JP2506879B2 - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JP2506879B2
JP2506879B2 JP63000394A JP39488A JP2506879B2 JP 2506879 B2 JP2506879 B2 JP 2506879B2 JP 63000394 A JP63000394 A JP 63000394A JP 39488 A JP39488 A JP 39488A JP 2506879 B2 JP2506879 B2 JP 2506879B2
Authority
JP
Japan
Prior art keywords
electrode
layer
separator
gas
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63000394A
Other languages
Japanese (ja)
Other versions
JPH01176664A (en
Inventor
成嘉 小林
秀和 藤村
昌治 伊藤
好弘 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63000394A priority Critical patent/JP2506879B2/en
Publication of JPH01176664A publication Critical patent/JPH01176664A/en
Application granted granted Critical
Publication of JP2506879B2 publication Critical patent/JP2506879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池に関するものである。TECHNICAL FIELD The present invention relates to a fuel cell.

〔従来の技術〕[Conventional technology]

従来の燃料電池に使用されている2層多孔質電極は特
開昭59−215665号広報に記載されているように、その2
層の界面が平板状になっていた。
A two-layer porous electrode used in a conventional fuel cell is disclosed in Japanese Patent Application Laid-Open No. 59-215665, No. 2 thereof.
The interface of the layers was flat.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術はセパレータリブと電極とが接する部分
の電極内ガス拡散抵抗の点について配慮がされておら
ず、ガス流路、セパレータリブの幅に比較して2層多孔
質電極(2つの層は細孔径が異なる)構造の細孔径の大
きな層の厚さが小さいため、セパレータリブに接触する
電極部では燃料および酸化剤ガスが電解質に達するまで
の距離が、ガス流路部に接する電極部の電解質までの距
離に比較してかなり長くなり、ガス拡散抵抗が大きく、
性能低下をもたらす問題があった。
The above-mentioned prior art does not take into consideration the gas diffusion resistance in the electrode at the portion where the separator rib and the electrode are in contact with each other, and the two-layer porous electrode (two layers are Since the thickness of the layer with a large pore size of the structure) is small, the distance until the fuel and oxidant gas reach the electrolyte at the electrode part contacting the separator rib is the same as that of the electrode part contacting the gas flow path part. Compared to the distance to the electrolyte, it becomes considerably longer, and the gas diffusion resistance is large,
There was a problem that reduced performance.

本発明は以上の点に鑑みなされたものであり、セパレ
ータリブに接する電極のガス拡散抵抗を小さくし、電解
質とガスとの接触面積を増大して性能向上を可能とした
燃料電池を提供することを目的とするものである。
The present invention has been made in view of the above points, and provides a fuel cell capable of improving the performance by reducing the gas diffusion resistance of the electrode in contact with the separator rib and increasing the contact area between the electrolyte and the gas. The purpose is.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち本発明は、平均細孔径の大きな層を前記セパ
レータ側に配置し、また平均細孔径の小さな層を電解質
板側に配置するとともに、この2層の界面に凹凸部を設
け、かつ前記平均細孔径の小さな層のセパレータ側へ凸
となる部分が、セパレータリブの下部にくるように形成
し初期の目的を達成するようにしたものである。
That is, according to the present invention, a layer having a large average pore diameter is arranged on the separator side, and a layer having a small average pore diameter is arranged on the electrolyte plate side, and a concavo-convex portion is provided at the interface between the two layers, and The portion of the layer having a small pore size, which is convex toward the separator, is formed so as to be located below the separator rib so as to achieve the initial purpose.

