photosensitive electrode.
ing.

極の光分解に必要な波長領域の光を吸収するので、量子
効率が著しく低下する欠点がある。
Since it absorbs light in the wavelength range necessary for polar photolysis, it has the disadvantage of significantly lowering quantum efficiency.

発明の目的 不発明は、以上のような不都合を解消するもので、感光
性電極を光入射側に配することによって、電解液による
光吸収を少なくシ、シかも感光性電る。
SUMMARY OF THE INVENTION An object of the invention is to solve the above-mentioned disadvantages, and by disposing a photosensitive electrode on the light incident side, light absorption by the electrolyte can be reduced.

発明の構成 不発明の光電池は、透光性部分を有する電池容器と、ハ
ロゲン化銀とハロゲン化銅を含み容器の透光性部分の内
側に配した感光性電極と、この電極と隔MJnて容器内
に配した白金黒の、rつな不活性電極と、両電極間に満
たしたハロゲン化カリウム水溶液からなる電解液とを備
え、感光性電極と電池容器の透光性部分との間に電解液
の薄層を介在させたことを特徴とする。
Structure of the Invention The uninvented photovoltaic cell comprises a battery container having a light-transmitting portion, a photosensitive electrode containing silver halide and copper halide and disposed inside the light-transmitting portion of the container, and a distance MJn between the electrode and the photosensitive electrode. It is equipped with a platinum black, R-shaped inert electrode arranged inside the container, and an electrolytic solution consisting of an aqueous potassium halide solution filled between both electrodes, and between the photosensitive electrode and the transparent part of the battery container. It is characterized by a thin layer of electrolyte.

ここにおいて、電池容器と感光性電極との間に電解液の
薄層を形成するには、電池容器の内面に凹凸を設けるの
が最も簡単である。
Here, the easiest way to form a thin layer of electrolyte between the battery container and the photosensitive electrode is to provide unevenness on the inner surface of the battery container.

本発明の電池は、ハロゲンの光分解によって感光性電極
上に生成する銀を負極活物質、電解液中にポリハライド
カリウム錯体として吸収さnるハロゲンを正極活物質、
対極を正極集電体として放電させることかでさる。そし
て、光分解に必要な光に感光性電極側力)ら入射するの
で、電解液による光吸収が少なく、シかも、感光性電極
の光入射側に生成するハロゲンも光入射側の電解液によ
って容易に吸収さする。なお、光入射側の電解液は、対
極側の電解液と連通していて、吸収するハロゲンが容易
に対極側へ拡散するようにすることが望ましい。
The battery of the present invention includes silver produced on a photosensitive electrode by photolysis of halogen as a negative electrode active material, halogen absorbed as a polyhalide potassium complex in an electrolytic solution as a positive electrode active material,
This can be achieved by using the counter electrode as a positive electrode current collector to cause a discharge. Since the light necessary for photolysis enters from the side of the photosensitive electrode (force on the side of the photosensitive electrode), there is little light absorption by the electrolyte. Easily absorbed. Note that it is desirable that the electrolytic solution on the light incident side communicate with the electrolytic solution on the counter electrode side so that the absorbed halogen can easily diffuse to the counter electrode side.

5ページ 実施例の説明 以下、本発明を実施例によって詳しく説明する。5 pages Description of examples Hereinafter, the present invention will be explained in detail with reference to Examples.

銀AgXとハロゲン化銅CuXとの混合物を溶融して1
問厚程度の板に鋳造した後、100μm程度の1廃 厚さにホットローラで圧延して作る。2ば感)電極のリ
ードで、銀の箔または線を電極1に圧入したものである
。3にセパレークで、耐電解液性の樹脂不織布で作ら扛
る。4は対極で、黒鉛の表面に微量の白金黒をつけたも
のである。5は対極のリードである。
1 by melting a mixture of silver AgX and copper halide CuX
After casting into a plate with a thickness of approximately 100 µm, it is rolled with a hot roller to a thickness of approximately 100 μm. 2) The electrode lead is made by press-fitting a silver foil or wire into the electrode 1. 3. Separate and separable, made of electrolyte-resistant resin non-woven fabric. 4 is the opposite electrode, which has a trace amount of platinum black applied to the surface of graphite. 5 is the opposite lead.

