JPS59232835A - Metallic mold for injection compression molding and molding method using the same - Google Patents

Metallic mold for injection compression molding and molding method using the same

Info

Publication number
JPS59232835A
JPS59232835A JP10579283A JP10579283A JPS59232835A JP S59232835 A JPS59232835 A JP S59232835A JP 10579283 A JP10579283 A JP 10579283A JP 10579283 A JP10579283 A JP 10579283A JP S59232835 A JPS59232835 A JP S59232835A
Authority
JP
Japan
Prior art keywords
resin
temperature
cavity
mold
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10579283A
Other languages
Japanese (ja)
Other versions
JPH0134132B2 (en
Inventor
Masamichi Takeshita
竹下 正道
Masayuki Muranaka
昌幸 村中
Hisao Inage
久夫 稲毛
Masao Takagi
正雄 高木
Shoki Eguchi
江口 昭喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10579283A priority Critical patent/JPS59232835A/en
Publication of JPS59232835A publication Critical patent/JPS59232835A/en
Publication of JPH0134132B2 publication Critical patent/JPH0134132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7306Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To mold a precision article having high surface accuracy and dimensional accuracy and free from stress cracking of the surface or delamination of a surface layer, by controlling the temperatures of a fixed mold, a movable mold and mold pieces in accordance with a prescribed pattern on the basis of an output from a temperature-detecting means for the mold pieces. CONSTITUTION:In a dwelling step of an injection molding machine, the resin in a cavity 10 is preformed by exerting a compressing force thereto by a pressure cylinder 14, and simultaneously, the degree of close contact between the resin and a fixed mold piece 1 and a movable mold piece 5 is enhanced to ensure that heat is sufficiently transferred between the resin in the cavity 10 and the mold pieces. Then, heaters 11 for the fixed mold 3 and the movable mold 9 are operated, or a heating medium is introduced into a medium passage 13, whereby the temperature of the mold pieces 1, 5 is raised to a temperature of not lower than the thermal deformation temperature of the resin to melt only the surface layer of the resin in the cavity 10, followed by re-compression and cooling simultaneously. In compression, a controlling signal is fed from a temperature controller 15 to an oil pressure controller 16 on the basis of the temperature detected by temperature sensors 12 inserted into the mold pieces 1, 5.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、射出圧縮成形金製およびその金製を用いた成
形方法に係シ、特に、プラスチックレンズのよラに、高
い形状精度や界面精度が要求される成形品を成形するだ
めの、射出圧縮成形金製とその成形方法に関するもので
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to injection compression molded metal and a molding method using the metal. This article relates to injection compression molded metal and its molding method, which is used to mold molded products that require the following.

〔背 景〕[Background]

第4図は従来の、プラスチックレンズの成形に用いる射
出圧縮成形金型の断面図、第1図は従来の射出圧縮成形
金型を用いた場合の圧力、温度の時間経過による推移を
示すパターン図である。
Figure 4 is a cross-sectional view of a conventional injection compression molding mold used for molding plastic lenses, and Figure 1 is a pattern diagram showing changes in pressure and temperature over time when a conventional injection compression molding mold is used. It is.

図中、1は可動入駒5と共同してレンズキャビティを構
成する固定入駒、2は前記固定入駒1と固定型3との間
に設けられた固定スリーブである。
In the figure, reference numeral 1 denotes a fixed insert piece that together with a movable insert piece 5 constitutes a lens cavity, and 2 a fixed sleeve provided between the fixed insert piece 1 and the fixed mold 3.

前記固定スリーブ2は、固定入駒1を直接固定把3に固
定せず、ある程度固定入駒1の外径変化に対応し得るよ
うに設けられている。なお、前記固定スリーブ2は、必
ずしも設ける必要はない。
The fixing sleeve 2 does not directly fix the fixed insert piece 1 to the fixed grip 3, but is provided so as to be able to accommodate changes in the outer diameter of the fixed insert piece 1 to some extent. Note that the fixing sleeve 2 does not necessarily need to be provided.

4は前記固定型3を成形機(図示せず)に固定する固定
型取付板である。6は前記可動入駒5を後部より支持す
ると同時に、加圧シリンダ14で発生する加圧力を可動
入駒5に伝達する加圧ブロックである。
4 is a fixed mold mounting plate for fixing the fixed mold 3 to a molding machine (not shown). Reference numeral 6 denotes a pressure block that supports the movable inserting piece 5 from the rear and at the same time transmits the pressing force generated by the pressure cylinder 14 to the movable inserting piece 5.

7は、前記加圧ブロック6と後述するZビン1Bとを支
持して、加圧押出力を伝達する押出板、8は前記可動入
駒5と可動型9との間に設けられた可動スリーブである
。前記可動スリーブ8は、前記固定スリーブ2と同様、
可動入駒5の外径変化にある程度対応し得るよ9設けら
れている。また、前記可動スリーブ8の中2前記可動入
駒5が摺動ずる。なお、前記可動スリーブ8は、必ずし
も設りる必要はない。
Reference numeral 7 denotes a push-out plate that supports the pressure block 6 and the Z-bin 1B to be described later and transmits the pressurizing force, and 8 indicates a movable sleeve provided between the movable insert piece 5 and the movable die 9. It is. The movable sleeve 8, like the fixed sleeve 2,
9 are provided so as to be able to cope with changes in the outer diameter of the movable insert piece 5 to some extent. Moreover, the two movable insert pieces 5 in the movable sleeve 8 slide. Note that the movable sleeve 8 does not necessarily need to be provided.

9は前記可動スリーブ8を固定する可動型、10は前記
固定入駒1、可動入駒5hよひ可動スリーブ8によって
形成される(レンズ)キャビティである、 l3は温度調節のだめの加熱および冷却媒体通路、14
は前記押出板7、加圧ブロック6および可動入駒5を介
して、キャビティ10内の樹脂に圧縮力をかけ、また、
サイクル終了時にはキャビティ10内の樹脂を押し出す
加圧7リンダである。
9 is a movable mold for fixing the movable sleeve 8; 10 is a (lens) cavity formed by the fixed insert piece 1, the movable insert piece 5h and the movable sleeve 8; l3 is a heating and cooling medium for the temperature adjustment reservoir; aisle, 14
applies compressive force to the resin in the cavity 10 via the extrusion plate 7, pressure block 6 and movable insert piece 5, and
There are seven pressure cylinders that push out the resin in the cavity 10 at the end of the cycle.