〔作用〕[Action]

すなわちこのように形成された燃料電池であると、平
均細孔径の小さな層、すなわち電解質板側の層のセパレ
ータ側へ凸となっている部分がセパレータリブの下部に
くるようにしたので、セパレータリブと電解質液面との
距離が小さくなってセパレータリブと接する電極のガス
拡散抵抗が小さくなる。また、電解質の液面形状は2層
の界面の凹凸形状と同じ凹凸になって、ガス流路から電
極中の電解質表面(凹凸部)までの拡散距離が電極内で
ほぼ一様となる。更に電解質とガスとの接触する部分も
凹凸部で接触するので従来の電極より大きくなり、セパ
レータリブに接する電極のガス拡散抵抗を小さくし、電
解質とガスとの接触面積を大きくすることができ、燃料
電池の性能を向上することができる。
That is, in the fuel cell formed in this way, the layer having a small average pore diameter, that is, the portion of the layer on the electrolyte plate side that is convex toward the separator is located below the separator rib. And the liquid surface of the electrolyte are reduced, and the gas diffusion resistance of the electrode in contact with the separator rib is reduced. Further, the liquid surface shape of the electrolyte has the same unevenness as the uneven shape of the interface between the two layers, and the diffusion distance from the gas flow path to the electrolyte surface (uneven portion) in the electrode is substantially uniform in the electrode. Further, the contact portion between the electrolyte and the gas also comes in contact with the uneven portion, so that it becomes larger than the conventional electrode, the gas diffusion resistance of the electrode in contact with the separator rib can be reduced, and the contact area between the electrolyte and the gas can be increased. The performance of the fuel cell can be improved.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。
第1図から第4図には本発明の一実施例が示されてい
る。第1図に示されているように燃料電池は電解質板1
を挟んで設けられた燃料極2および酸化剤ガス極3,すな
わち電解質板1の上側に燃料極2,下側に酸化剤ガス極3
が設置されている。またこれら燃料極2および酸化剤ガ
ス極3にはセパレータリブ4aを介してセパレータ4が積
層されている。そしてこれら燃料極,酸化剤ガス極(電
極)2,3とセパレータ4との間で、かつ隣接しているセ
パレータリブ4a間には燃料,酸化剤ガスが夫々流通する
ガス流路5が設けられている。
Hereinafter, the present invention will be described based on the illustrated embodiments.
1 to 4 show an embodiment of the present invention. As shown in FIG. 1, the fuel cell has an electrolyte plate 1
A fuel electrode 2 and an oxidant gas electrode 3, which are provided so as to sandwich them, that is, a fuel electrode 2 above the electrolyte plate 1 and an oxidant gas electrode 3 below the electrolyte plate 1.
Is installed. Further, a separator 4 is laminated on the fuel electrode 2 and the oxidant gas electrode 3 via a separator rib 4a. A gas flow path 5 is provided between the fuel electrode and the oxidant gas electrodes (electrodes) 2 and 3 and the separator 4 and between the adjacent separator ribs 4a to pass the fuel and the oxidant gas, respectively. ing.

これら電極は、夫々多孔質の2つの層から形成されて
いる。すなわち燃料極2を例にとれば、平均細孔径の大
きな層6aと小さな層6bから形成されているのである。換
言すれば、その一方の層は他方の層より平均細孔径の大
きな層に形成され、他方の層が一方の層より平均細孔径
の小さな層に形成されていると云うことである。
Each of these electrodes is formed of two porous layers. That is, taking the fuel electrode 2 as an example, it is formed of a layer 6a having a large average pore diameter and a layer 6b having a small average pore diameter. In other words, the one layer is formed in a layer having a larger average pore diameter than the other layer, and the other layer is formed in a layer having a smaller average pore diameter than the one layer.