6に透明材質からなる電池容器である。鉛ガラスやアク
リル樹脂が、感光性電極の光分解に必要な波長の光吸収
が少ないので望ましい。この電池容器は、感光性電極1
に対応する部□6′の゛みを透光性とし、他の部分に不
透光性としてもよい。7に容器の部分6′の内面に設け
た凹部で、感光性電極1の光入射側への電解液の接触を
助けるものである。8に封目板である。
6 is a battery container made of a transparent material. Lead glass and acrylic resin are preferable because they absorb less light at wavelengths necessary for photodecomposition of the photosensitive electrode. This battery container includes a photosensitive electrode 1
A portion of the portion □6' corresponding to the portion □6' may be made transparent, and the other portion may be made opaque. 7 is a recess provided on the inner surface of the portion 6' of the container to help the electrolyte come into contact with the light incident side of the photosensitive electrode 1. 8 is the sealing board.

6ページ 電解液には濃度0.1モル/1以上のハロゲン化カリウ
ムKX水溶液で、酸HXによりLHを2に調整したもの
を用いる。ここでハロゲンXとしては、電極1のハロゲ
ンと共通のものを用いる。
Page 6 The electrolytic solution used is an aqueous potassium halide KX solution with a concentration of 0.1 mol/1 or more, with LH adjusted to 2 with acid HX. Here, as the halogen X, the same halogen as that of the electrode 1 is used.

ここで、感光性電極1には、AgBr10モル係とCu
Br 90モル饅の混合物からなるものを用い、その光
入射側には増感色素3,3′−ジエチル−4゜5、 4
’、  5’−シヘンゾチオ力ルポシアニンブロマイド
の0・1モル/lの水溶液を塗布し、乾燥した。
Here, the photosensitive electrode 1 contains 10 mol of AgBr and Cu.
A mixture of 90 mol of Br was used, and a sensitizing dye 3,3'-diethyl-4°5,4 was placed on the light incident side.
A 0.1 mol/l aqueous solution of ',5'-cyhenzothiocyanine bromide was applied and dried.

この色素は吸収光波長がδ3o〜690 nmで、64
0 nmにピークを有するものである。この電極は、容
器6の部分6′の内面に圧接させる。
This dye has an absorption wavelength of δ3o to 690 nm, and 64
It has a peak at 0 nm. This electrode is brought into pressure contact with the inner surface of part 6' of container 6.

また、対極4には、1朋厚の黒鉛板を0.1モル/lの
H2PtCl4中に浸漬し、ホルマリンで還元して白金
黒を付着させたものを用いた。丑た、電解液ニI/1.
7rH2,KBr濃度1. o モル/’(lの水溶液
を用いた。電池容器6にはアクリル樹脂を用い、四部7
として、6鰭のピッチでriayttm、深さ1朋の溝
を設けた。
Further, as the counter electrode 4, a graphite plate having a thickness of 1 mm was immersed in 0.1 mol/l H2PtCl4 and reduced with formalin to adhere platinum black. Ushita, electrolyte solution I/1.
7rH2, KBr concentration 1. An aqueous solution of o mol/'(l) was used. Acrylic resin was used for the battery container 6, and four parts 7
As a result, a groove with a pitch of 6 fins, riattm, and a depth of 1 mm was provided.

上記の構成の電池をムとじ、比較例として容器7ページ 6に四部子を設けないものをBとする。1だ、電池容器
6の部分6′の内面に四部を設けず、透明電極を蒸着し
、その上にAgBr 10モル係とGuBr90モルチ
の混合物を蒸着して感光性電極とし、対極に透明電極を
用い、その他は同様に構成した電池をCとする。
A battery having the above configuration is assembled and, as a comparative example, a battery in which no four parts are provided in the container 7 page 6 is designated as B. 1. A transparent electrode is vapor-deposited on the inner surface of the portion 6' of the battery container 6 without the four parts, and a mixture of 10 moles of AgBr and 90 moles of GuBr is vapor-deposited thereon to form a photosensitive electrode, and a transparent electrode is provided as a counter electrode. A battery used in this test and otherwise constructed in the same manner is designated as C.

