JPS5931573A - Negative electrode for lithium battery - Google Patents

Negative electrode for lithium battery

Info

Publication number
JPS5931573A
JPS5931573A JP57140980A JP14098082A JPS5931573A JP S5931573 A JPS5931573 A JP S5931573A JP 57140980 A JP57140980 A JP 57140980A JP 14098082 A JP14098082 A JP 14098082A JP S5931573 A JPS5931573 A JP S5931573A
Authority
JP
Japan
Prior art keywords
lithium
electrode
ethylene carbonate
negative electrode
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57140980A
Other languages
Japanese (ja)
Inventor
Shinichi Tobishima
真一 鳶島
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57140980A priority Critical patent/JPS5931573A/en
Publication of JPS5931573A publication Critical patent/JPS5931573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge performance of a lithium electrode by using lithium treated with ethylene carbonate as a negative electrode. CONSTITUTION:The surface of lithium is treated with ethylene carbonate. By treatment, a protection film having Li<+>ion conductivity is formed and charge- discharge efficiency of a lithium electrode is increased. The formation of a protection film on the surface of lithium by ethylene carbonate treatment is made in such a way that lithium plates as both electrodes, and electrolyte prepared by dissolving 1mol/l of LiClO4 in a mixed solvent having a molar ratio of 6:1 of ethylene carbonate (EC) and propylene carbonate (PC) are used to construct a cell, and constant current treatment is conducted, then additional cell is assembled by using a positive electrode mentioned above as a counter electrode, platinum as an operating electrode, and lithium as a reference electrode, and lithium is deposited on the Pt electrode.

Description

【発明の詳細な説明】 本発明は、リチウム電池に用いるリチウム負極に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lithium negative electrode for use in lithium batteries.

リチウムを負極活物質として用いる電池は、小型・高エ
ネルギ密度を有する′電池を有する電池として研究され
ているが、その二次化が大きな問題点となっている。
Batteries using lithium as a negative electrode active material are being researched as batteries having small size and high energy density, but secondaryization has become a major problem.

二次化が可能な正極活物質として、多くの化合りが検討
されておC1t+1えばチタン、ジルコニウム、ハフニ
ウム、ニオビウム、タンタル、バナジウムの硫化物、セ
レン化物、テルル化物を用いた電池(米国重訂第4,0
89,052号明に円軸参照)等が開示されている。
Many compounds have been studied as cathode active materials that can be secondaryized, including batteries using titanium, zirconium, hafnium, niobium, tantalum, vanadium sulfide, selenide, and telluride (US revised). 4th, 0th
No. 89,052 (see circular axis), etc. are disclosed.

しかしながら、このような二次電池用正極活物質の(U
t究に比してLi極の充放電慣性に関するイσを究は光
分とはいえず、Li二次′岨池実明、のためには、光放
電効率及びサイクル寿命等の充放電特性の艮好なL i
 軸の作製法が重大な問題となっている。
However, the (U) of such positive electrode active materials for secondary batteries
Compared to the t study, the σ related to the charge/discharge inertia of the Li electrode cannot be said to be a light component, and for the Li secondary ′, the charge/discharge characteristics such as photodischarge efficiency and cycle life are important. Beautiful Li
The method of manufacturing the shaft is a serious issue.

Li惨の充放電特性を向上させる試みとしては、Liを
Ox 、Cot  等でガス処理したものを負極に用い
る試み(J、Electrochem、 5oc−、v
ol、 125第1371頁〜1377頁〕やLiとA
tの合金を負極に用いる試み(J、Electroch
em。
In an attempt to improve the charge/discharge characteristics of Li-based batteries, attempts have been made to use Li gas-treated with Ox, Cot, etc. for the negative electrode (J, Electrochem, 5oc-, v
ol, 125, pp. 1371-1377] and Li and A
An attempt to use an alloy of t for the negative electrode (J, Electroch
em.

5ac1.vol、127. 2100Q〜2104M
)等があるが、必ずしも充分とは^えず、さらに特性の
優れたLi負極の作製が求められている。
5ac1. vol, 127. 2100Q~2104M
), but these are not necessarily sufficient, and there is a demand for the production of Li negative electrodes with even better characteristics.

本′:A明は、このような祝状に九みてなされたもので
あり、その目的は充放電特性の潰れた負極を用いてリチ
ウム′電池を仇供する事にある。
The book 'Amei' was created in response to such a letter of congratulations, and its purpose is to provide a lithium battery using a negative electrode with poor charging and discharging characteristics.

