JPS6376264A - Ordinary temperature type acid methanol fuel cell - Google Patents

Ordinary temperature type acid methanol fuel cell

Info

Publication number
JPS6376264A
JPS6376264A JP61221211A JP22121186A JPS6376264A JP S6376264 A JPS6376264 A JP S6376264A JP 61221211 A JP61221211 A JP 61221211A JP 22121186 A JP22121186 A JP 22121186A JP S6376264 A JPS6376264 A JP S6376264A
Authority
JP
Japan
Prior art keywords
fuel
methanol
negative electrode
fuel tank
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61221211A
Other languages
Japanese (ja)
Inventor
Masaji Mochizuki
望月 正司
Tadashi Kono
正 河野
Hirokazu Yoshikawa
吉川 博和
Satoshi Kitagawa
聡 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61221211A priority Critical patent/JPS6376264A/en
Publication of JPS6376264A publication Critical patent/JPS6376264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To secure such an ordinary temperature type acid methanol fuel cell that is large in discharge capacity, by attaching a cell element to the bottom of a fuel tank or in and around this bottom part, and making a negative electrode so as not to be exposed on a fuel level even if fuel goes down. CONSTITUTION:A cell element 10 is attached to a bottom part 20a of a fuel tank 20, while a positive electrode 11 contacts with air at the outside of this fuel tank 20, and a negative electrode 13 comes into contact with fuel 30 inside the fuel tank 20. This fuel tank 20 is one that is, for example, molded by polypropropylene, and the fuel 30 is made up of a mixture of methanol and water. A filling plug 21 for fuel combines a role as a discharge plug for carbon dioxide to be formed by the negative electrode 13, and a gas-liquid separate film is stuck to a hole part of the plug, whereby gas is passed through but liquid drops are designed so as not be discharge to the outside of the tank. If the fuel goes down due to discharge, the negative electrode 13 is made so as not to be exposed on a fuel level, so that self-consumption of methanol at the exposed art of the negative electrode and methanol by direct reaction of oxygen is thus preventable, and in consequence, any drop in the utilization factor of the methanol is prevented from occurring, thus a large capacity methanol fuel cell is securable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は常温型酸性メタノール燃料電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a room temperature acid methanol fuel cell.

〔従来の技術〕[Conventional technology]

酸性電解質を用いる常温型酸性メタノール燃料電池では
、正極、負極ともに一般に白金系触媒が用いられ、正極
は空気中の酸素を、負極はメタノール(CH30H)と
水との混合物を反応物質としており、正極は空気極、負
極はメタノール極と呼ばれている。そして、その放電反
応は、正極では 3/202 + 6 H” + 6 e−−3H20負
極では CH30’H+H20−CO2+6H” +5 e−で
あり、電池全体としては、下記に示すような反応になる
In a room-temperature acid methanol fuel cell that uses an acidic electrolyte, a platinum-based catalyst is generally used for both the positive and negative electrodes. is called the air electrode, and the negative electrode is called the methanol electrode. The discharge reaction is 3/202 + 6 H'' + 6 e--3H20 at the positive electrode, CH30'H + H20-CO2 + 6H'' + 5 e- at the negative electrode, and the reaction for the entire battery is as shown below.

2CH30H+302−2CO2+4H20そして、上
記放電反応の結果、正極では水が発生し、1梅では炭酸
ガスが発生する。
2CH30H+302-2CO2+4H20 As a result of the above discharge reaction, water is generated at the positive electrode and carbon dioxide gas is generated at the positive electrode.

ところで、燃料電池では、その燃料および酸化剤を連続
補給できるという特性を生かして、主として大型の連続
補給型電池がその研究対象となっており、メタノール燃
料電池においてもその流れにそって、従来は例えば特開
昭59−20927号公報や特開昭60−165062
号公報などに示されるように大型の連Vt補給型電池に
ついて研究がなされてきたが、最近では高容量化が達成
できるという特性を生かして携帯可能な小型のメタノー
ル燃料電池も要望されるようになってきた。
By the way, in fuel cells, research has mainly focused on large-sized continuous replenishment batteries, taking advantage of their ability to continuously replenish fuel and oxidizer, and in line with this trend, methanol fuel cells have traditionally For example, JP-A-59-20927 and JP-A-60-165062.
As shown in the above publications, research has been conducted on large continuous Vt rechargeable batteries, but recently there has been a demand for small, portable methanol fuel cells that take advantage of their ability to achieve high capacity. It has become.

そこで、本発明者らは、そのような要望に応えるべく、
携帯可能な小型のメタノール燃料電池の開発に着手した
が、携帯可能な電池では、必要なメタノール燃料を携帯
可能な燃料槽に入れなければならないという制約がある
。そのため、第11図に示すように、燃料30は携帯可
能な一部容債の燃料槽20に入れられ、正極、負極、電
解質などを備えた電池素子10は、当初、取付が容易な
ことや、正極が燃料槽20外部の空気と接触しやすいこ
と、さらには体積効率を大きくとりうるということなど
から、燃料槽20の側面に取り付けられていた。
Therefore, in order to meet such demands, the present inventors
We have started developing a small, portable methanol fuel cell, but the limitation of a portable battery is that the necessary methanol fuel must be placed in a portable fuel tank. Therefore, as shown in FIG. 11, the fuel 30 is placed in a portable, one-portion fuel tank 20, and the battery element 10, which includes a positive electrode, a negative electrode, an electrolyte, etc., is initially easy to install. The positive electrode was attached to the side of the fuel tank 20 because it easily came into contact with the air outside the fuel tank 20 and also because it could increase volumetric efficiency.