そして本実施例では、この平均細孔径の大きな層6aは
セパレータ4側に配置され、平均細孔径の小さな層6bは
電解質板1側に配置され、さらにこの2つの層6a,6bの
界面7には凹凸部が設けられ、かつ平均細孔径の小さな
層6bのセパレータ側へ凸となる部分が、セパレータリブ
4aの下部にくるように形成されている。すなわち、電極
2がセパレータリブ4aに接する部分で細孔径の小さな層
6bが細孔径の大きな層6aに突きだすように形成されてい
るのである。酸化剤ガス極3についてはガスの流れが燃
料極2側に直交して流れるため第1図には電極3内の層
の界面の形状は図示されていないが、燃料極2と同じで
ある。
In this example, the layer 6a having a large average pore diameter is arranged on the separator 4 side, the layer 6b having a small average pore diameter is arranged on the electrolyte plate 1 side, and further at the interface 7 between the two layers 6a, 6b. Is a separator rib where the uneven portion is provided, and the portion of the layer 6b having a small average pore diameter that is convex toward the separator is a separator rib.
It is formed to come to the bottom of 4a. That is, a layer having a small pore diameter at the portion where the electrode 2 is in contact with the separator rib 4a
6b is formed so as to protrude into the layer 6a having a large pore diameter. The oxidant gas electrode 3 has the same shape as the fuel electrode 2 though the shape of the interface between layers in the electrode 3 is not shown in FIG. 1 because the gas flow is orthogonal to the fuel electrode 2 side.

第2図には第1図に示す燃料極側の電解質液形状と電
極2内のガスの流れが示されている。平均細孔径が電極
2内の界面7を境にしてセパレータ4側と電解質板側と
で異なるため、電解質(MCFCでは炭酸リチウムと炭酸カ
リウムを共晶塩)液の毛細管力の差により、電極2内の
電解質液のレベルLeの形状は同図下部のように、2層の
界面7の凹凸形状と同じ凹凸となる。ガス流路5内の燃
料ガス(MCFCでは水素ガス)8は平均細孔径の大きな層
6aを同図に示されているように界面7の凹凸に向って拡
散し、電解質液面に到達し、電極2表面で電気化学反応
により電気を発生する。このような燃料ガス8あるいは
酸化剤ガスの電極内移動については従来、電解質中をガ
スが液中拡散する速度が非常に遅いのに比較すれば、電
極内の気相中ガス拡散速度は問題とならないほど速いと
され、その抵抗は考えなくてもよいとされていた。しか
し、電極内のガス拡散係数を実測した結果、第3図に示
すようなデータが得られた。同図は縦軸のCO2拡散係数
をとり横軸に温度をとって、温度と拡散係数との関係が
示されている。同図に示されているように気相(電極な
どのように屈曲した細孔構造などのない空間)中に比較
し、平均細孔径10μmの電極内の拡散係数Dは約1/10か
ら1/20になっている。拡散によるガスの移動距離は拡散
係数Dと時間tとの積の平方根 に比例、すなわち に比例することになる。従って例えば電解質液中のCO2
拡散係数が10-5cm2/S,電極(平均細孔径10μm)中のガ
ス拡散係数は測定により約10-2cm2/Sであるので、電解
質液膜厚さが1μm程度としても液中の移動時間(L2/
D)(但しLは電解質の液膜の厚さ、Dは拡散係数、
lは液体を示す添字である)の値は10-3sec、一方、電
極内のガス移動距離は0.2から0.5mmとすれば、その電極
中の移動時間(L2/D)(但しLはガス相の厚さ、Dは
拡散係数、gは気相を示す添字である)は4×10-2〜2.
5×10-1secとなる。このことから電極中のガス拡散は液
中のガス拡散よりも遅く、物質移動過程の律速段階とな
ることが判る。
FIG. 2 shows the shape of the electrolyte solution on the fuel electrode side shown in FIG. 1 and the gas flow in the electrode 2. Since the average pore diameter is different between the separator 4 side and the electrolyte plate side with the interface 7 in the electrode 2 as a boundary, the electrode 2 is affected by the difference in the capillary force of the electrolyte (MCFC eutectic salt of lithium carbonate and potassium carbonate) liquid. The shape of the level Le of the electrolyte solution inside has the same unevenness as the uneven shape of the interface 7 between the two layers as shown in the lower part of the figure. The fuel gas (hydrogen gas in MCFC) 8 in the gas flow path 5 is a layer with a large average pore diameter.
6a is diffused toward the unevenness of the interface 7 as shown in the figure, reaches the electrolyte liquid surface, and generates electricity by an electrochemical reaction on the surface of the electrode 2. Regarding the movement of the fuel gas 8 or the oxidant gas in the electrode, the gas diffusion rate in the gas phase in the electrode is a problem as compared with the conventional case where the gas diffusion rate in the electrolyte is very slow. It was said that it was so fast that it would not be necessary, and it was said that the resistance did not have to be considered. However, as a result of actually measuring the gas diffusion coefficient in the electrode, the data as shown in FIG. 3 was obtained. The figure shows the relationship between the temperature and the diffusion coefficient by plotting the CO 2 diffusion coefficient on the ordinate and the temperature on the abscissa. As shown in the figure, the diffusion coefficient D in the electrode having an average pore diameter of 10 μm is about 1/10 to 1 as compared with that in the gas phase (a space without a bent pore structure such as an electrode). It is / 20. The migration distance of gas due to diffusion is the square root of the product of diffusion coefficient D and time t. Proportional to, ie Will be proportional to. Therefore, for example, CO 2 in the electrolyte solution
The diffusion coefficient is 10 -5 cm 2 / S, and the gas diffusion coefficient in the electrode (average pore size 10 μm) is about 10 -2 cm 2 / S, so even if the electrolyte film thickness is about 1 μm Travel time (L 2 /
D) l (where L is the thickness of the electrolyte liquid film, D is the diffusion coefficient,
The value of (l is a subscript indicating a liquid) is 10 -3 sec. On the other hand, if the gas moving distance in the electrode is 0.2 to 0.5 mm, the moving time in the electrode (L 2 / D) g Is the thickness of the gas phase, D is the diffusion coefficient, and g is a subscript indicating the gas phase) is 4 × 10 -2 to 2.
It becomes 5 × 10 -1 sec. From this, it is understood that the gas diffusion in the electrode is slower than the gas diffusion in the liquid and is the rate-determining step of the mass transfer process.