本発明につき既成すると、負極活’lx賀はリチウムで
あシ、正極活物質はリチウムイオンと可逆的に電気化学
的反応を行なう物質であり、電房質物質は正極活物質及
びリチウムに対して化学的に安定であり、かつリチウム
イオンが正極ン占!勿貝と[伐気化字反応をするための
移動を行なう物質であるリチウム−次及び二次電池に用
いられる負極として、エチレンカーボネイト処理したリ
チウムを用いた事を特徴とするものである。
According to the present invention, the negative electrode active material is lithium, the positive electrode active material is a substance that reversibly electrochemically reacts with lithium ions, and the electrolytic material is a material that reacts with the positive electrode active material and lithium. Chemically stable and lithium ions are the positive electrode! It is characterized by using ethylene carbonate-treated lithium as the negative electrode used in secondary and secondary batteries.

リチウム負極として、リチウム金属板等のリチウムをそ
のまま用いた場合、R−iいる電解液溶媒によっては、
溶媒とリチウムの′献気化掌的反応によりリチウムイ(
1i1に絶縁性の膜が形成され、これがLi惨の充放′
1効率を低下させる一つの原因となっている。又、リチ
ウム負値として、リチウム釡属板等のリチウムケそのま
ま用いた場合、放電あるいは尤軍篭り1コが増大すると
局部的な反応促進により、リチウム負極に八があいたり
、兄喝時にデンドライト状のリチウムが仇出し負1東か
らJ況rbする等の史家が生じる。これもl、 i 4
4<の光放亀幼4Aを低下させる原因となっている。
When lithium such as a lithium metal plate is used as it is as a lithium negative electrode, depending on the electrolyte solvent used in R-i,
Lithium i(
An insulating film is formed on 1i1, and this causes the lithium to be discharged.
1 is one of the causes of lower efficiency. In addition, as a lithium negative value, if lithium oxide such as a lithium metal plate is used as it is, if the discharge or concentration increases, the lithium negative electrode will open up due to local reaction acceleration, and dendrite-like formations will occur when the lithium electrode is heated. Historians say that lithium is the enemy and that the negative 1 east will be replaced by the J situation. This is also l, i 4
This causes a decrease in the optical release rate of 4<4A.

そζで、上記の欠点をとり除くためにはリチウムの表向
に、Li イオン伝導性の保國膜を形成する虜が効果的
であると4えられる。エチレンカーボネイトでリチウム
表囲を処理すると、−ヒ0己の効果がル1侍される。
Therefore, in order to eliminate the above-mentioned drawbacks, it is considered effective to form a protective film that conducts Li ions on the surface of lithium. When the lithium surface is treated with ethylene carbonate, the effect of -1 is suppressed.

エチレンカーボネイト処理により、リチウム表面に法g
:* h戻を形成する方法ないし処理するには、本発明
において何ら限蓋されるものではない。
By ethylene carbonate treatment, the lithium surface becomes
:* The method of forming or treating the h-return is not limited in any way by the present invention.

以下に実施例を用いて本発明の効果を詣、明する。The effects of the present invention will be explained below using Examples.

ここで〕IJl/−またリチウムの処理法は一例であり
、なんら東峙されるものではない。
[Here]IJl/-Also, the lithium treatment method is just one example, and is not something to be criticized in any way.

実施例 N極にリチウム・敗(厚さ、■、5ntrrb電称1…
槓1cJ )を、’u 路数とし°Cエチレンカーボネ
イト(EC)とグロピレンカーボネイト(PC)の6:
1モル比況合溶媒に、11no4/′t  のL i 
CLo 4  を溶解させたものを用いたセルをddt
み、1rnA/i の犀亀υG処理を12.5時間行な
った1表、上111セルの正換肯のリチウムを対イ艷に
、作用物としてptを、参照惟としてリチウムを用いた
セルを穎たに組み、Pt極上にLiを析出させる事によ
り、Life<の光放電特性を測定した。’ilLm液
には、INLiCtO4/PCを用いた。
Example N electrode was lithium (thickness, ■, 5ntrrb electrical name 1...
6 for ethylene carbonate (EC) and glopylene carbonate (PC):
Li of 11no4/'t in 1 molar ratio mixture solvent
ddt cells using dissolved CLo 4
In Table 1, cells using pt as the agent and lithium as the reference were compared with the positive lithium of the cell No. 111 in Table 1, which was subjected to Saikame υG treatment at 1rnA/i for 12.5 hours. The photodischarge characteristics of Life< were measured by assembling it into a cell and depositing Li on the Pt layer. INLiCtO4/PC was used as the 'ilLm solution.