ところが、上記のように電池素子10を燃料槽20の側
面に取り付けた場合、放電が進行すると共に、燃料量が
減少し、第12図に示すように燃料30の液面が低下し
て、電池素子10上部が燃料液面より上に、つまり電極
上部が燃料液面より上側に露出するようになる。
However, when the battery element 10 is attached to the side surface of the fuel tank 20 as described above, as the discharge progresses, the amount of fuel decreases, and the liquid level of the fuel 30 decreases as shown in FIG. The upper part of the element 10 is exposed above the fuel liquid level, that is, the electrode upper part is exposed above the fuel liquid level.

特に負極、つまりメタノール極の触媒面が燃料の液面上
に露出した場合、負極の触媒上でメタノールと燃料槽外
部から侵入してきた空気中の酸素(燃料槽に設けられた
燃料注入用兼炭酸ガス排出用の栓を通って燃料槽の外部
から燃料槽内の上部空間に空気が侵入して(る)とが直
接反応し、メタノールの自己消耗が生じて電気化学的反
応に利用できなくなる。その結果、燃料槽内に注入した
メタノール量に対して放電可能なメタノール量が少なく
なって、メタノールの放電利用率が低下し、電池の放電
容量が小さくなる。
In particular, when the catalyst surface of the negative electrode, that is, the methanol electrode, is exposed above the liquid surface of the fuel, methanol and oxygen in the air that has entered from outside the fuel tank (a Air enters the upper space inside the fuel tank from outside the fuel tank through the gas discharge plug and reacts directly with the methanol, causing self-depletion of methanol and making it unavailable for electrochemical reactions. As a result, the amount of methanol that can be discharged becomes smaller than the amount of methanol injected into the fuel tank, the discharge utilization rate of methanol decreases, and the discharge capacity of the battery decreases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、上記従来製品が持っていた負極が燃料液面
上部に露出して放電利用率の低下を引き起こしていたと
いう問題点を解決し、放電容量の大きい常温型酸性メタ
ノール燃料電池を提供することを目的とする。
This invention solves the problem of the above-mentioned conventional products in that the negative electrode was exposed above the fuel liquid level, causing a decrease in discharge utilization rate, and provides a room-temperature acid methanol fuel cell with a large discharge capacity. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電池素子を燃料槽の底部または底部近傍に取
り付けることによって、燃料が減少しても負極が燃料液
面上に露出しないようにして、上記目的を達成したもの
である。
The present invention achieves the above object by mounting the battery element at or near the bottom of the fuel tank so that the negative electrode is not exposed above the fuel liquid level even if the fuel decreases.

すなわち、メタノールの放電利用率が低下する原因は、
燃料液面上に露出した負極の白金系触媒上で燃料槽外部
から侵入してきた空気中の酸素とメタノールとが直接反
応して、メタノールが自己消耗し、電気化学的反応、つ
まり放電反応に利用されなくなるためである。そこで、
本発明では、電/l!1素子を燃料槽の底部または底部
近傍に取り付けることによって、燃料が減少しても、負
極が燃料液面上に露出しないようにしたものである。
In other words, the reason why the methanol discharge utilization rate decreases is
Oxygen in the air that has entered from outside the fuel tank reacts directly with methanol on the platinum-based catalyst of the negative electrode exposed above the fuel liquid surface, and the methanol is self-depleted and used for an electrochemical reaction, that is, a discharge reaction. This is because it will no longer be done. Therefore,
In the present invention, electric/l! By attaching one element to the bottom of the fuel tank or near the bottom, the negative electrode is prevented from being exposed above the fuel liquid level even if the fuel decreases.

特に、電池素子を燃料槽の底部に取り付ける場合には、
燃料が使いつくされるまで、負極が燃料液面上に露出し
ないので、電池素子を燃料槽の底部に取り付けるのが好
ましい、また、放電反応により生成する炭酸ガスや水の
排出が容易なように、燃料槽の底部を後記の第3実施例
および第4実施例に示すように斜めにし、電池素子が燃
料槽の底部で、かつ斜めに取り付けられるようにするの
が好ましい。
In particular, when installing the battery element at the bottom of the fuel tank,
It is preferable to install the battery element at the bottom of the fuel tank because the negative electrode is not exposed above the fuel liquid level until the fuel is used up, and it is also possible to easily discharge carbon dioxide and water generated by the discharge reaction. It is preferable that the bottom of the fuel tank is made oblique as shown in the third and fourth embodiments to be described later, so that the battery element can be mounted obliquely at the bottom of the fuel tank.

〔実施例〕〔Example〕

つぎに、本発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明の常温型酸性メタノール燃料電池の第1
実施例を示す概略断面図であり、第2図は常温型酸性メ
タノール燃料電池の電池素子を示す概略部分断面図で、
第3図は上記第2図に示す電池素子の負極側の集電体の
斜視図である。
Figure 1 shows the first diagram of the room-temperature acid methanol fuel cell of the present invention.
FIG. 2 is a schematic partial sectional view showing a cell element of a room temperature acid methanol fuel cell;
FIG. 3 is a perspective view of the current collector on the negative electrode side of the battery element shown in FIG. 2 above.