16は自ら油圧を発生し、図示しないタイマ等の適宜の
制御手段の制御を受けて、加圧シリンダ14に送出する
油圧を制御する油圧制御装置である。
Reference numeral 16 denotes a hydraulic control device that generates hydraulic pressure by itself and controls the hydraulic pressure sent to the pressurizing cylinder 14 under the control of appropriate control means such as a timer (not shown).

17は前記加圧シリンダl4を支持し、可動狐9を成形
機(図示せず)に取p付けるための可動部取付板、18
は成形終了時スプル19内の樹脂を司ftJJ型9側に
引き出すためのZピン、19。
Reference numeral 17 denotes a movable part mounting plate 18 for supporting the pressure cylinder l4 and for attaching the movable fox 9 to a molding machine (not shown).
19 is a Z pin for pulling out the resin in the sprue 19 toward the JJ mold 9 side at the end of molding.

20は成形機よりキャビティlOに至る樹脂通路を構成
するスプルおよびジンナである。
Reference numeral 20 denotes a sprue and a resin that constitute a resin passage leading from the molding machine to the cavity IO.

従来、プラスチックレンズ等を成形するための、前述し
たような構成の射出圧縮成形金型にあっては、第1図に
示す如く、射出成形機(図示省略)より射出された樹脂
がキャビティlo内に充填された(射出圧p+)後、前
記キャビティlo内に保圧P2を加え、この保圧P2が
終了する時刻t2より、キャビティ10への圧縮力P3
を作用させて、これを成形終了時のt、まで保持するよ
うにしていた。
Conventionally, in an injection compression molding mold having the above-mentioned configuration for molding a plastic lens or the like, resin injected from an injection molding machine (not shown) is injected into the cavity lo, as shown in Fig. 1. (injection pressure p+), a holding pressure P2 is applied to the inside of the cavity 10, and from time t2 when this holding pressure P2 ends, a compressive force P3 to the cavity 10 is applied.
This was maintained until t when molding was completed.

また、成形金型温度については、射出開始時t、Iよシ
保圧終了の時刻t2までは、一定温度T1に保持し、そ
の後、金型温度がT2となる時刻t3まで冷却を行なっ
た。
The temperature of the molding die was maintained at a constant temperature T1 from t when injection started until time t2 when pressure retention ended, and then cooling was performed until time t3 when the mold temperature reached T2.

この間、射出開始時刻t1と温度TI、金型温度降下T
1〜T2と圧縮力P3〜P4等との間に相互の関連制御
は行なわず、そnぞれタイマによる時間制御で、圧縮力
の付加、冷却の終了、圧縮力の除去等を行なっていた。
During this time, injection start time t1, temperature TI, mold temperature drop T
No mutual relation control was performed between 1 to T2 and compression forces P3 to P4, etc., and the addition of compression force, the end of cooling, the removal of compression force, etc. were performed under time control using a timer. .

このような成形ザイクル下では、キャビティ10内の樹
脂の冷却中に圧縮を行なうため、樹脂の冷却収縮により
、圧縮効果が低下し、表面精度が約1.5〜1.0μm
の成形品しか得られない。
Under such a molding cycle, compression is performed while the resin in the cavity 10 is cooling, so the compression effect is reduced due to cooling contraction of the resin, and the surface accuracy is approximately 1.5 to 1.0 μm.
Only molded products can be obtained.

また、形状精度、特に曲率中径のほらつきが、約0.0
5〜0.1鰭と大きく、高精度の成形品として実用化を
図ることが困難であった。
In addition, the shape accuracy, especially the irregularity of the middle diameter of the curvature, is approximately 0.0
It has a large size of 5 to 0.1 fins, making it difficult to put it into practical use as a high-precision molded product.

さらに、nfI記の如く、中ヤビティlO内の樹脂の温
度がT、からT、に低下する冷却時間t2〜1s間も、
P、〜P、の圧縮力の制御を行なわないため、冷却固化
中の樹脂に不適切な圧力かがかり、 ストレスクラック
や表面層はく離が発生することがめった。
Furthermore, as described in nfI, during the cooling time t2 to 1s during which the temperature of the resin in the middle cavity 1O decreases from T to T,
Since the compressive force of P, ~P, was not controlled, inappropriate pressure was applied to the resin during cooling and solidification, which frequently caused stress cracks and surface layer peeling.

以上の如く、従来の成形サイクルに2いては、我面軸度
が低く、形状精度のばらつきの大きい、安定性に欠PJ
る成形品し〃・得られないという欠点がめった。
As mentioned above, in the conventional molding cycle 2, the surface axis is low, the shape accuracy is highly variable, and the stability is poor.
The disadvantage was that it was rarely possible to obtain a molded product.

また、温度に合わせた圧縮力制御を行なわなかったため
、過剰圧縮力によシ成形品表面に欠陥が発生する場合が
あるという欠点があった。
Furthermore, since the compression force was not controlled in accordance with the temperature, there was a drawback that defects may occur on the surface of the molded product due to excessive compression force.

〔発明の目的〕[Purpose of the invention]

本発明は、前記した従来技術の欠点を除き、表面精度が
0.3〜0.6μm1形状精度(主にFjJ1率牛径)
のほらつきが0.0311III以下で、表面にストレ
スクラックや表面層はく離のない、グラスチックレンズ
等の精密成形品を成形する射出圧縮成形金型およびその
成形方法の提供を目的とするもので必る。
The present invention eliminates the drawbacks of the prior art described above and has a surface accuracy of 0.3 to 0.6 μm1 shape accuracy (mainly FjJ1 ratio cow diameter).
The purpose is to provide an injection compression molding mold for molding precision molded products such as glass lenses with a flaking of 0.0311III or less and no stress cracks or peeling of the surface layer, and a molding method thereof. Ru.

〔発明の概要〕[Summary of the invention]

前記の目的を達成するために、本発明は、従来の射出圧
縮成形金型に、入駒の温度を検知する手段と、前記温度
検知+攻の出力に基ついて、前記固定型、可動凰および
入駒の温度を予定のパターンに従って、時間の関数とし
て制御し、かつ、前記温度検知手段の出力に基づいて、
加圧シリンダの加圧力を制御する温度制御手段を設け、
次のような成形方法を用いるようにした点に特徴がある
In order to achieve the above object, the present invention provides a conventional injection compression mold with means for detecting the temperature of the input piece, and based on the output of the temperature detection + attack, the fixed mold, the movable mold, and the input piece. controlling the temperature of the piece as a function of time according to a predetermined pattern, and based on the output of the temperature sensing means;
A temperature control means is provided to control the pressurizing force of the pressurizing cylinder,
The feature is that the following molding method is used.