第4図は本実施例による電極内の電解質液面形状がど
のようにガス拡散過程と関連しているかを示したもの
で、本実施例によれば電解質液の厚さはセパレータリブ
4aに接する電極部で厚くなり、そのため燃料あるいは酸
化剤ガス8の流れは従来の2層多孔質電極に比較し、セ
パレータリブ部の電解質液への移動距離が短くなり、電
極全体でのガス拡散距離が一様となり、ガス移動に伴う
抵抗が小さくなり、電池性能が向上する。また電解質液
の気相と接する部分が凹凸部で従来の点線表示のように
平坦部でないので、従来の電極よりも面積的に大きくな
り、それだけ反応有効面積も増大し、性能が向上する。
FIG. 4 shows how the shape of the electrolyte liquid surface in the electrode according to the present embodiment is related to the gas diffusion process. According to the present embodiment, the thickness of the electrolyte solution depends on the separator rib.
The electrode portion in contact with 4a becomes thicker, so that the flow of fuel or oxidant gas 8 is shorter than that of the conventional two-layer porous electrode because the moving distance of the separator rib portion to the electrolyte solution is shorter, and gas diffusion in the entire electrode The distance becomes uniform, the resistance due to gas movement is reduced, and the battery performance is improved. Further, since the portion in contact with the gas phase of the electrolyte solution is an uneven portion and is not a flat portion as in the conventional dotted line display, the area is larger than that of the conventional electrode, and the reaction effective area is increased accordingly, and the performance is improved.