まず、第2図に基づき電池素子について説明すると、1
1は空気極としての正極であり、この正極11は活性炭
素繊維不織布を基体とし、これに触媒としての白金黒を
カーボンと混合しテフロン(商品名)ディスパージョン
で練って塗布し、乾燥後、テフロンディスパージョンを
焼結して作製したものである。12は電解質層で、この
電解質N12は両面にポリスチレンスルホン酸グラフト
重合膜を形成した陽イオン交換膜からなり、上記陽イオ
ン交換膜はセパレータとしての役割も兼ねている。
First, the battery element will be explained based on Fig. 2.
1 is a positive electrode as an air electrode, and this positive electrode 11 has an activated carbon fiber nonwoven fabric as a base, and platinum black as a catalyst is mixed with carbon and kneaded with Teflon (trade name) dispersion and applied, and after drying, It is made by sintering Teflon dispersion. 12 is an electrolyte layer, and this electrolyte N12 consists of a cation exchange membrane with polystyrene sulfonic acid graft polymer membranes formed on both sides, and the cation exchange membrane also serves as a separator.

13は負極で、この負極13は活性炭素繊維不織布を基
体にし、これに触媒としての白金−ルテニウム黒をカー
ボンと混合しテフロンディスパージョンで練って塗布し
、乾燥後、テフロンディスパージョンを焼結して作製し
たものである。14は正極側の集電体で、この正極側の
集電体14はカーボン板よりなり、正illに接する部
分は集電および強度上許容される躍りくり抜いて空洞1
4aを形成し、正極11ができる限り広い面積で空気に
接触できるようにしている。15は負極側の集電体で、
この負極側の集電体15はカーボン板よりなり、第3図
に示すように平行な溝15aを多数設け、その溝15a
側を負極13に押し付けている。この負極側の集電体1
5における溝15aは負極13の反応面へ燃料を供給す
ると共に、放電により負極13で生成する炭酸ガスが抜
は出しやすくするためのものである。そして、16は正
極側の導線、17は魚種側の導線である。
Reference numeral 13 denotes a negative electrode. This negative electrode 13 has an activated carbon fiber nonwoven fabric as a base, and platinum-ruthenium black as a catalyst is mixed with carbon and applied by kneading with Teflon dispersion. After drying, the Teflon dispersion is sintered. It was made by Reference numeral 14 denotes a current collector on the positive electrode side. This current collector 14 on the positive electrode side is made of a carbon plate, and the portion in contact with the positive ill is hollowed out to allow for current collection and strength.
4a so that the positive electrode 11 can come into contact with air over as wide an area as possible. 15 is a current collector on the negative electrode side;
The current collector 15 on the negative electrode side is made of a carbon plate, and has many parallel grooves 15a as shown in FIG.
The side is pressed against the negative electrode 13. This negative electrode side current collector 1
The grooves 15a at 5 are for supplying fuel to the reaction surface of the negative electrode 13 and for facilitating removal of carbon dioxide gas generated at the negative electrode 13 due to discharge. Further, 16 is a conducting wire on the positive electrode side, and 17 is a conducting wire on the fish type side.

つぎに電池について説明する。第1図は本発明電池の第
1実施例を示す概略断面図である0図中、10は前記の
電池素子で、この第1図をはしめ、電池を示す各図にお
いて、電池素子10は簡略化のため詳細は示さず、全体
を概略的に示している。20は燃料槽であり、電池素子
10はこの燃料槽20の底部20aに取り付けられてい
る。そして、上記取り付けにあたって、電池素子10は
、概略的に示している関係上、図示していないが、正極
11が燃料槽20外部の空気と接触し、負極13が燃料
槽20内部の燃料30と接触し得るように燃料槽20に
取り付けられる。燃料槽20は例えばポリプロピレンで
成形されたものであり、燃料30はメタノールと水との
混合物からなるものである。21は燃料の注入栓で、゛
 この注入栓21は、負極13で生成する炭酸ガスの排
出栓としての役割も兼ねており、栓の穴部分に気液分離
膜をはりつけ、ガスは通すが液滴は槽外に排出しないよ
うにしている。22は燃料槽20の脚部で、40は上部
空間であり、この空間40は主にメタノール蒸気、水蒸
気および電池反応により発生した炭酸ガスで満たされて
いると思われるが、雰囲気温度変化などにより、前記柱
21を通って燃料槽20の外部から空気が侵入し、この
上部空間にたまって、前記のようなメタノールの自己消
耗を起こさせることになる。
Next, the battery will be explained. FIG. 1 is a schematic cross-sectional view showing a first embodiment of the battery of the present invention. In FIG. 1, 10 is the battery element described above. For the sake of simplicity, the details are not shown and the whole is shown schematically. 20 is a fuel tank, and the battery element 10 is attached to the bottom 20a of this fuel tank 20. In the above installation, the positive electrode 11 of the battery element 10 comes into contact with the air outside the fuel tank 20, and the negative electrode 13 contacts the fuel 30 inside the fuel tank 20, although this is not shown for the sake of schematic illustration. It is attached to the fuel tank 20 so that it can make contact with it. The fuel tank 20 is made of polypropylene, for example, and the fuel 30 is made of a mixture of methanol and water. Reference numeral 21 denotes a fuel injection plug. This injection plug 21 also serves as a discharge plug for carbon dioxide gas generated at the negative electrode 13. A gas-liquid separation membrane is attached to the hole in the plug, allowing gas to pass through but not allowing liquid to flow through. Droplets are not discharged outside the tank. 22 is a leg of the fuel tank 20, and 40 is an upper space.This space 40 is thought to be mainly filled with methanol vapor, water vapor, and carbon dioxide gas generated by the battery reaction, but due to changes in ambient temperature, etc. Air enters from the outside of the fuel tank 20 through the pillar 21 and accumulates in the upper space, causing methanol to self-deplete as described above.