(1)成形機よシ金型キャビティ内に樹脂が充填された
後の保圧工程中に、圧縮力を前記キャビティ内の樹脂に
加えて、キャビティ内の樹脂に予備賦形を行なうと同時
に、キャビティ内樹脂と、金型固定、可動両入駒(以下
、内容説明を平易にするため、固定、可動とも入駒とい
う)との密着度を向上させ、キャビティ内の樹脂と金型
との熱伝達が十分に行なわれるようにする。
(1) During the pressure holding process after the resin is filled into the mold cavity by the molding machine, compressive force is applied to the resin in the cavity to pre-shape the resin in the cavity, and at the same time, This improves the degree of adhesion between the resin in the cavity and the mold fixed and movable insert pieces (hereinafter, for the sake of brevity, both fixed and movable pieces are referred to as insert pieces), and reduces the heat between the resin in the cavity and the mold. Ensure sufficient communication.

(2)次に1キヤビテイ内の樹脂金、一旦冷却もしくは
放置して内部同化の促進を図p1その後、樹脂の軟化温
度よシ高い温度まで入駒温度を上昇させて、キャビティ
内の樹脂の表面層のみを溶融するよりにする。
(2) Next, the resin gold in the cavity is cooled or left for a while to promote internal assimilation. After that, the temperature of the resin is raised to a temperature higher than the softening temperature of the resin, and the surface of the resin in the cavity is heated. Rather than melting only the layers.

(3)次いで、キャビティ内の樹脂に再び圧縮力を伺加
して、前記の溶融した表面層を賦形すると同時に、固定
入駒、可動入駒の冷却を開始し、仁の冷却温度に合わせ
て、キャビティ内樹脂に何加している圧縮力を制御する
ようにする。
(3) Next, compressive force is applied again to the resin in the cavity to shape the molten surface layer, and at the same time, cooling of the fixed and movable insert pieces is started, and the cooling temperature is adjusted to match the cooling temperature of the resin. , so as to control the compressive force being applied to the resin within the cavity.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の具体的な一実施例を第2図、第3図によ
り説明する。。
A specific embodiment of the present invention will be described below with reference to FIGS. 2 and 3. .

第2図は本発明をプラスチックレンズの成形に一適用し
た場合の具体的な一実施例を示す射出圧縮成形金型の断
面図、第3図は本発明の一実施例の射出圧縮成形金型を
用いた場合の圧力、温度の時間経過による推移を示すパ
ターン図である。
Fig. 2 is a cross-sectional view of an injection compression molding die showing a specific embodiment of the present invention applied to the molding of plastic lenses, and Fig. 3 is an injection compression molding die of an embodiment of the present invention. FIG. 3 is a pattern diagram showing changes in pressure and temperature over time when using the same method.

第2図に計いて、第4図と同一の符号は、同一なたは同
等部分(i:あられしている。
The same reference numerals as in FIG. 2 and FIG. 4 refer to the same or equivalent parts (i: hail).

11は固定入駒1、鳴動入駒5を加熱するために、固定
スリーブ2および鳴動スリーブ8内に嵌挿されたヒータ
、12は固定入駒1υよび鳴動入駒5の温度を検出する
だめの温度センサである。
11 is a heater inserted into the fixed sleeve 2 and the ringing sleeve 8 in order to heat the fixed insert piece 1 and the ringing insert piece 5; 12 is a heater for detecting the temperature of the fixed insert piece 1υ and the ringing insert piece 5; It is a temperature sensor.

15は、前記固定入駒1および鳴動入駒5の温度を検出
する前記温度センサ12よシ送られてくる温度信号によ
り、ヒータ11や、加熱および冷却媒体通路13内を流
れる加熱および冷却媒体(図示せず)を制御し、且つま
た、油圧制御装置16に制御信号を送って発生油圧を制
御する温度制御器である。
Reference numeral 15 indicates a heating and cooling medium ( (not shown), and also sends a control signal to the hydraulic pressure control device 16 to control the generated hydraulic pressure.

以上のように構成された射出圧縮成形金型の成形動作お
よび成形方法について、第3図のパターン図を参照して
次に詳しく説明する。
The molding operation and molding method of the injection compression mold constructed as described above will be described in detail below with reference to the pattern diagram in FIG.

射出成形機(図示せず)に、固定型取付板4、可動型取
付板17を介して、それぞれ取り付けられた固定型3と
可#l′m、9が閉じると、前記射出成形機より、樹脂
(図示せず)がスプル19、ランナ20を通って、キャ
ビティlo内に射出される。
When the fixed mold 3 and the movable mold 9 attached to the injection molding machine (not shown) via the fixed mold mounting plate 4 and the movable mold mounting plate 17 are closed, from the injection molding machine, Resin (not shown) is injected into the cavity lo through the sprue 19 and runner 20.

樹脂がキャビティ10内に充填されると、第3図P9.
〜PN、の如く、射出成形機はそのまま保圧工程に移シ
、キャビティlO内の樹脂に、N3図PN1で示す保圧
力を加え続ける。
When the resin is filled into the cavity 10, the state shown in FIG. 3, P9.
~PN, the injection molding machine moves directly to the pressure holding process and continues to apply the holding pressure shown in Figure N3 and PN1 to the resin in the cavity IO.

射出成形機が保圧に移ると同時に、油圧制御装置は射出
成形機がら保圧開始の信号を受け、第3図t。に示すよ
うな一定の時間経過後、保圧中のキャビティ10内の樹
脂に、鳴動入駒5、加圧ブロック6および押出板7を介
して加圧シリンダ14により、第3図PN3に示す圧縮
力七がける。
At the same time as the injection molding machine shifts to holding pressure, the hydraulic control device receives a signal from the injection molding machine to start holding pressure, and the pressure control device receives a signal from the injection molding machine to start holding pressure, and the pressure control device starts holding pressure from the injection molding machine. After a certain period of time as shown in FIG. 3 has passed, the resin in the cavity 10 under pressure is compressed as shown in FIG. Rikishichi takes it.