このように本実施例によれば平均細孔径の異なる層を
その界面で凹凸部を設けて構成し、平均細孔径の小さな
層が大きな層に突き出す部分がセパレータリブと電極と
が接する部分と一致することにより、電極内での電解質
液までのガス拡散抵抗が電極内で一様となり、物質移動
に伴う抵抗が小さくなるのみならず反応面積が増大する
ので、電池性能の向上が達成できる。
As described above, according to this example, layers having different average pore diameters are formed by providing uneven portions at their interfaces, and a portion where a layer having a small average pore diameter protrudes into a large layer coincides with a portion where the separator rib and the electrode are in contact. By doing so, the gas diffusion resistance up to the electrolyte solution in the electrode becomes uniform in the electrode, not only the resistance due to mass transfer decreases but also the reaction area increases, so that improvement in battery performance can be achieved.

第5図には本発明の他の実施例が示されている。本実
施例では凹凸部の凸部をセパレータリブ4aの下部のみな
らず、ガス流路5の下部にも位置するようにした。すな
わち凹凸部を、セパレータリブ4aのピッチに対して整数
分の1とした。このようにすることにより凸部すなわち
突き出し部が増大した分だけ反応面積が増加し、前述の
場合よりも燃料電池の性能が向上する。
FIG. 5 shows another embodiment of the present invention. In this embodiment, the convex portion of the concave-convex portion is located not only below the separator rib 4a but also below the gas flow path 5. That is, the uneven portion was set to be an integral fraction of the pitch of the separator rib 4a. By doing so, the reaction area is increased by the amount of the protrusions, that is, the protrusions, and the performance of the fuel cell is improved as compared with the case described above.

〔発明の効果〕〔The invention's effect〕

上述のように本発明はセパレータリブに接する電極の
ガス拡散抵抗を小さくし、電解質しガスとの接触面積を
増大して性能向上を可能とした燃料電池を得ることがで
きる。
As described above, according to the present invention, it is possible to obtain a fuel cell in which the gas diffusion resistance of the electrode in contact with the separator rib is reduced and the contact area with the electrolyte and gas is increased to improve the performance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の燃料電池の一実施例の単位電池の維断
側面図、第2図は第1図の燃料極側での電解質液形状を
示す説明図、第3図は同じく一実施例のCO2拡散係数と
温度との関係を示す特性図、第4図は同じく一実施例に
よる電極内でのガス拡散状況を示す説明図、第5図は本
発明の燃料電池の他の実施例の単位電池要部の縦断側面
図である。 1……電解質板、2……燃料極、3……酸化剤ガス極、
4……セパレータ、4a……セパレータリブ、5……ガス
流路、6a…平均細孔径の大きな層、6b……平均細孔径の
小さな層、7……界面、8……燃料ガス。
FIG. 1 is a side view of the unit cell of one embodiment of the fuel cell of the present invention, FIG. 2 is an explanatory view showing the shape of the electrolyte solution on the fuel electrode side of FIG. 1, and FIG. FIG. 4 is a characteristic diagram showing the relationship between the CO 2 diffusion coefficient and temperature in the example, FIG. 4 is an explanatory diagram showing the gas diffusion state in the electrode according to the embodiment, and FIG. 5 is another embodiment of the fuel cell of the present invention. It is a vertical side view of the unit battery main part of an example. 1 ... Electrolyte plate, 2 ... Fuel electrode, 3 ... Oxidizer gas electrode,
4 ... Separator, 4a ... Separator rib, 5 ... Gas flow path, 6a ... Layer with large average pore diameter, 6b ... Layer with small average pore diameter, 7 ... Interface, 8 ... Fuel gas.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質を挾んで設けられた燃料極および酸
化剤ガス極と、これら燃料極および酸化剤ガス極にセパ
レータリブを介して積層されたセパレータとを備え、前
記電極と前記セパレータとの間には燃料,酸化剤ガスが
夫々流通するガス流路が設けられており、かつ前記電極
は2層に形成されており、その一方の層は他方の層より
平均細孔径の大きな層に形成され、他方の層は一方の層
より平均細孔径の小さな層に形成されている燃料電池に
おいて、 前記平均細孔径の大きな層を前記セパレータ側に配置
し、前記平均細孔径の小さな層を前記電解質板側に配置
するとともに、 この2層の界面に凹凸部を設け、 かつ前記平均細孔径の小さな層のセパレータ側へ凸とな
る部分が、前記セパレータリブの下部にくるように形成
したことを特徴とする燃料電池。
1. A fuel electrode and an oxidant gas electrode sandwiching an electrolyte, and a separator laminated on the fuel electrode and the oxidant gas electrode via separator ribs. A gas flow path through which a fuel and an oxidant gas respectively flow is provided between them, and the electrode is formed in two layers, one of which is formed in a layer having a larger average pore diameter than the other. In the fuel cell in which the other layer is formed in a layer having a smaller average pore diameter than the one layer, the layer having a larger average pore diameter is arranged on the separator side, and the layer having a smaller average pore diameter is the electrolyte. In addition to being arranged on the plate side, a concavo-convex portion is provided at the interface between the two layers, and the portion of the layer having the smaller average pore diameter that is convex toward the separator is formed so as to be located below the separator rib. Fuel cell.
JP63000394A 1988-01-06 1988-01-06 Fuel cell Expired - Fee Related JP2506879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000394A JP2506879B2 (en) 1988-01-06 1988-01-06 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000394A JP2506879B2 (en) 1988-01-06 1988-01-06 Fuel cell