第4図は第1図に示した本発明の第1実施例の電池と第
11図に示すように電池素子10を燃料槽20の側面に
取り付けた対照例の電池の放電特性を示す図である。両
電池における電池素子10は面積10dの同一構成から
なり、燃料槽20には両者ともメタノール濃度が10容
量%のメタノール水溶液を燃料として500mj!注入
した。燃料槽20の内容積は10100Oであり、した
がって対照例の電池では電池素子10の上部、つまり負
極上部が燃料液面上に露出しており、わざと燃料液面が
低下したときの状態、つまり第12図に示す状態にして
いる。
FIG. 4 is a diagram showing the discharge characteristics of the battery according to the first embodiment of the present invention shown in FIG. be. The battery elements 10 in both batteries have the same configuration with an area of 10 d, and the fuel tank 20 of both batteries has a methanol aqueous solution with a methanol concentration of 10% by volume as fuel and has a capacity of 500 mJ! Injected. The internal volume of the fuel tank 20 is 10,100 O, so in the battery of the control example, the upper part of the battery element 10, that is, the upper part of the negative electrode, is exposed above the fuel liquid level, and the state when the fuel liquid level is intentionally lowered, that is, the The state is shown in Figure 12.

第4図の曲線dは、対照例の電池を20℃、150mA
で連続放電したときの放電特性を示すものであり、この
曲線dで示すように、電池素子を燃料槽の側面に取り付
けた対照例の電池は、放電に伴って電圧が降下し、放電
時間が400時間を超える頃には、大きな電圧降下を生
じた。これは、露出した負極上でメタノールが自己消耗
したためであると考えられる6曲線aは本発明の第1実
施例の電池を20℃、150mAで連続放電したときの
放電特性を示すものであるが、この曲線aで示すように
、本発明の第1実施例の電池は放電時間が1000時間
を超えても大きな放電電圧の低下が生じず、この電池で
は燃料がなくなるまで安定した放電電圧が維持され、燃
料槽を大きくすれば、大容量の電池が得られることが明
らかにされた。
Curve d in Figure 4 shows the control battery at 20°C and 150mA.
As shown by curve d, in the control battery with the battery element attached to the side of the fuel tank, the voltage drops as the battery discharges, and the discharge time increases. A large voltage drop occurred after 400 hours. This is thought to be due to self-depletion of methanol on the exposed negative electrode.Curve 6 shows the discharge characteristics when the battery of the first example of the present invention was continuously discharged at 20°C and 150 mA. As shown by curve a, the battery of the first embodiment of the present invention did not experience a large drop in discharge voltage even after the discharge time exceeded 1000 hours, and the battery maintained a stable discharge voltage until the fuel ran out. It was revealed that a larger capacity battery could be obtained by increasing the size of the fuel tank.

第5図は本発明の常温型酸性メタノール燃料電池の第2
実施例を示す概略断面図である。この第2実施例におい
ては、燃料槽20の底部20aがすりばち伏(ただし、
きざみ目は入れていない)になっていて電池素子10が
その最下部に取り付けられており、そのため、燃料がよ
り一層完全になくなるまで負極が燃料液面上に露出する
ことがなく、安定した放電電圧が維持される。
FIG. 5 shows the second diagram of the room-temperature acid methanol fuel cell of the present invention.
It is a schematic sectional view showing an example. In this second embodiment, the bottom 20a of the fuel tank 20 is flat (but
The battery element 10 is attached to the bottom of the battery element 10 (no notches), so that the negative electrode is not exposed above the fuel surface until the fuel is completely exhausted, resulting in stable discharge. voltage is maintained.

第6図は本発明の常温型酸性メタノール燃料電池の第3
実施例の概略断面図である。この第3実施例においては
、燃料槽20の底部20aが、水平面に対して約15没
頭いており、電池素子10はその1頃斜した底部20a
に取り付けられている。
Figure 6 shows the third example of the room-temperature acid methanol fuel cell of the present invention.
It is a schematic sectional view of an example. In this third embodiment, the bottom 20a of the fuel tank 20 is immersed in the horizontal plane by about 15 mm, and the battery element 10 is immersed in the slanted bottom 20a.
is attached to.

このような第3実施例では、前記第1実施例の場合と同
様に、燃料槽20内の燃料30が放電により減少しても
、燃料30がほぼ完全になくなるまで、負極が燃料液面
に露出することがなく、メタノールの自己燃焼を防止す
ることができるが、それに加えて、さらに次のような利
点もある。すなわち、電池素子10が斜めに取り付けら
れているため、負極13で生成する炭酸ガスが負極側の
集電体15の溝15a(第3図参照)に沿って良くぬけ
、また、この炭酸ガスの泡の移動によって燃料の対流が
生じ、負極13近傍の燃料の拡散が促進され分極が小さ
くなる。また、前述した第1実施例の場合と同様に、正
極において発生した水がよく排除され、正極表面を濡ら
すのが少なくなり、放電反応がスムーズに進行する。つ
まり、放電反応の結果、正極で水が生成するが、この水
は湿度が高いと蒸気にならず、第11図に示すように電
池素子10が燃料槽20の側面に取り付けられている電
池では、水滴となって正極表面を伝って落下する。この
とき正極表面の僅かな凹凸部分にたまって正極の触媒表
面を濡らして覆う、そのため、有効な電極面積が減少し
て電圧の低下を招くことになる。ところが、この第3実
施例や前記第1〜2実施例のように、電池素子10が燃
料槽20の底部20aに取り付けられていると、水滴は
直接落下するので、正極表面を濡らして電極面積の低下
を招くようなことはない。
In the third embodiment, as in the first embodiment, even if the fuel 30 in the fuel tank 20 decreases due to discharge, the negative electrode remains at the fuel level until the fuel 30 is almost completely exhausted. There is no exposure and self-combustion of methanol can be prevented, but in addition, there are also the following advantages. In other words, since the battery element 10 is installed diagonally, the carbon dioxide gas generated at the negative electrode 13 easily escapes along the groove 15a (see FIG. 3) of the current collector 15 on the negative electrode side. The movement of the bubbles causes convection of the fuel, promoting diffusion of the fuel near the negative electrode 13 and reducing polarization. Further, as in the case of the first embodiment described above, the water generated at the positive electrode is well removed, the amount of wetting the surface of the positive electrode is reduced, and the discharge reaction proceeds smoothly. In other words, as a result of the discharge reaction, water is generated at the positive electrode, but this water does not turn into steam if the humidity is high. , water droplets fall along the positive electrode surface. At this time, it accumulates on slight irregularities on the surface of the positive electrode and wets and covers the catalyst surface of the positive electrode, resulting in a decrease in the effective electrode area and a drop in voltage. However, when the battery element 10 is attached to the bottom 20a of the fuel tank 20, as in the third embodiment and the first and second embodiments, water droplets fall directly, wetting the positive electrode surface and reducing the electrode area. There is no such thing as causing a decrease in

このように燃料槽20の底部20aを傾け、電池素子1
0を傾斜させて取り付ける場合、燃料槽底部20aの傾
斜角度が小さいほど、負極が燃料液面上に露出するまで
に使える燃料量が多(なり、傾斜角度が大きいほど発生
する炭酸ガスのぬけとそれに伴う燃料の対流による拡散
効果が大きくなる。この両者のかねあいをみると、傾斜
角度は10〜30度が好ましい。
In this way, the bottom part 20a of the fuel tank 20 is tilted, and the battery element 1
0, the smaller the angle of inclination of the fuel tank bottom 20a, the more fuel can be used until the negative electrode is exposed above the fuel liquid level, and the larger the angle of inclination, the more carbon dioxide gas will escape. As a result, the diffusion effect due to fuel convection increases.In view of the balance between the two, it is preferable that the inclination angle is 10 to 30 degrees.

第7図は上記本発明の第3実施例の電池と第11図に示
すように電池素子10を燃料槽20の側面に取り付けた
対照例の電池(ただし、この対照例の電池は注入燃料量
(両電池とも500m l! )の関係により第12図
に示すように電池素子10の上部、つまり負極上部が燃
料液面上に露出した状態になっている)を20℃、15
0mAで連続放電させたときの放電特性を示す図である
。第7図において、曲線すは本発明の第3実施例の電池
の放電特性を示し、曲線dは前記第4図同様に対照例の
電池の放電特性を示している。
FIG. 7 shows a battery according to the third embodiment of the present invention and a comparative battery in which the battery element 10 is attached to the side of the fuel tank 20 as shown in FIG. (Due to the relationship of 500ml for both batteries, the upper part of the battery element 10, that is, the upper part of the negative electrode is exposed above the fuel liquid level as shown in FIG. 12) was heated at 20°C for 15 minutes.
It is a figure which shows the discharge characteristic when it discharges continuously at 0 mA. In FIG. 7, the curve d shows the discharge characteristics of the battery of the third embodiment of the present invention, and the curve d shows the discharge characteristics of the battery of the control example, similar to FIG.

曲線すで示すように、この第3実施例の電池も前記第1
実施例の電池同様に、放電時間が1000時間を超えて
も大きな放電電圧の低下が生じず、安定した放電電圧を
維持することができた。
As already shown in the curve, the battery of this third embodiment also
Similar to the battery of the example, even if the discharge time exceeded 1000 hours, no large drop in discharge voltage occurred, and a stable discharge voltage could be maintained.