これにより、キャビティlo内の樹脂に賦形を行なうと
同時に1前記キヤビテイlo内の樹脂と固定入駒1およ
び鳴動入駒5との密着度の向上を図り、以後に続く工程
でのキャビブイlo内の樹脂と固定入駒1、鳴動入駒5
との熱伝達が容易に行なわれるようにする。
As a result, the resin in the cavity lo is shaped and at the same time, the degree of adhesion between the resin in the cavity lo and the fixed insert piece 1 and the ringing insert piece 5 is improved, and the inside of the cavity bu in the subsequent process is improved. resin and fixed insert piece 1, ringing insert piece 5
to facilitate heat transfer between the

成形機の保圧工程が終了する時刻軸、がらtN4までの
間に、キャピテイ1θ内の樹脂を温度TN1からTN2
まで下げる。この冷却は、加熱および冷却媒体通路13
に冷媒(図示せず)を流すが、もしくはザーモバイプ(
図示せず)によりTN2に示すような温度まで行ない、
その結果、キャビティIO内の樹脂内部の冷却が促進さ
れる。
During the time axis until tN4 when the pressure holding process of the molding machine ends, the temperature of the resin in the cavity 1θ increases from TN1 to TN2.
lower to This cooling is accomplished by heating and cooling medium passages 13
A refrigerant (not shown) is passed through the tube, or a thermovib (
(not shown) to a temperature as shown in TN2,
As a result, cooling of the resin inside the cavity IO is promoted.

一般的には、この際の冷却温度は、樹脂の軟化温度よ!
l12θ℃程展低い温度とし、例えばP■快(アクリル
)樹脂の場合は80℃内外壕で冷却する。
Generally, the cooling temperature at this time is the softening temperature of the resin!
The temperature is kept as low as 112θ°C, and for example, in the case of acrylic resin, it is cooled to 80°C in an internal or external trench.

次に、と−ク11の加熱、もしくは加熱媒体(図示せず
)を加熱↓・よび冷却媒体通路13へ導入する仁とによ
り、キャビティ10内の樹脂の加熱をT、13に示す温
度址で行ムう。
Next, the resin in the cavity 10 is heated at the temperature shown at T and 13 by heating the tank 11 or by heating a heating medium (not shown) and introducing it into the cooling medium passage 13. Let's go.

この加熱により、ギヤビティlo内樹脂の戒面層のみが
溶融する1、この温度は一般的には樹脂の軟化温度よシ
20〜30℃高く設定する。例えば、PMMAの場合1
20〜130℃である。
By this heating, only the surface layer of the resin in the gearbity lo is melted (1), and this temperature is generally set 20 to 30° C. higher than the softening temperature of the resin. For example, in the case of PMMA1
The temperature is 20-130°C.

加熱が完了するT83の温度、Lvキャビフィl。The temperature of T83 at which heating is completed, Lv cavity fill.

内の樹脂の再圧縮と冷却を並行して行なう。圧縮は、温
度制御器15によって制御される油圧制御装置17によ
り油圧を発生させ、この油圧力を加圧シリンダ14に送
出して行なう。
The resin inside is recompressed and cooled in parallel. Compression is performed by generating hydraulic pressure by a hydraulic control device 17 controlled by a temperature controller 15, and sending this hydraulic pressure to the pressurizing cylinder 14.

圧縮に際しては、冷却も同時にサーモパイプ、冷媒で行
なうため、固定入駒1および同動入駒5内に挿入した温
度センサ12で検出した温度に基づいて、温度制御器1
5より油圧制御装置16に制御信号を送る。
During compression, since cooling is also performed using a thermopipe and refrigerant at the same time, the temperature controller 1
5 sends a control signal to the hydraulic control device 16.

この制御信号により油圧制御装置16は加圧シリンダ1
4に送出する油圧力を制御して、冷却進行に伴い過大な
ストレヌがキャビティ10内の樹脂に伺加されるのを防
止する。
This control signal causes the hydraulic control device 16 to control the pressure cylinder 1.
By controlling the hydraulic pressure sent to the resin in the cavity 10, excessive strain is added to the resin in the cavity 10 as cooling progresses.

この経過は、時刻tN、からtN6までの間において、
温度がTNsからTN4に低下し、同時に、圧力がP□
からPH6に減少する変化として図に示されている。こ
の温度−圧力制御は予め油圧制御装置16内に記憶させ
た制御線図に因って行なうことができる。
This progress is from time tN to tN6,
The temperature decreases from TNs to TN4 and at the same time the pressure decreases to P□
It is shown in the figure as a decreasing change from PH to 6. This temperature-pressure control can be performed according to a control diagram stored in the hydraulic control device 16 in advance.

冷却温度がN TIJ4に達したところで油圧制御装置
16の油圧力をPH6から0に下げ、射出成形機に温度
制御器15よりザイクル終了信号を送り、金型を開いて
、成形品をキャビティ1oよp取シ出す。
When the cooling temperature reaches NTIJ4, the hydraulic pressure of the hydraulic control device 16 is lowered from PH6 to 0, a cycle end signal is sent to the injection molding machine from the temperature controller 15, the mold is opened, and the molded product is transferred to the cavity 1o. Take out the p.

次に再び金型を閉じ、温度をTNlまで上昇させて、は
じめからの経過を繰り返すことにょシ成形を継続する。
Next, the mold is closed again, the temperature is raised to TNl, and the process continues by repeating the process from the beginning.

なお、本実施例においては、油圧制御装置16および加
圧シリンダ14を用いて、キャビティl。
In this embodiment, the hydraulic control device 16 and the pressurizing cylinder 14 are used to control the cavity l.

内の樹脂を圧縮するようにしたが、これに限定されるも
のでなく、成形機内に加圧機構を設け、これを利用する
ようにしてもよいことは当然である。
Although the resin inside the molding machine is compressed, the present invention is not limited to this, and it goes without saying that a pressurizing mechanism may be provided within the molding machine and utilized.

次に具体的な成形の実験例をPMMA (アクリル)樹
脂のプラスチックレンズ(両とっ曲率半径16w+−2
6mm 、外径11520mm、中心厚7io+)の場
合を例にひいて述べる。
Next, we will discuss a concrete molding experiment example for a plastic lens made of PMMA (acrylic) resin (curvature radius 16w+-2).
6 mm, outer diameter 11520 mm, and center thickness 7 io+) will be described as an example.

成形開始の信号により、固定型3と可動型9とが閉じる
と、スプル19、ランナ2oを通じて、成形機よシ、溶
融可塑化されたPMMA樹脂がレンズキャビティ10に
射出充填される。
When the fixed mold 3 and the movable mold 9 are closed in response to a signal to start molding, the molding machine injects and fills the lens cavity 10 with molten and plasticized PMMA resin through the sprue 19 and the runner 2o.