こnらの電池A、  Hについては感光性電極側から、
Cについては対極側から、そnぞ扛50cMの距離の5
00Wのギセノンランプにより照射して充電の量子効率
の経時変化を調べた。その結果を第2図に示した。
For these batteries A and H, from the photosensitive electrode side,
For C, the distance from the opposite electrode is 50 cm.
The charge quantum efficiency was irradiated with a 00 W gysenon lamp to examine changes over time. The results are shown in Figure 2.

また、量子効率が零に達したところで照射を続けながら
放電の電流と平坦電圧を求め、第3図に示した。
Further, when the quantum efficiency reached zero, the discharge current and flat voltage were determined while continuing irradiation, and are shown in FIG.

不発明の電池人では、・・ロゲンの溶失によって光が吸
収さしないので、量子効率の低減が少なく、大電流放電
も可能になる効果があることが認めらnる。
In the case of the uninvented battery, light is not absorbed due to the dissolution of rogens, so there is little reduction in quantum efficiency, and it is recognized that there is an effect that large current discharge is possible.

次に、電池人における対極を変えた場合の比較を示す。Next, a comparison will be shown when the opposite electrode of the battery is changed.

114m厚の黒鉛板をPdG12 r AuC13+ 
AgN05の各0.1モル/l水溶液に浸漬し、ホルマ
リンで還元して各金属点を付着させた対極を用いた電池
をり。
114m thick graphite plate made of PdG12 r AuC13+
A battery using a counter electrode immersed in each 0.1 mol/l aqueous solution of AgN05 and reduced with formalin to attach each metal point.

E、  F、黒鉛板を用いた電池をGとする。E, F, and G are batteries using graphite plates.

第4図は、量子効率が零に達したところ(電池の端子電
圧が1.oVに達する)で照射を続けながら放電々流と
平坦電圧との関係を求めた結果を示すものであり、第5
図は照射しながら100μA/caの放電を続けた場合
の端子電圧の変化を示したものである。
Figure 4 shows the results of determining the relationship between discharge current and flat voltage while continuing irradiation when the quantum efficiency reaches zero (terminal voltage of the battery reaches 1.oV). 5
The figure shows the change in terminal voltage when 100 μA/ca discharge is continued while irradiating.

電池の特性は対極の触媒の有無にも関係する。The characteristics of the battery are also related to the presence or absence of a catalyst at the counter electrode.

白金を触媒としたものに大電流放電が可能で、持続性も
高”いことが認めらする。
It has been confirmed that large current discharge is possible using platinum as a catalyst, and that it is highly sustainable.

上記の例でに、ハロゲンXとして臭素を用いたが、ヨウ
素を用いることもできる。また、感光性電極としては、
ハロゲン化銀とハロゲン化銅との混合物に限らず、Rb
Ag、Cu4−xIyC15y  の工うな化合物を用
いてもよい。
In the above example, bromine was used as the halogen X, but iodine can also be used. In addition, as a photosensitive electrode,
Not limited to mixtures of silver halide and copper halide, Rb
Other compounds such as Ag, Cu4-xIyC15y may also be used.

発明の効果 以上のように、不発明に工nは、充電効率が高9ベージ く、比較的大電流での放電も可能な光電池が得ら扛る。Effect of the invention As mentioned above, the uninvented technology has a high charging efficiency of 9 levels. A photovoltaic cell capable of discharging at a relatively large current can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明の電池の構成例を示す縦断面図、第2図
に各種光電池の充電効率の比較を示す図、第3図に放電
特性の比較を示す図、第4図は対極の異なる光電池の放
電特性の比較を示す図、第6図は端子電圧の経過変化を
比較した図である。 1・・・・・・感光性電極、3・・・・・・セパレータ
、4・・・・・・対極、6・・・・・・電池容器、7・
・・・・・凹部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 区    <Al ¥/ ’119範 図   (’/、)市α4f棄 (A)ヨ卓旨で玄 区
Figure 1 is a longitudinal cross-sectional view showing an example of the structure of the battery of the invention, Figure 2 is a diagram showing a comparison of charging efficiency of various photovoltaic cells, Figure 3 is a diagram showing a comparison of discharge characteristics, and Figure 4 is a diagram of the opposite electrode. A diagram showing a comparison of discharge characteristics of different photovoltaic cells, and FIG. 6 is a diagram comparing changes in terminal voltage over time. DESCRIPTION OF SYMBOLS 1...Photosensitive electrode, 3...Separator, 4...Counter electrode, 6...Battery container, 7.
・・・・・・Concavity. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Picture area <Al ¥/ '119 range map ('/,) City α4f abandonment (A) Yo Zakuji and Xuan Ward