第8図は本発明の常温型酸性メタノール電池の第4実施
例を示す概略断面図であり、この第4実施例の電池は前
記第3実施例の電池を一部変更したものである。つまり
、この第4実施例では、燃料槽20への電池素子10の
取付部が、第3実施例の電池では燃料槽20の底部20
aが一様に傾斜していたのに対し、この第4実施例の電
池では燃料槽20の底部20aの一部が傾斜しており、
その傾斜した部分に電池素子10が取り付けられている
。この第4実施例の電池においても、前述の第3実施例
の電池と同様の効果が奏されることはもちろんであるが
、第3実施例の電池より燃料がより少なくなるまで負極
が燃料液面上に露出することがなく、安定した放電電圧
をより長く維持することができ第9図は本発明の常温型
酸性メタノール燃料電池の第5実施例の概略斜視図であ
る。この第5実施例の電池においては、電池素子10は
高さの低い長方形に作製され、燃料槽20の底部20a
近傍の側面に取り付けられている。電池素子10の取付
位置の最高部は燃料槽20の高さの173のところであ
る。このように、この第5実施例においては、電池素子
10の形状および電池素子10の取付位置が前記第1実
施例などと異なっているが、この場合においても、第1
実施例などと同様に、放電により燃料液面が低下しても
、電池素子10の負極が燃料液面上に露出することが少
な(、メタノールの自己消耗が防止される。これはすべ
てのメタノールが消費されても水の量だけで燃料槽の高
さの1/3のところより高いために、液面が燃料槽の高
さの1/3以下になることが少ないからである。
FIG. 8 is a schematic sectional view showing a fourth embodiment of the room temperature acidic methanol battery of the present invention, and the battery of this fourth embodiment is a partially modified version of the battery of the third embodiment. That is, in the fourth embodiment, the attachment part of the battery element 10 to the fuel tank 20 is the attachment part of the battery element 10 to the fuel tank 20, whereas in the battery of the third embodiment, the attachment part of the battery element 10 is attached to the bottom part 20 of the fuel tank 20.
a is uniformly inclined, whereas in the cell of this fourth embodiment, a part of the bottom 20a of the fuel tank 20 is inclined,
The battery element 10 is attached to the inclined portion. In the battery of this fourth embodiment, the same effects as those of the battery of the third embodiment described above are of course achieved, but the negative electrode remains in the fuel liquid until the amount of fuel becomes smaller than in the battery of the third embodiment. Since it is not exposed on the surface, a stable discharge voltage can be maintained for a longer period of time. FIG. 9 is a schematic perspective view of a fifth embodiment of the room temperature acid methanol fuel cell of the present invention. In the battery of this fifth embodiment, the battery element 10 is made into a rectangular shape with a low height, and the bottom 20a of the fuel tank 20
attached to the nearby side. The highest mounting position of the battery element 10 is at the height 173 of the fuel tank 20. As described above, in this fifth embodiment, the shape of the battery element 10 and the mounting position of the battery element 10 are different from those in the first embodiment.
As in the embodiments, even if the fuel level drops due to discharge, the negative electrode of the cell element 10 is rarely exposed above the fuel level (self-consumption of methanol is prevented. This is because even if the fuel is consumed, the amount of water alone is higher than 1/3 of the height of the fuel tank, so the liquid level rarely falls below 1/3 of the height of the fuel tank.

このような本発明の第5実施例の電池においても、メタ
ノールの自己燃焼を防止する効果が発揮されることを第
10図により説明する。
It will be explained with reference to FIG. 10 that the battery of the fifth embodiment of the present invention also exhibits the effect of preventing self-combustion of methanol.

第10図は上記第9図に示す本発明の第5実施例の電池
と第11図に示す対照例の電池(ただし、この対照例の
電池は注入燃料量の関係により第12図に示すように電
池素子10の上部、つまり負極上部が燃料液面上に露出
した状態になっている)を20℃、10mA/−で連続
放電させたときの放電特性を示す図である。
FIG. 10 shows the battery of the fifth embodiment of the present invention shown in FIG. 9 above and the control example shown in FIG. FIG. 3 is a diagram showing the discharge characteristics when the upper part of the battery element 10 (in other words, the upper part of the negative electrode is exposed above the fuel liquid level) is continuously discharged at 20° C. and 10 mA/-.