出1j気では、まず1rnA/Jの定電流で1分出」、
Pt極上にLiを析出させ充′眠した佐、1 m A 
/ clの定電流でp t−r=上に析出したLiをL
l  イオンとして放′賊するサイクル試験を行なった
。九h3〔屯効率はPt極の電位y化より求め、■)を
幌上に析出したLiをLl イオンとして放電1させる
のに賛した箪気MとPt体上にLiを析出させるのに袈
した電気量との比からn出した。
For output 1j, first output with a constant current of 1rnA/J for 1 minute.
After Li was deposited on top of Pt and immersed, 1 mA
/ cl constant current p tr = Li deposited on L
A cycle test was conducted in which it was released as l ions. 9h3 [Ton efficiency is determined from the potential y of the Pt electrode, ■) is used for discharging Li deposited on the hood as Ll ions and using a casing for depositing Li on the Pt body. n was calculated from the ratio to the amount of electricity.

第1図は、Li極の光放電効率とサイクル較の関1系を
示1区1であり、図中の(a)tまLi負極として、上
記の条件でEC処理したものを用いた場合であシ、(b
)は参考例のLi負極として、Li)rR(未処理)を
用いた場合のLi憧の光放電特性を示したものである。
Figure 1 shows the relationship between the photodischarge efficiency of Li electrode and the cycle comparison. Adashi, (b
) shows the photodischarge characteristics of Li when Li)rR (untreated) is used as a reference example Li negative electrode.

第1図から刊る(末に、リチウム貝悼としてEC処理し
たリチウムを井Jいる司↓によって、L 14にの充放
゛屯特性は港しく向上している。
From Figure 1 onwards, the charging and discharging characteristics of L14 have been significantly improved by using EC-treated lithium as a lithium shell.

以上の説明から明らかな様に、本発明によれば、エチレ
ンカーボネイト処理し、たリチウムを負極として用いる
事により、光放電毛・性の優れたリチウム′電池用負惨
を実現できる。
As is clear from the above description, according to the present invention, by using ethylene carbonate-treated lithium as the negative electrode, a lithium battery with excellent photodischarge characteristics can be realized.

図■のTハj早な説明 第1図は、本発明の実施例におけるリチウム極の光放届
効率とサイクル数の関係ケ示す図である。
Quick Explanation of Figure 1 Figure 1 is a diagram showing the relationship between the light delivery efficiency of the lithium electrode and the number of cycles in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] リチウム金属表面を、エチレンカーボネイトで処理した
事を特徴とするリチウム電池用負極。
A negative electrode for lithium batteries whose lithium metal surface is treated with ethylene carbonate.
JP57140980A 1982-08-16 1982-08-16 Negative electrode for lithium battery Pending JPS5931573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140980A JPS5931573A (en) 1982-08-16 1982-08-16 Negative electrode for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140980A JPS5931573A (en) 1982-08-16 1982-08-16 Negative electrode for lithium battery

Publications (1)

Publication Number Publication Date
JPS5931573A true JPS5931573A (en) 1984-02-20

Family

ID=15281323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140980A Pending JPS5931573A (en) 1982-08-16 1982-08-16 Negative electrode for lithium battery

Country Status (1)

Country Link
JP (1) JPS5931573A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279554A2 (en) * 1987-02-18 1988-08-24 Dowty Electronic Components Limited Solid state cell electrolyte
WO1999057770A1 (en) * 1998-05-01 1999-11-11 Polyplus Battery Company, Inc. Encapsulated lithium electrodes having glass protective layers and method for their preparation
US6413285B1 (en) 1999-11-01 2002-07-02 Polyplus Battery Company Layered arrangements of lithium electrodes
US6413284B1 (en) 1999-11-01 2002-07-02 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US7282302B2 (en) 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US7282296B2 (en) 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US7390591B2 (en) 2002-10-15 2008-06-24 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7491458B2 (en) 2003-11-10 2009-02-17 Polyplus Battery Company Active metal fuel cells
US7608178B2 (en) 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7838144B2 (en) 2002-10-15 2010-11-23 Polyplus Battery Company Protective composite battery separator and electrochemical device component with red phosphorus
US8182943B2 (en) 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
US8323820B2 (en) 2008-06-16 2012-12-04 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279554A2 (en) * 1987-02-18 1988-08-24 Dowty Electronic Components Limited Solid state cell electrolyte
US6432584B1 (en) 1998-05-01 2002-08-13 Polyplus Battery Company Method for forming encapsulated lithium electrodes having glass protective layers
WO1999057770A1 (en) * 1998-05-01 1999-11-11 Polyplus Battery Company, Inc. Encapsulated lithium electrodes having glass protective layers and method for their preparation
US6214061B1 (en) 1998-05-01 2001-04-10 Polyplus Battery Company, Inc. Method for forming encapsulated lithium electrodes having glass protective layers
US6737197B2 (en) 1999-11-01 2004-05-18 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
US6413284B1 (en) 1999-11-01 2002-07-02 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
US6413285B1 (en) 1999-11-01 2002-07-02 Polyplus Battery Company Layered arrangements of lithium electrodes
US7838144B2 (en) 2002-10-15 2010-11-23 Polyplus Battery Company Protective composite battery separator and electrochemical device component with red phosphorus
US8114171B2 (en) 2002-10-15 2012-02-14 Polyplus Battery Company In situ formed ionically conductive membranes for protection of active metal anodes and battery cells
US7282302B2 (en) 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US7282296B2 (en) 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US7390591B2 (en) 2002-10-15 2008-06-24 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7432017B2 (en) 2002-10-15 2008-10-07 Polyplus Battery Company Compositions and methods for protection of active metal anodes and polymer electrolytes
US7858223B2 (en) 2002-10-15 2010-12-28 Polyplus Battery Company Electrochemical device component with protected alkali metal electrode
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US8048571B2 (en) 2003-10-14 2011-11-01 Polyplus Battery Company Active metal / aqueous electrochemical cells and systems
US8202649B2 (en) 2003-10-14 2012-06-19 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7666233B2 (en) 2003-10-14 2010-02-23 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US8361664B2 (en) 2003-11-10 2013-01-29 Polyplus Battery Company Protected lithium electrode fuel cell system incorporating a PEM fuel cell
US7608178B2 (en) 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
US7998626B2 (en) 2003-11-10 2011-08-16 Polyplus Battery Company Active metal fuel cells
US7491458B2 (en) 2003-11-10 2009-02-17 Polyplus Battery Company Active metal fuel cells
US7781108B2 (en) 2003-11-10 2010-08-24 Polyplus Battery Company Active metal fuel cells
US7282295B2 (en) 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US8293398B2 (en) 2004-02-06 2012-10-23 Polyplus Battery Company Protected active metal electrode and battery cell with ionically conductive protective architecture
US7829212B2 (en) 2004-02-06 2010-11-09 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US8182943B2 (en) 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
US8334075B2 (en) 2005-12-19 2012-12-18 Polyplus Battery Company Substantially impervious lithium super ion conducting membranes
US8323820B2 (en) 2008-06-16 2012-12-04 Polyplus Battery Company Catholytes for aqueous lithium/air battery cells
US8389147B2 (en) 2008-06-16 2013-03-05 Polyplus Battery Company Hydrogels for aqueous lithium/air battery cells

Similar Documents

Publication Publication Date Title
JPS5931573A (en) Negative electrode for lithium battery
Croce et al. Ambient Temperature Lithium Polymer Rocking‐Chair Batteries
JPS61295238A (en) Non-aquatic secondary electric cell
JP5378038B2 (en) Lithium air battery
JPS59134568A (en) Electrolyte for lithium battery
JPS60198055A (en) Manufacture of plate for lead storage battery
JPS6362869B2 (en)
OHzuKu et al. A graphite compound as cathode for rechargeable nonaqueous lithium battery
JPH04503888A (en) Novel electrode material Lix Mz V↓2-↓z O↓5-↓t, its manufacturing method and its use in electrochemical generators
JP2002100347A (en) Lead-acid battery
JPH087924A (en) Cell employing ion conductive highpolymer compound
JPS61264682A (en) Organic electrolyte battery
JPS62139260A (en) Manufacture of positive active material for organic electrolyte battery
JPS62160671A (en) Nonaqueous solvent secondary battery
JPS6079677A (en) Electrolyte for lithium secondary battery
JPS62119867A (en) Manufacture of active material for positive electrode of battery with organic electrolytic solution
KR20170050138A (en) Cathode active material for all solid battery, all solid secondary battery comprising the same and a preparation method for all solid secondary battery
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery
JPS6091565A (en) Nonaqueous electrolyte battery
JPS60230356A (en) Negative electrode for lithium battery
JPS59127382A (en) Organic electrolyte for lithium battery
JPS62103991A (en) Lithium secondary cell with carbon fiber constituting positive and negative electrode
JPS6334864A (en) Solid electrolyte secondary cell
JPS634554A (en) Organic electrolyte secondary battery
JPS5887779A (en) Nonaqueous electrolytic solution for lithium secondary battery