第3図PN1に示す充填圧力は、通常500〜1000
kJiであり、成形機側で、スクリュ位置や油圧上昇か
らこの充填を検知すると、引き続き、第3図PN1〜P
H2の500〜1200警の保圧に移る。
The filling pressure shown in Figure 3 PN1 is usually 500 to 1000.
kJi, and when the molding machine side detects this filling from the screw position and oil pressure rise, it continues to display PN1 to P in Figure 3.
Moving on to holding pressure between 500 and 1200 on H2.

この保圧開始信号を受けた油圧制御装[16は、第3図
t。に示す一定時間(5〜10秒)経過後、油圧シリン
ダ14に送出した油圧で、レンズキャビティ10内のP
MMA樹脂に、第3図PN3に示すような50〜200
kJiの圧縮力を付加する。
The hydraulic control device [16] which receives this pressure holding start signal is shown in FIG. After a certain period of time (5 to 10 seconds) shown in , the hydraulic pressure sent to the hydraulic cylinder 14 causes the P in the lens cavity 10 to
50 to 200 as shown in Figure 3 PN3 to MMA resin.
Add a compressive force of kJi.

この圧縮によシレンズキャビテイ10内のPMMA 樹
脂に固定入駒1および可動入駒5の形状が十分に賦形さ
れ、且つ両入駒とPMMA樹脂との密着度が向上し、以
後の熱伝達が十分性なえるようになる。
Through this compression, the shapes of the fixed insert piece 1 and the movable insert piece 5 are sufficiently shaped by the PMMA resin in the lens cavity 10, and the degree of adhesion between both insert pieces and the PMMA resin is improved, which facilitates subsequent heat transfer. becomes more adequate.

次に、第3図TN1に示すような80〜100℃の初期
型温からTお2に示す80〜90℃まで冷却を行なう。
Next, cooling is performed from the initial mold temperature of 80 to 100°C as shown in FIG. 3 TN1 to 80 to 90°C as shown in T2.

この冷却で、レンズキャビティIO内1M脂の内部固化
を促進する。
This cooling promotes internal solidification of the 1M fat inside the lens cavity IO.

続いて、第3図TN、からTN3に相当する110〜1
40℃の加熱を行ない、レンズキャビテイ10内PMM
A樹脂の表面層のみを溶融する。
Subsequently, 110 to 1 corresponding to TN3 in FIG.
PMM inside lens cavity 10 is heated to 40°C.
A: Only the surface layer of the resin is melted.

この際、表面層のみの加熱溶融を行fL9のは、次の冷
却固化により発生する樹脂収縮量を極力l」・さくする
ためで、加熱溶融がレンズキャビティ10の内部に及ぶ
と、収縮量もそれだけ犬きくなシ、形状精度、表面精度
の確保が困難となる。
At this time, the purpose of heating and melting only the surface layer fL9 is to minimize the amount of resin shrinkage that occurs during the next cooling and solidification. This makes it more difficult to ensure precision, shape accuracy, and surface accuracy.

この過程に続いて、レンズキャビティ1θ内の樹脂の再
圧縮、冷却を行なう。第3図P別に示す50〜200%
の再圧縮で、レンズキャビティl。
Following this process, the resin within the lens cavity 1θ is recompressed and cooled. Figure 3: 50-200% shown by P
With recompression of the lens cavity l.

内の樹脂の表面溶融層には、固定入駒1、可動入駒5の
表面形状が忠実に転写され、次第に冷却によって固化し
てゆく。
The surface shapes of the fixed insert piece 1 and the movable insert piece 5 are faithfully transferred to the resin surface melt layer inside, and gradually solidify by cooling.

冷却と同時に温度制御器15によυ油圧制御装置16の
発生油圧を制御して、固化が進行しつつあるレンズキャ
ビテイlO内の樹脂表面層に過大な圧縮力が付加されな
いようにする。
Simultaneously with the cooling, the temperature controller 15 controls the hydraulic pressure generated by the υ hydraulic pressure control device 16 to prevent excessive compressive force from being applied to the resin surface layer inside the lens cavity IO, which is undergoing solidification.

この経過が第3図pHiからP8゜に示す圧力変化であ
シ、温度ftTN、のiio〜140℃からTN4の7
0〜80℃まで引き下げる間に、圧力は予定の関数に従
って制御され、pNaの50〜2001iからPIJ6
の30〜150鷲まで低下する。
This process is the pressure change shown in FIG.
During the reduction from 0 to 80 °C, the pressure was controlled according to a predetermined function, from 50 to 2001i of pNa to PIJ6
of 30 to 150 eagle.

温度がTN4の70〜80℃に低下した時点で、キャビ
ティ10内から成型品を取シ出す。
When the temperature drops to 70 to 80° C. of TN4, the molded product is taken out from the cavity 10.

前述のような成形方法によって製造したpm樹脂製レン
ズは、従来の表面精度1.5〜1.0μm(干渉縞5〜
3本)、および形状精度に相当する曲率半径のばらつ@
0.05〜0.1wを大幅に改善することができた。
The PM resin lens manufactured by the above-mentioned molding method has a conventional surface precision of 1.5 to 1.0 μm (interference fringes of 5 to 1.0 μm).
3), and the variation in the radius of curvature corresponding to the shape accuracy @
It was possible to significantly improve the power consumption by 0.05 to 0.1w.

すなわち、表面層r&0.6〜0.3μm(干渉縞2〜
1本)、および曲率半径ばらつき0.03 m以内とす
ることができた。
That is, the surface layer r&0.6 to 0.3 μm (interference fringes 2 to
1), and the radius of curvature variation was within 0.03 m.

また、冷却時の圧縮力制御により表面のストレスクラッ
クや層はく離の発生をなくした安定したPMMAレンズ
が得られるようになった。
In addition, by controlling the compressive force during cooling, it has become possible to obtain stable PMMA lenses that eliminate stress cracks and delamination on the surface.

この方法によって成形したレンズは以上のような高い表
面精度と形状精度を有するので、高精度光学系にも十分
実用が可能となった。
Lenses molded by this method have the above-mentioned high surface precision and shape precision, so they can be put to practical use in high-precision optical systems.

以上、プラスチックレンズの成形例にも述べた如く (1)保圧中の圧縮力付加で賦形と金部への密着性向上
が図れる、 (2)続く冷却で、樹脂内部の温度を低下させて固化さ
せた後、再加熱によ9表面層のみを溶融させたところで
、再圧縮を行なうので、その後の冷却による樹脂収縮量
を極めてφさくできる、 (3)冷却と同時に、再圧縮力を温度に合わせて制御す
るので、固体化しつつある樹脂表面層に過大な圧力が付
加されるのを防止できるという利点があり、従来の成形
法で1.5〜1.0μmであった成形品表面精度を0.
6〜0.3μmと飛躍的に向上させることができた。
As mentioned above in the plastic lens molding example, (1) the adhesion to the molding and metal parts can be improved by applying compressive force during holding pressure, and (2) the temperature inside the resin can be lowered by subsequent cooling. After solidification, recompression is performed after melting only the 9 surface layer by reheating, so the amount of resin shrinkage due to subsequent cooling can be extremely reduced. (3) At the same time as cooling, recompression force is applied. Since the temperature is controlled according to the temperature, it has the advantage of preventing excessive pressure from being applied to the resin surface layer that is solidifying. Set the accuracy to 0.
A dramatic improvement of 6 to 0.3 μm was achieved.

また、形状精度(レンズ曲率半径)はらつきを従来の0
.05〜0,1瓢から0.03 m以内へと大幅に縮め
ることができた。
In addition, the variation in shape accuracy (lens radius of curvature) has been reduced to 0 compared to the conventional
.. We were able to significantly shorten the distance from 0.05~0.1 to within 0.03 m.

さらに、冷却中の過大な圧縮力付加が避けられストレス
クラックや表面層はく離のない成形品を連続して得るこ
とができるようになった。
Furthermore, application of excessive compressive force during cooling can be avoided, making it possible to continuously obtain molded products without stress cracks or surface layer peeling.

また、これらの総合効果として、十分実用に供すること
のできるプラスチックレンズを安定して成形できるよう
になった。
In addition, as a result of these comprehensive effects, it has become possible to stably mold plastic lenses that can be put to practical use.

なお、前記においては、固定入駒を固定型に設け、可動
入駒を可動盤に設けるようにしたが、本発明は必ずしも
これに限定されるものではなく、例えは、可動入駒を固
定型に設けるようにしてもよいことは当然である。
In the above, the fixed inserting piece is provided on a fixed type and the movable inserting piece is provided on a movable platen. However, the present invention is not necessarily limited to this. For example, the movable inserting piece is provided on a fixed type. It goes without saying that it may be provided in

また、前記に3いて、前述したキャビティ内の樹脂の、
保圧工程直後の冷却工程終了後に行なわれる再加熱、再
圧縮工程は、1回のみ実施されるようにしたが、これに
限定されるものではなく、2回以上くり返して実施する
ようにしてもよいことは当然である。
In addition, in 3 above, the resin in the cavity described above,
Although the reheating and recompression steps that are performed immediately after the cooling step immediately after the pressure holding step are performed only once, they are not limited to this, and may be repeated two or more times. Good things are natural.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明は、従来の射出圧縮成形金
星に、固定型、可l1III型および入駒の温度を検知
する手段と、前記温度検知手段の出力に基づいて、前記
固定型、可動盤および入駒の温度を、予定のパターンに
従って、時間の関数として制御し、かつ、前記温度検知
手段の出力に基づいて、加圧シリンダの加圧力を制御す
る温度制御手段を設け、−また、これを用いた成製工程
においては、(1)射出成形機の保圧工程中にキャビテ
ィ内樹脂に圧縮力を付加して予備賦形を行なうと同時に
、金型との密着度を向上してキャビティ内樹脂との熱伝
達が十分性なわれるようにし、(2)次いで、入駒温度
を樹脂の熱変形温度以上に上昇させて、キャビティ内樹
脂の表面層のみを溶融し、 (3)さらに、ここに再度圧縮力を付加するようにした
ので、 真面精度が0.6〜0.3μmと従来よシ大幅に向上し
、形状精度(レンズの場合、主に曲率半径)のばらつき
が0.03 m以下の十分実用可能な精密プラスチック
レンズの成形が安定して行なえるという利点がらる。
As described above, the present invention provides a means for detecting the temperature of a fixed type, a movable platen, and an input piece, and a means for detecting the temperature of a fixed type, a movable platen, and a movable platen based on the output of the temperature detection means. and temperature control means for controlling the temperature of the input piece as a function of time according to a predetermined pattern, and for controlling the pressurizing force of the pressurizing cylinder based on the output of the temperature detecting means; In the molding process used, (1) compressive force is applied to the resin in the cavity during the pressure holding process of the injection molding machine to perform pre-shaping, and at the same time, the adhesiveness with the mold is improved and the resin inside the cavity is ensure sufficient heat transfer with the resin, (2) then increase the entering piece temperature above the thermal deformation temperature of the resin to melt only the surface layer of the resin inside the cavity, and (3) further, here By applying compressive force again to the lens, the straight surface accuracy is significantly improved from 0.6 to 0.3 μm compared to the conventional method, and the variation in shape accuracy (mainly radius of curvature in the case of lenses) is reduced to 0.03 μm. This method has the advantage that it is possible to stably mold a plastic lens with a size of less than m that can be used for practical purposes.

また、温度センサによ#)検出した金星温度で、キャビ
ティ内の樹脂の圧縮力制御を行なうようにしたので、キ
ャビティ内の樹脂の冷却中に過大な圧縮力を作用させる
ようなことがなくなり、ストレスクラックや表面層はく
離のない成形品を連続的に得ることができるという利点
がある。
In addition, since the compression force of the resin in the cavity is controlled based on the Venus temperature detected by the temperature sensor, there is no need to apply excessive compression force while the resin in the cavity is being cooled. It has the advantage that molded products without stress cracks or surface layer peeling can be obtained continuously.

さらに、以上に述べた如く、本発明によれば真面精度が
、0.3〜0.6μm1形状N度ばらつき0.03■以
下のストレスクラックや表面層はく離のない成形品が安
定して得られるので、プラスチックレ?ズ等、精密成形
品の実用化に効果が大きいという利点もある。
Furthermore, as described above, according to the present invention, molded products with a straight surface accuracy of 0.3 to 0.6 μm and a variation in N degree of 0.03 μm or less and no stress cracks or surface layer peeling can be stably obtained. Is it plastic? Another advantage is that it has a great effect on the practical application of precision molded products such as molds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の射出圧縮成形金星を用いた場合の圧力、
温度の時間経過による推移を示すパターン図、第2図は
本発明をプラスチックレンズの形成に適用した場合の具
体的な一実施例を示す断面図、第3図は、本発明の具体
的な一実施例の射出圧縮形成金型を用いた場合の圧力、
温度の時間8過による推移を示すパターン図、第4図は
従来の、プラスチックレンズの成形に用いる射出圧縮成
形金型の断面図である。 l・・・固定入駒、2・・・固定スリーブ、3・・・固
定型、5・・・可動入駒、9・・・可動型、10・・・
キャビティ、11・・・ヒータ、12・・・温度センサ
、13・・・加熱及び冷却媒体通路、14・・・加圧シ
リンダ、15・・・温度制御器、16・・・油圧制御装
置第1図 オ  2 図 74 第3図 −チ時間
Figure 1 shows the pressure when using conventional injection compression molding Venus.
FIG. 2 is a cross-sectional view showing a specific example of the application of the present invention to the formation of a plastic lens, and FIG. 3 is a pattern diagram showing changes in temperature over time. Pressure when using the injection compression mold of the example,
FIG. 4 is a pattern diagram showing the change in temperature over time. FIG. 4 is a cross-sectional view of a conventional injection compression mold used for molding a plastic lens. l...Fixed insert piece, 2...Fixed sleeve, 3...Fixed type, 5...Movable insert piece, 9...Movable type, 10...
Cavity, 11... Heater, 12... Temperature sensor, 13... Heating and cooling medium passage, 14... Pressurizing cylinder, 15... Temperature controller, 16... Hydraulic control device first Figure O 2 Figure 74 Figure 3 - Time

Claims (4)

【特許請求の範囲】[Claims] (1)互いに対向して配置され、少なくとも一方に摺動
自在に入駒が設けられた固定型および司動屋と、前記入
駒およびこれに対向するm−tたは入駒の間に形成され
、その中に樹脂が射出、充填されるキャビティと、前記
入駒を押圧するための加圧力を発生する加圧シリンダと
、前記加圧シリンダが発生する加圧力を制御する手段と
、前記固定meよび可m屋を加熱、冷却する手段とを有
し、前記入駒に圧力を加えて、前記キャビディ中の樹脂
−に圧縮力を加える射出圧縮成形金製において、前記入
駒の温度を検知する手段と、前記温度検知手段の出力に
基づいて、直話固定型、0II411fiおよび入駒の
温度を、予定のパターンに従って、時間の関数として制
御し、かつ、前記温度検知手段の出力に基ついて、前記
加圧シリンダの加圧力を制御する温度制御中段とを具備
したことを特徴とする射出圧縮成形金製。
(1) A fixed type and a mover, which are arranged facing each other and have a slidable entry piece on at least one side, and the entry piece and the m-t or entry piece opposite thereto. , a cavity into which resin is injected and filled, a pressure cylinder that generates a pressure force for pressing the input piece, means for controlling the pressure force generated by the pressure cylinder, and the fixing member. and a means for heating and cooling the cavity, and means for detecting the temperature of the molding piece in the injection compression molded metal molding machine, which applies pressure to the molding piece to apply compressive force to the resin in the cavity. Based on the output of the temperature detection means, the temperature of the direct-talk fixed type, 0II411fi, and the input piece is controlled as a function of time according to a predetermined pattern, and the temperature of the It is made of injection compression molded metal and is characterized by being equipped with a temperature control middle stage that controls the pressurizing force of the pressure cylinder.
(2)互いに対向して配置された固定型および司動戴の
いずれρ為一方に、摺動自在に設けられた入駒と、これ
に対向する況マたは入駒との間に形成されたキャビティ
中に樹+11を射出、尤鷹し、加圧シリンダによシ、前
記入駒に圧力を加えて、前記キャビティ中の樹脂に圧縮
力を加える射出圧縮成形方法で必って、前記キャピテイ
中に樹脂を充填した後、前記與I]旨の採土中に前記加
圧シリンダにより、前記樹脂に圧縮力を加え、その後土
縮力を保持したまま保圧力を取除くと共に、前記固定凰
2よび円励鳳を、一旦前記樹脂の軟化温度以下にまで冷
却して、前記樹脂を固化させた後、伯シろ固定型ふよび
司J1111厘を加熱して、前記樹脂をその軟化温度以
上の温度に到達させ、その表面を軟化させると共に、前
記キャビティ中の樹脂に再度圧縮力を加え、その後前記
固定型および可動凰の温度を降下させながら、その関数
として、前記圧縮力を徐々に減少させるようにしたこと
を特徴とする射出圧縮成形方法。
(2) For either fixed type or driving piece placed opposite to each other, a piece is formed between a sliding piece provided on one side and a sliding piece or a piece placed opposite thereto. In the injection compression molding method, the resin is injected into the cavity, and then put into a pressure cylinder, and pressure is applied to the input piece to apply compressive force to the resin in the cavity. After filling the inside with resin, compressive force is applied to the resin by the pressurizing cylinder during soil excavation, and then the retaining force is removed while the soil contracting force is maintained, and the fixed plate is 2 and Enkiho are once cooled to below the softening temperature of the resin to solidify the resin, and then heated to a fixed type Fuyobi Tsukasa J1111 to cool the resin to above its softening temperature. temperature, softening its surface and reapplying a compressive force to the resin in the cavity, and then gradually reducing the compressive force as a function of decreasing the temperature of the fixed mold and the movable mold. An injection compression molding method characterized by:
(3)前記固定型および可動製全加熱する際の、到達温
度が、前記へ゛ヤビティ中の樹脂の軟化温度よシ20〜
30℃高い温度であることを特徴とする特許
(3) The temperature reached when fully heating the fixed and movable molds is 20 to 20% higher than the softening temperature of the resin in the cavity.
Patent characterized by 30℃ higher temperature
(4)前記固定型および可動型を、一旦前記樹脂の軟化
温度以下にまで冷却して、前記樹脂を固化させた後に行
なわれる、n11記固定型および可動型を加熱して、前
記樹脂をその軟化温度以上の温度に到達させ、その光面
を軟化させる工程および前記樹脂に再圧縮力を加える工
程が2回以上行なわnることを特徴とする前記特許請求
の範囲第2項または第3項記載の射出圧縮成形方法。
(4) After the fixed mold and the movable mold are once cooled to below the softening temperature of the resin and the resin is solidified, the fixed mold and the movable mold described in n11 are heated, and the resin is solidified. Claim 2 or 3, characterized in that the step of softening the optical surface by reaching a temperature equal to or higher than the softening temperature and the step of applying recompression force to the resin are performed two or more times. The injection compression molding method described.
JP10579283A 1983-06-15 1983-06-15 Metallic mold for injection compression molding and molding method using the same Granted JPS59232835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10579283A JPS59232835A (en) 1983-06-15 1983-06-15 Metallic mold for injection compression molding and molding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10579283A JPS59232835A (en) 1983-06-15 1983-06-15 Metallic mold for injection compression molding and molding method using the same

Publications (2)

Publication Number Publication Date
JPS59232835A true JPS59232835A (en) 1984-12-27
JPH0134132B2 JPH0134132B2 (en) 1989-07-18

Family

ID=14416978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10579283A Granted JPS59232835A (en) 1983-06-15 1983-06-15 Metallic mold for injection compression molding and molding method using the same

Country Status (1)

Country Link
JP (1) JPS59232835A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127323A (en) * 1984-11-27 1986-06-14 Hitachi Ltd Mold assembly for injection compression molding
JPS61205111A (en) * 1985-02-07 1986-09-11 Meiki Co Ltd Compression molding method based on injection
JPS629926A (en) * 1985-07-09 1987-01-17 Hitachi Ltd Molding method for optical disk base
JPS6213309A (en) * 1985-07-11 1987-01-22 Tokuyama Soda Co Ltd Method and apparatus for injection molding
JPS62123913U (en) * 1986-01-31 1987-08-06
JPS6394806A (en) * 1986-10-09 1988-04-25 Toshiba Mach Co Ltd Controlling method for injection compression molding
JPS63224920A (en) * 1987-03-13 1988-09-20 Nippon Mektron Ltd Injection molding machine
JPH01136716A (en) * 1987-11-25 1989-05-30 Toshiba Mach Co Ltd Determination of quality of injection-molded object
JPH0183513U (en) * 1987-11-25 1989-06-02
JPH035108A (en) * 1989-06-02 1991-01-10 Niigata Eng Co Ltd Injection-compression molding method
EP0623448A1 (en) * 1993-05-07 1994-11-09 General Electric Company Thermoplastic resin molding process
WO1998041379A1 (en) * 1996-02-29 1998-09-24 Hoya Corporation Method of injection molding plastic lens
US6156242A (en) * 1996-02-29 2000-12-05 Hoya Corporation Method of injection molding plastic lens
USRE38617E1 (en) * 1997-03-18 2004-10-12 Hoya Corporation Method of injection molding plastic lens
JP2014218038A (en) * 2013-05-09 2014-11-20 アピックヤマダ株式会社 Resin mold method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812738A (en) * 1981-07-16 1983-01-24 Matsushita Electric Ind Co Ltd Heat cycle injection compression molding method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812738A (en) * 1981-07-16 1983-01-24 Matsushita Electric Ind Co Ltd Heat cycle injection compression molding method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127323A (en) * 1984-11-27 1986-06-14 Hitachi Ltd Mold assembly for injection compression molding
JPH051128B2 (en) * 1984-11-27 1993-01-07 Hitachi Ltd
JPH0312529B2 (en) * 1985-02-07 1991-02-20 Meiki Seisakusho Kk
JPS61205111A (en) * 1985-02-07 1986-09-11 Meiki Co Ltd Compression molding method based on injection
JPS629926A (en) * 1985-07-09 1987-01-17 Hitachi Ltd Molding method for optical disk base
JPH0449446B2 (en) * 1985-07-09 1992-08-11 Hitachi Seisakusho Kk
JPS6213309A (en) * 1985-07-11 1987-01-22 Tokuyama Soda Co Ltd Method and apparatus for injection molding
JPS62123913U (en) * 1986-01-31 1987-08-06
JPH0414183Y2 (en) * 1986-01-31 1992-03-31
JPS6394806A (en) * 1986-10-09 1988-04-25 Toshiba Mach Co Ltd Controlling method for injection compression molding
JPS63224920A (en) * 1987-03-13 1988-09-20 Nippon Mektron Ltd Injection molding machine
JPH0183513U (en) * 1987-11-25 1989-06-02
JPH01136716A (en) * 1987-11-25 1989-05-30 Toshiba Mach Co Ltd Determination of quality of injection-molded object
JPH054989Y2 (en) * 1987-11-25 1993-02-09
JPH0546298B2 (en) * 1987-11-25 1993-07-13 Toshiba Machine Co Ltd
JPH035108A (en) * 1989-06-02 1991-01-10 Niigata Eng Co Ltd Injection-compression molding method
EP0623448A1 (en) * 1993-05-07 1994-11-09 General Electric Company Thermoplastic resin molding process
WO1998041379A1 (en) * 1996-02-29 1998-09-24 Hoya Corporation Method of injection molding plastic lens
US6156242A (en) * 1996-02-29 2000-12-05 Hoya Corporation Method of injection molding plastic lens
USRE38617E1 (en) * 1997-03-18 2004-10-12 Hoya Corporation Method of injection molding plastic lens
JP2014218038A (en) * 2013-05-09 2014-11-20 アピックヤマダ株式会社 Resin mold method and device

Also Published As

Publication number Publication date
JPH0134132B2 (en) 1989-07-18

Similar Documents

Publication Publication Date Title
JPS59232835A (en) Metallic mold for injection compression molding and molding method using the same
JP3917362B2 (en) Molding method for precision molded products
JP3385491B2 (en) Injection molding method
US5399303A (en) Method of controlling resin molding conditions
JPS59185636A (en) Injection compression molding method
JPS61125824A (en) Extruding compression forming metallic mold
JPS61233520A (en) Preparation of molded product
JP3197981B2 (en) Injection molding method
JPS61127323A (en) Mold assembly for injection compression molding
JPH0421574B2 (en)
JPH03204160A (en) Method for casting amorphous alloy-made member
JPS6283121A (en) Injection molding apparatus for concave lens
JP3740625B2 (en) Press-in / holding / releasing methods in insert molding
JPH079106A (en) Compression casting method
JPS6183016A (en) Injection and compression molding machine
US20210069952A1 (en) Method for producing an optical lens and optical lens produced by said method
JPH0573570B2 (en)
JPS5924620A (en) Formation of thick resin molding
JPH0651332B2 (en) Injection compression molding method
JPH0757697B2 (en) Glass lens molding method
JPS60132719A (en) Preparation of plastic lens
JPS635862A (en) Method and apparatus for plunger pressurizing casting
JPH0372016B2 (en)
JPS5978827A (en) Method of molding synthetic resin with high accuracy
JPH07205239A (en) Manufacture of plastic lens