曲線Cは本発明の第5実施例の電池の放電特性を示し、
曲線dは前記第4図などと同様に対照例の電池の放電特
性を示しているが、曲線Cに示されるように、本発明の
第5実施例の電池においても、放電時間が500時間を
超えても大きな放電電圧の低下がなく、安定した放電電
圧が維持されており、曲線dで示される対照例の電池に
比べて、メタノールの自己消耗が防止され、大容量の電
池が得られることを示している。
Curve C shows the discharge characteristics of the battery of the fifth embodiment of the present invention,
Curve d shows the discharge characteristics of the battery of the control example, similar to FIG. There is no large drop in discharge voltage even when the discharge voltage is exceeded, a stable discharge voltage is maintained, self-consumption of methanol is prevented, and a battery with a large capacity can be obtained compared to the control example battery shown by curve d. It shows.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では電池素子を燃料槽の底
部または底部近傍に取り付けることによって、放電によ
り燃料が減少しても、負極が燃料液面上に露出しないよ
うにして、負極の露出部分でのメタノールと酸素の直接
反応によるメタノールの自己消耗を防止することができ
た。その結果、メタノールの放電利用率の低下が防止さ
れ、大容量のメタノール燃料電池を得ることができるよ
うになった。
As explained above, in the present invention, by attaching the battery element to the bottom of the fuel tank or near the bottom, even if the fuel decreases due to discharge, the negative electrode is not exposed above the fuel liquid level, and the exposed part of the negative electrode is It was possible to prevent the self-depletion of methanol due to the direct reaction between methanol and oxygen. As a result, a decrease in the discharge utilization rate of methanol is prevented, making it possible to obtain a large-capacity methanol fuel cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の常温型酸性メタノール燃料電池の第1
実施例を示す概略断面図である。第2図は常温型酸性メ
タノール燃料電池の電池素子を示す概略部分断面図、第
3図は第2図に示す電池素子の負極側の集電体の斜視図
である。第4図は本発明の第1実施例の電池と対照例の
電池の放電特性を示す図である。第5図は本発明の常温
型酸性メタノール燃料電池の第2実施例を示す概略断面
図であり、第6図は本発明の常温型酸性型メタノール燃
料電池の第3実施例を示す概略断面図である。第7図は
本発明の第3実施例の電池と対照例の電池の放電特性を
示す図である。第8図は本発明の常温型酸性メタノール
燃料電池の第4実施例を示す概略断面図であり、第9図
は本発明の常温型酸性メタノール燃料電池の第5実施例
を示す概略斜視図である。第10図は本発明の第5実施
例の電池と対照例の電池の放電特性を示す図である。 第11図は対照例の常温型酸性メタノール燃料電池を示
す概略断面図である。第12図は第11図に示す対照例
の電池の燃料が減少した状態を示す概略断面図である。 10・・・電池素子、 11・・・正極、 12・・・
電解質層、13・・・負極、 20・・・燃料槽、 2
0a・・・底部、30・・・燃料 第  1  図 第3図 第4図 時  間 (h) 第5図 第7図 時   間  (h) 第8図 第9図 時     間   (h) 第1I図 第12図
Figure 1 shows the first diagram of the room-temperature acid methanol fuel cell of the present invention.
It is a schematic sectional view showing an example. FIG. 2 is a schematic partial sectional view showing a cell element of a room temperature acidic methanol fuel cell, and FIG. 3 is a perspective view of a current collector on the negative electrode side of the cell element shown in FIG. 2. FIG. 4 is a diagram showing the discharge characteristics of the battery of the first example of the present invention and the battery of the comparative example. FIG. 5 is a schematic sectional view showing a second embodiment of the room temperature acidic methanol fuel cell of the present invention, and FIG. 6 is a schematic sectional view showing a third embodiment of the room temperature acidic methanol fuel cell of the present invention. It is. FIG. 7 is a diagram showing the discharge characteristics of the battery of the third example of the present invention and the battery of the comparative example. FIG. 8 is a schematic sectional view showing a fourth embodiment of the room temperature acid methanol fuel cell of the present invention, and FIG. 9 is a schematic perspective view showing a fifth embodiment of the room temperature acid methanol fuel cell of the present invention. be. FIG. 10 is a diagram showing the discharge characteristics of the battery of the fifth example of the present invention and the battery of the comparative example. FIG. 11 is a schematic cross-sectional view showing a room temperature acid methanol fuel cell as a control example. FIG. 12 is a schematic cross-sectional view showing a state in which the fuel of the comparative example cell shown in FIG. 11 is reduced. 10...Battery element, 11...Positive electrode, 12...
Electrolyte layer, 13... negative electrode, 20... fuel tank, 2
0a...Bottom, 30...Fuel Fig. 1 Fig. 3 Fig. 4 Time (h) Fig. 5 Fig. 7 Time (h) Fig. 8 Fig. 9 Time (h) Fig. 1I Figure 12

Claims (1)

【特許請求の範囲】[Claims] (1)空気極としての正極と、メタノール極としての負
極と、酸性電解質を備えた電池素子を、燃料槽の底部ま
たは底部近傍に、上記正極が燃料槽外部の空気と接触し
、負極が燃料槽内部の燃料と接触し得るようにして、取
り付けたことを特徴とする常温型酸性メタノール燃料電
池。
(1) A battery element comprising a positive electrode as an air electrode, a negative electrode as a methanol electrode, and an acidic electrolyte is placed at or near the bottom of a fuel tank, with the positive electrode in contact with the air outside the fuel tank, and the negative electrode in contact with the fuel tank. A room-temperature acid methanol fuel cell, characterized in that it is installed in such a way that it can come into contact with the fuel inside the tank.
JP61221211A 1986-09-18 1986-09-18 Ordinary temperature type acid methanol fuel cell Pending JPS6376264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61221211A JPS6376264A (en) 1986-09-18 1986-09-18 Ordinary temperature type acid methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61221211A JPS6376264A (en) 1986-09-18 1986-09-18 Ordinary temperature type acid methanol fuel cell

Publications (1)

Publication Number Publication Date
JPS6376264A true JPS6376264A (en) 1988-04-06

Family

ID=16763205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61221211A Pending JPS6376264A (en) 1986-09-18 1986-09-18 Ordinary temperature type acid methanol fuel cell

Country Status (1)

Country Link
JP (1) JPS6376264A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755576A4 (en) * 1994-10-18 1999-11-03 Univ Southern California Organic fuel cell, and methods of operation thereof and manufacture of electrode therefor
US6248460B1 (en) 1993-10-12 2001-06-19 California Institute Of Technology Organic fuel cell methods and apparatus
US6299744B1 (en) 1997-09-10 2001-10-09 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
EP1296400A2 (en) * 2001-09-25 2003-03-26 Hitachi, Ltd. Fuel cell power generation equipment
WO2003069709A1 (en) * 2002-02-14 2003-08-21 Hitachi Maxell, Ltd. Liquid fuel cell
JP2003317791A (en) * 2002-04-24 2003-11-07 Hitachi Maxell Ltd Liquid fuel cell
JP2005032719A (en) * 2003-06-18 2005-02-03 Matsushita Electric Ind Co Ltd Fuel cell
JP2006164832A (en) * 2004-12-09 2006-06-22 Sony Corp Fuel cell
JP2007123293A (en) * 2007-02-15 2007-05-17 Seiko Epson Corp Fuel cartridge
KR100911256B1 (en) 2007-10-05 2009-08-06 주식회사 프로파워 Liquid fuel cell tank which is able to exhaust continually in the circumstance of vibration
US8076043B2 (en) 2003-06-18 2011-12-13 Panasonic Corporation Fuel cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740434B2 (en) 1993-10-12 2004-05-25 California Institute Of Technology Organic fuel cell methods and apparatus
US6248460B1 (en) 1993-10-12 2001-06-19 California Institute Of Technology Organic fuel cell methods and apparatus
US6821659B2 (en) 1993-10-12 2004-11-23 California Institute Of Technology Organic fuel cell methods and apparatus
EP0755576A4 (en) * 1994-10-18 1999-11-03 Univ Southern California Organic fuel cell, and methods of operation thereof and manufacture of electrode therefor
US6299744B1 (en) 1997-09-10 2001-10-09 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
US6368492B1 (en) 1997-09-10 2002-04-09 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
US6432284B1 (en) 1997-09-10 2002-08-13 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
US6533919B1 (en) 1997-09-10 2003-03-18 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
US7056428B2 (en) 1997-09-10 2006-06-06 California Institute Of Technology Hydrogen generation by electrolysis of aqueous organic solutions
EP1296400A3 (en) * 2001-09-25 2006-01-11 Hitachi, Ltd. Fuel cell power generation equipment
EP1296400A2 (en) * 2001-09-25 2003-03-26 Hitachi, Ltd. Fuel cell power generation equipment
WO2003069709A1 (en) * 2002-02-14 2003-08-21 Hitachi Maxell, Ltd. Liquid fuel cell
US7998637B2 (en) 2002-02-14 2011-08-16 Hitachi Maxell, Ltd. Liquid fuel cell with a planer electrolyte layer
JP2003317791A (en) * 2002-04-24 2003-11-07 Hitachi Maxell Ltd Liquid fuel cell
JP2005032719A (en) * 2003-06-18 2005-02-03 Matsushita Electric Ind Co Ltd Fuel cell
US8076043B2 (en) 2003-06-18 2011-12-13 Panasonic Corporation Fuel cell
JP2006164832A (en) * 2004-12-09 2006-06-22 Sony Corp Fuel cell
JP2007123293A (en) * 2007-02-15 2007-05-17 Seiko Epson Corp Fuel cartridge
KR100911256B1 (en) 2007-10-05 2009-08-06 주식회사 프로파워 Liquid fuel cell tank which is able to exhaust continually in the circumstance of vibration

Similar Documents

Publication Publication Date Title
EP1357627B1 (en) Air breathing direct methanol fuel cell pack
JP4951847B2 (en) Fuel cell activation method
US4048383A (en) Combination cell
CA1309457C (en) Multicell recombinant lead-acid battery with vibration resistantintercell connector
TW533619B (en) Fuel cell, fuel cell generator, and equipment using the same
EP0100530A2 (en) Fuel cell using organic high-molecular electrolyte
US20030180594A1 (en) Air breathing direct methanol fuel cell pack
JPS5837669B2 (en) Fuel cell and its manufacturing method
JPS6376264A (en) Ordinary temperature type acid methanol fuel cell
US9225031B2 (en) System for energy generation or storage on an electrochemical basis
JP5118301B2 (en) Direct liquid fuel cell and portable electronic device with direct liquid fuel cell
US8871403B2 (en) Fuel cell stack system, channel structure, fuel cell, electrode and electronic device
US8309265B2 (en) Electrolyte membrane for fuel cells, its production and fuel cell using the same
JP2003323902A (en) Fuel cell power generator and portable device using the same
JP4409825B2 (en) Fuel cell
JPH11204118A (en) Fuel cell separator and fuel cell
US3589945A (en) Stacked metal gas-cells
JP2000277130A (en) Method for producing solid polymer type fuel cell and electrolyte film
JP5182476B2 (en) Fuel cells and electronics
KR102610727B1 (en) Separator for fuel cell and fuel cell comprising thereof
JP3844033B2 (en) Sealed lead acid battery
US20090029212A1 (en) Fuel cell system and electronic device
JP2004241185A (en) Polymer electrolyte type fuel cell
JP2023084320A (en) Fuel battery
JPH0696781A (en) Solid polymer electrolytic fuel cell