Claims (1)

【特許請求の範囲】 0)透光性部分を有する電池容器と、ノ・ロゲン化銅と
ハロゲン化銀を含み前記容器の透光性部分の内側に配し
た感光性電極と、前記感光性電極と隔離さnて電池容器
内に配した% 対極と、前記両電極間に満たしたノ・ロゲン化カリウム
水溶液からなる電解液とを備え、感光性電極と電池容器
の透光性部分との間に電解液の薄層を介在させた光電池
。 (劫 電池容器の透光性部分の内面に凹凸を設け、凹部
内に電解液を収容した特許請求の範囲第1項記載の光電
池。
[Scope of Claims] 0) A battery container having a light-transmitting portion, a photosensitive electrode containing copper halide and silver halide and disposed inside the light-transmitting portion of the container, and the photosensitive electrode. and a counter electrode placed in a battery container isolated from the electrodes, and an electrolytic solution consisting of an aqueous potassium chloride solution filled between the two electrodes, and between the photosensitive electrode and the light-transmitting part of the battery container. A photovoltaic cell with a thin layer of electrolyte interposed in it. (Kalpa) The photovoltaic cell according to claim 1, wherein the inner surface of the light-transmitting portion of the battery container is provided with unevenness, and an electrolytic solution is accommodated in the recessed portion.
JP57133416A 1982-07-29 1982-07-29 Photocell Pending JPS5923476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57133416A JPS5923476A (en) 1982-07-29 1982-07-29 Photocell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57133416A JPS5923476A (en) 1982-07-29 1982-07-29 Photocell

Publications (1)

Publication Number Publication Date
JPS5923476A true JPS5923476A (en) 1984-02-06

Family

ID=15104255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57133416A Pending JPS5923476A (en) 1982-07-29 1982-07-29 Photocell

Country Status (1)

Country Link
JP (1) JPS5923476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1667274A1 (en) * 2003-08-06 2006-06-07 Fujikura Ltd. Photoelectric converter and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1667274A1 (en) * 2003-08-06 2006-06-07 Fujikura Ltd. Photoelectric converter and method for manufacturing same
EP1667274A4 (en) * 2003-08-06 2007-08-01 Fujikura Ltd Photoelectric converter and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4232099A (en) Novel battery assembly
JPH06507999A (en) Transparent recycled photoelectrochemical cell
SE7510281L (en) ELECTROCHEMICAL SECOND CELL
JPS59158278U (en) Photovoltaic battery device
US4427748A (en) Planar battery comprising a terminal plate having gas venting orifice covered with a layer of gas permeable material
JPH10505192A (en) Electrochemical solar cell
JPS5931573A (en) Negative electrode for lithium battery
JPS5560281A (en) Internal reflection type pigment sensitizing wet photo cell
JPS5923476A (en) Photocell
US3879228A (en) Photo-regenerative electrochemical energy converter
US3912543A (en) Planar battery and a photographic film assembly
JPS5630261A (en) Battery and its manufacturing method
JP2001345126A (en) Photoelectric conversion device
JP2552352B2 (en) Sealed lead acid battery
US4118546A (en) Triple electrode photogalvanic cell with energy storage capability
US4138532A (en) N-methylphenazine photogalvanic cell
JPS57121168A (en) Battery
JP2506879B2 (en) Fuel cell
JPS58165279A (en) Photocell
DE2637319C3 (en) Photoelectrochemical cell
JPS566388A (en) Solar cell
JPS5852307B2 (en) Hikari Energy Henkan Souchi
JPH0324746B2 (en)
JPH0734363B2 (en) Optical secondary battery
JP2552354B2 (en) Sealed lead acid battery