Publications (2)

Publication Number Publication Date
JPH01176664A JPH01176664A (en) 1989-07-13
JP2506879B2 true JP2506879B2 (en) 1996-06-12

Family

ID=11472590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000394A Expired - Fee Related JP2506879B2 (en) 1988-01-06 1988-01-06 Fuel cell

Country Status (1)

Country Link
JP (1) JP2506879B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831061B2 (en) * 1989-11-28 1998-12-02 三菱重工業株式会社 Gas diffusion electrode and solid polymer electrolyte fuel cell body using the same
DK166747B1 (en) * 1989-12-05 1993-07-05 Topsoe Haldor As FUEL CELL AND FUEL CELL STABLE
DE19541619A1 (en) * 1995-11-08 1997-05-15 Bosch Gmbh Robert Electrochemical sensor and method for producing an electrochemical sensor

Also Published As

Publication number Publication date
JPH01176664A (en) 1989-07-13

Similar Documents

Publication Publication Date Title
JP2005529454A (en) Fuel cell, fuel cell separator / diffusion layer assembly, and method of manufacturing the same
US4078119A (en) Method for catalyzing a fuel cell electrode and an electrode so produced
ES461985A1 (en) Electrolyte reservoir for a fuel cell
IT1291603B1 (en) GASEOUS DIFFUSION ELECTRODES FOR POLYMER DIAPHRAGM FUEL CELL
GB2215120A (en) Fuel cell having electrolyte inventory control volume
US2639306A (en) Pile battery fabrication
JP2506879B2 (en) Fuel cell
CA1089009A (en) Fuel cell with thin ceramic electrolyte
US4264686A (en) Graphite felt flowthrough electrode for fuel cell use
JPS6376264A (en) Ordinary temperature type acid methanol fuel cell
JP3454838B2 (en) Solid polymer electrolyte membrane fuel cell
JP2649470B2 (en) Fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP2552352B2 (en) Sealed lead acid battery
JPH0343966A (en) Sealed lead-acid battery
JPH11204118A (en) Fuel cell separator and fuel cell
JP2547743B2 (en) Method for manufacturing electrode support plate for molten carbonate fuel cell
JPH07109768B2 (en) Air electrode structure of solid electrolyte fuel cell
JPS6041833B2 (en) Fuel cell
JP2658082B2 (en) Molten carbonate fuel cell
JP2822457B2 (en) Fuel cell separator and method of manufacturing the same
JPH07211325A (en) Gas diffusion electrode
JPH07109767B2 (en) Air electrode structure of solid electrolyte fuel cell
JPS58201218A (en) Method of producing cantilever
JPH1032010A (en) Phosphoric acid fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees