JPS5923260A - Solid-state electrochemical element - Google Patents

Solid-state electrochemical element

Info

Publication number
JPS5923260A
JPS5923260A JP13270482A JP13270482A JPS5923260A JP S5923260 A JPS5923260 A JP S5923260A JP 13270482 A JP13270482 A JP 13270482A JP 13270482 A JP13270482 A JP 13270482A JP S5923260 A JPS5923260 A JP S5923260A
Authority
JP
Japan
Prior art keywords
layer
ions
solid
metal
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13270482A
Other languages
Japanese (ja)
Inventor
Shigeaki Nakada
中田 維明
Kazuyoshi Ueno
上野 二良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13270482A priority Critical patent/JPS5923260A/en
Publication of JPS5923260A publication Critical patent/JPS5923260A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/02Arrangements for measuring electric power or power factor by thermal methods, e.g. calorimetric

Abstract

PURPOSE:To obtain an element of a small size and light weight having an actuator effect, by laminating successively a layer which donates and accepts ions by charging and discharging, a solid-state electrolyte layer which conducts ions and a metallic layer corresponding to ions and providing terminals to the ion donating and accepting layer and the metallic layer. CONSTITUTION:An ion donating and accepting layer 1 consisting essentially of chalcogenides of transition metals of IVa or Va group of periodic table and chalcogen compds. of Cn<++>, Ag<+> which are beforehand donated and accepted, a solid state electrolyte layer which conduct Cu<++>, Ag<+>, for example, a layer 3 consisting of 10-30mol% RbCl 10-60mol% CuI, 30-70mol% CuCl, and a layer 2 consisting essentially of the metal corresponding to the ions to be donated and accepted such as Cu, Ag or the like and contg. the above-described solid state electrolyte are thermally molded to one body under pressure to munufacture a structural body 10. Electrical terminals 4, 5 are respectively provided to the layers 1, 3, and the body is supported on a stator 11, whereby an electrochemical element is manufactured. If electric current is supplied from the terminal 5 to 4, ions enter the layer 1. Then the layer expands and the part 12 of the body 10 displaces. Said part maintains that state even when the current supply is stopped and when the current is run conversely, said part restores the original state. The actuator of a small size and light weight is thus obtd.

Description

【発明の詳細な説明】 本発明は通電によって可動する固体電気化学素子に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state electrochemical device that is movable by energization.

近時、メカトロニクスの発達によって、電気エネルギー
を機械的仕事に変換するいわゆるアクチュエータの重要
性が高まってきた。従来、このようなアクチュエータと
しては、電磁力による電磁石やンレノイドの順のものが
使用されてきた。しかしながら、メカニズムの小形化や
軽量化が要求されるにしたがって電磁式に変る小形、軽
量のアクチュエータが要求されるようになってきた。電
磁式以外のものとして、圧電現象を用いたもの、電気エ
ネルギーから熱エネルギーを経て機械的仕事をさせる形
状記憶合金やバイメ゛タルを用いたものが工夫されるよ
うになった。
In recent years, with the development of mechatronics, the importance of so-called actuators that convert electrical energy into mechanical work has increased. Conventionally, such actuators have been used in the order of electromagnets and lenoids based on electromagnetic force. However, as mechanisms are required to be smaller and lighter, smaller and lighter electromagnetic actuators are required. In addition to electromagnetic methods, methods using piezoelectric phenomena, shape memory alloys and bimetals that perform mechanical work by converting electrical energy to thermal energy have been devised.

本発明の目的は一上記のようなアクチュエータと全く異
った原理に基づくアクチュエータを提供することにある
An object of the present invention is to provide an actuator based on a completely different principle from the above-mentioned actuators.

すなわち、通電によって三層構造の一方の層から中間の
層を通ってもう一方の属へ構成原子を移動させることに
よって、電気的エネルギーを機械的仕事に転換させると
いう電気化学的な反応を原理に用いたアクチュエータ作
用を有する固体電気化学素子を提供するものである。
In other words, it is based on the principle of an electrochemical reaction that converts electrical energy into mechanical work by moving the constituent atoms from one layer of a three-layer structure to the other layer through the middle layer by applying electricity. The present invention provides a solid electrochemical device having an actuator function using the present invention.

次に本発明の素子の構成について図を用いて説明する。Next, the structure of the element of the present invention will be explained using the drawings.

ある種の電子電導性の無機化合物の中には、電気化学的
に外部イオンを受容して構成原子としたり、逆に構成原
子を外部にイオンとして授与したりする機能をもつもの
がある。このような物質をイオン授受体と呼ぶことにす
る。このイオン授受体の詳細にういては後に述べる。第
1図(a)は本発明の固体電気化学素子の基本的な構成
金子す断面図、(b)は斜視図である。第1図において
、10は基本的にイオン授受体からなる層1と、そのイ
オンに対応する金属から基本的になる層2と、これらの
間に挟在するところの−に記イオンを電導する固体電解
質の層3全一体化して構成した構造体であり、この構造
体1oの一部にこの構造体1oを゛力学的に固定すると
同時に素子を機械装置などに取りつけるための周定子1
1を設け、残りの面を力学的に開放された開放R812
としさらにイオン授受体層と金属層間に通電するだめの
一対の電気端子4.6を設けたものである。なお、本発
明においては固定子11は必らずしも必要ではない。
Some electronically conductive inorganic compounds have the ability to electrochemically accept external ions and use them as constituent atoms, or conversely donate constituent atoms to the outside as ions. We will call such a substance an ion acceptor. The details of this ion acceptor will be described later. FIG. 1(a) is a sectional view of the basic structure of the solid electrochemical device of the present invention, and FIG. 1(b) is a perspective view. In FIG. 1, 10 is a layer 1 basically consisting of an ion exchanger, a layer 2 basically consisting of a metal corresponding to the ions, and a layer 10 sandwiched between these which conducts the ions. This is a structure in which the solid electrolyte layer 3 is entirely integrated, and a circumferential member 1 is provided on a part of the structure 1o to mechanically fix the structure 1o and at the same time to attach the element to a mechanical device or the like.
1 and the remaining surface is mechanically opened R812
Furthermore, a pair of electrical terminals 4.6 for conducting current between the ion exchanger layer and the metal layer are provided. Note that in the present invention, the stator 11 is not necessarily required.

以下の動作説明において、より理しやすくするだめには
、固定子を設けた場合の方が好都合である。
In the following explanation of the operation, in order to make it easier to understand, it is more convenient to provide a stator.

次にこの固体電気化学素子の作用について説明する。第
1図の素子において、電気端子5から4の方向に電流を
通ずると金属層2を構成する金属原子はイオン化されて
、固体電解質層3を通り、イオン授受体層1に到達し、
還元されて受容される。この通電によって、イオン授受
体層1の構成原子が増加するだめその層の体積が増加し
、しだがって、構造体10の長手方向が伸長する。その
結果、構造体1oは下方に彎曲する。しだがって、直線
的に可動させたい物体を構造体の可動部に設置すること
によりその物体を可動させることができる。固定子を設
けない場合においては、たとえば平行空隙面を有し、空
隙面に垂直に可動し、空隙が狭くなる方向にバネや重力
で荷重がかけられているような機構物体において、一端
と中心部にそれぞれ電気端子を設けた本発明の素子を挿
入し3素子に通電すれば、前記構造体の彎曲により機構
物体を可動させることができる。素子に対する通電を停
止するとイオンの移動は停止するから、本発明の可動部
の彎曲は保持される。次に電流の方向を逆にすると、イ
オンの流れが逆になり、彎曲は解消されて、もとの形状
に復帰する。
Next, the operation of this solid electrochemical device will be explained. In the device shown in FIG. 1, when a current is passed in the direction from the electric terminals 5 to 4, the metal atoms constituting the metal layer 2 are ionized, pass through the solid electrolyte layer 3, and reach the ion exchanger layer 1.
It is reduced and accepted. Due to this energization, the number of atoms constituting the ion exchanger layer 1 increases, so that the volume of the layer increases, and therefore the structure 10 is elongated in the longitudinal direction. As a result, the structure 1o curves downward. Therefore, by installing an object to be moved linearly on the movable part of the structure, the object can be moved. In the case where a stator is not provided, for example, in a mechanical object that has parallel gap planes, moves perpendicular to the gap plane, and is loaded by a spring or gravity in the direction that narrows the gap, one end and the center By inserting the elements of the present invention each having an electric terminal in each part and energizing the three elements, the mechanical object can be moved by the curvature of the structure. When the energization to the element is stopped, the movement of ions is stopped, so the curvature of the movable part of the present invention is maintained. Next, when the direction of the current is reversed, the flow of ions is reversed, the curvature disappears, and the shape returns to its original shape.

次に本発明の固体電気化学素子に用いられる材料につい
て述べる。イオン授受体としては次のような化合物を用
いることができる。一つは層間化合物として知られてい
るものであり、このものは二次元網目構造が層状に弱く
結合した結晶構造を持つものであり層間の結合を破って
種々のイオンが挿入され、層間距離が拡大することによ
って体積が増加する。本発明の素子におけるイオン授受
体に応用できるものとして、周期律表のlVb族又はv
b族の遷移金属のカルコゲン化物(カルコゲン元素とけ
S、Se、Teの総称である)があげられる。これらは
本発明の素子におけるイオン授受体の特性として必要な
電子電導性を見えている。
Next, materials used in the solid-state electrochemical device of the present invention will be described. The following compounds can be used as the ion transferor. One type is known as an intercalation compound, which has a crystal structure in which a two-dimensional network structure is weakly bonded in layers, and various ions are inserted by breaking the bonds between the layers, increasing the interlayer distance. Volume increases by enlarging. As a material that can be applied to the ion transfer body in the device of the present invention, group lVb or
Examples include chalcogenides of group b transition metals (chalcogen elements are a general term for S, Se, and Te). These exhibit the necessary electronic conductivity as a characteristic of the ion transfer body in the device of the present invention.

これらの代表的な例としてTiS 2およびTaS2が
あげられる。イオン授受体として用いるだめ移動させる
べきイオンを予じめ受容させておいてもよい。
Typical examples of these include TiS2 and TaS2. In order to be used as an ion acceptor, ions to be transferred may be received in advance.

例えばTiS7に対して銅イオンを受容させてCu)(
TIS7 (0(1< 1 )としておいてもよいo 
 □その他のイオン受容体として例えば銅又は銀のカル
コゲン化合物がある。こねらのものも、本発明の固体電
気化学素子におけるイオン授受体の特性として必要な電
子電導性を具えている。これらのうちの代表的なものと
して硫化銅および鍾化銀がある。
For example, by making TiS7 accept copper ions, Cu)(
TIS7 (may be set as 0 (1 < 1)
□Other ion acceptors include, for example, copper or silver chalcogen compounds. Konera also has the necessary electronic conductivity as a characteristic of the ion transfer body in the solid electrochemical device of the present invention. Representative examples of these include copper sulfide and silver chloride.

イオンを電導する固体電解質として銅イオンに対しては
、例えばRbC1、Cu(J 、 CuIの三成分から
なる化合物がある。イオン電導の好適な組成は1o4R
bct243o 、 1o−;CuI/;6o 、 3
o<−CuO4〈ア○(数字はモル%全表わす)の領域
よりなる化合物で構成される。寸だ、銀イオンを電導す
る電解質としてRbAg4 I 5が知られている。
As a solid electrolyte that conducts ions, for copper ions, there is a compound consisting of three components, for example, RbC1, Cu(J), and CuI.The preferred composition for ion conduction is 1o4R.
bct243o, 1o-;CuI/;6o, 3
It is composed of a compound in the region of o<-CuO4<A (numbers represent all mol%). Indeed, RbAg4I5 is known as an electrolyte that conducts silver ions.

イオン授受体層、固体電解質層、金属層の三層の一体構
造体は、各相料粉末を一体成形プレスすることによって
得られる。構造体の結合をより密なものとするだめにホ
ットプレスを行なうが、プレス後熱処理することが好捷
しい。また通電の際のイオン授受の電気化学的反応を円
滑に行なわせるために、イオン授受体層、金属層には、
固体電解質に用いられるのと同じ固体電解質粉を少量混
合しておくことが好ましい。
The three-layer integrated structure of the ion transfer layer, the solid electrolyte layer, and the metal layer is obtained by integrally molding and pressing each phase material powder. Hot pressing is performed in order to bond the structure more tightly, but it is preferable to perform heat treatment after pressing. In addition, in order to smoothly carry out the electrochemical reaction of ion exchange when electricity is applied, the ion exchanger layer and metal layer are
It is preferable to mix a small amount of the same solid electrolyte powder as used for the solid electrolyte.

次に実施例について述べる。イオン授受体にはCu1.
59Sの組成の硫化銅を用い、固体電解質にはRb2C
uBI3C17の組成の銅イオン固体電解質を用い/こ
。硫化銅が50%、固体電解質が50%の混合物f 8
0 mg秤量して幅4 mm 、 1%さ20mmの長
男形の断面の金属に充填し、100 kg/caの圧力
で1反成形をし、次いでs o myの固体電解質を充
填して同様の仮成形をし、最後に銅粉80%と上記固体
電解質20%の混合物を120mg秤量して充填して4
ton/ca4の圧力で成形した。なお、成形は160
′″Gで行なった。成形により作成された三層一体構造
体の一端から4mmの長さにわたって第1図に示すよう
に固定子と電気端子を取り何けた。
Next, examples will be described. Cu1.
Copper sulfide with a composition of 59S is used, and Rb2C is used as the solid electrolyte.
A copper ion solid electrolyte with a composition of uBI3C17 was used. Mixture f 8 of 50% copper sulfide and 50% solid electrolyte
0 mg was weighed and filled into a metal with a cross section of 4 mm in width and 20 mm in 1% width, molded once at a pressure of 100 kg/ca, and then filled with a solid electrolyte of SO MY to form a similar material. Temporarily formed, and finally weighed and filled 120 mg of a mixture of 80% copper powder and 20% of the above solid electrolyte.
It was molded at a pressure of ton/ca4. In addition, the molding is 160
A stator and an electric terminal were set apart over a length of 4 mm from one end of the three-layer integral structure produced by molding, as shown in FIG.

固定子にはプラスチック拐料を用い、電気端子には不活
性金属としての金を用いた。
The stator was made of plastic, and the electrical terminals were made of gold, an inert metal.

第2図は本発明の固体電気化学素子の動作状態を示しだ
ものである。第2図の(EL)は通電開始前の状態を示
したものである。電気端子6から4の方向に10mAの
電流を1分間通じると第2図(b)に示すように構造体
は下方に彎曲し、開方端に0.4mmの変位を示す。通
電を停止すると変位はその状態に保持される。電流の方
向を逆転すると、もとの状態に復帰して第2図(a)の
ようになる。同様の通電状態をくり返しても同様の結果
が得られる。
FIG. 2 shows the operating state of the solid electrochemical device of the present invention. (EL) in FIG. 2 shows the state before the start of energization. When a current of 10 mA is passed in the direction from the electrical terminals 6 to 4 for 1 minute, the structure curves downward as shown in FIG. 2(b), and exhibits a displacement of 0.4 mm at the open end. When the current supply is stopped, the displacement is maintained in that state. When the direction of the current is reversed, the original state is restored as shown in FIG. 2(a). Similar results can be obtained by repeating the same energization state.

以」二述べたように、本発明の固体電気化学素子は、き
わめて簡単な構造を有しているので、小形5軽量に作る
ことができる。本発明の固体電気化学素子は、小形で軽
量のアクチュエータとしてその利用価値は極めて大きい
As mentioned above, the solid electrochemical device of the present invention has an extremely simple structure and can be made small and lightweight. The solid electrochemical device of the present invention has extremely high utility value as a small and lightweight actuator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における一体電気化学素子の
構造を示すもので、(a)は断面図、(b)は斜視図、
第2図は本発明の固体電気化学素子の動作状態を示しだ
もので、(a)は初期の状態を示す側面図、bは通電後
の状態を示す側面図である。 1・・・・・イオン授受体層、2・・・・金属層、3・
・・・・・固体電解質層、4.+5・・・・・電気端子
、10・・・構造体、11・・・・・・固定子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ((1) l? 第1図
FIG. 1 shows the structure of an integrated electrochemical device according to an embodiment of the present invention, in which (a) is a sectional view, (b) is a perspective view,
FIG. 2 shows the operating state of the solid electrochemical device of the present invention, in which (a) is a side view showing the initial state, and (b) is a side view showing the state after energization. 1... Ion exchanger layer, 2... Metal layer, 3...
...solid electrolyte layer, 4. +5... Electrical terminal, 10... Structure, 11... Stator. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ((1) l? Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)充放電によって、その構成原子をイオンとして外
部へ授与し、もしくは逆に外部のイオンをその内部へ構
成原子として受容するところのイオン授受体から基本的
になる第1の層と、上記イオンに対応する金属から基本
的になる第2の層と、上記第1の層と第2の層の間に設
けられイオンを電導する固体電解質とを一体して構成し
た構造体と上記第1の層および第2の層にそれぞれ電気
的に接続された一対の電気端子とを有する固体電気化学
素子。
(1) A first layer basically consisting of an ion donor/receiver that donates its constituent atoms to the outside as ions or conversely receives external ions as constituent atoms into its interior through charging and discharging, and the above-mentioned A structure integrally comprising a second layer basically made of a metal corresponding to ions, and a solid electrolyte provided between the first layer and the second layer to conduct the ions, and the first layer. and a pair of electrical terminals each electrically connected to the second layer.
(2)構造体の一部に固定子を設けたことを特徴とする
特許請求範囲の第1項記載の固体電気化学素子。
(2) A solid electrochemical device according to claim 1, characterized in that a stator is provided in a part of the structure.
(3)金属層が銅又は銀から基本的になり、固体電解質
層が上記金属に対応して銅イオン又は銀イオンを電導す
る固体電解質からなり、イオン授受体層が周期律表の第
+vb族又は第Vb族の遷移金属のカルコゲン化物から
なることを特徴とする4?、i′F請求の範囲第1項記
載の固体電気化学素子。
(3) The metal layer is basically made of copper or silver, the solid electrolyte layer is made of a solid electrolyte that conducts copper ions or silver ions corresponding to the above metal, and the ion transfer layer is group +Vb of the periodic table. or 4?, characterized in that it consists of a chalcogenide of a Group Vb transition metal. , i'F The solid electrochemical device according to claim 1.
(4)金属層が銅又は銀から基本的になシ、固体電解質
層が上記金属に対応して銅tたは銀イオンを電導する固
体電解質からなり、イオン授受体層が上記金属層の構成
金属に対応してカルコゲン化鋼又はカルコゲン化銀から
なることを特徴とする特許請求の範囲第1項記載の固体
電気化学素子。
(4) The metal layer is basically made of copper or silver, the solid electrolyte layer is made of a solid electrolyte that conducts copper or silver ions corresponding to the metal, and the ion exchanger layer is composed of the metal layer. The solid electrochemical device according to claim 1, characterized in that it is made of chalcogenated steel or silver chalcogenide, depending on the metal.
(5)金属層が銅からなり、イオン授受層が硫化銅から
なり、固体電解質がRbG1が10ないし30−E /
l/%、 CuIが10ないし60 モ/I/%。 Cu(Jが30ないし70モル%よりなる化成物で構成
されることを特徴とする特許請求の範囲第3項記載の固
体電気化学素子。
(5) The metal layer is made of copper, the ion exchange layer is made of copper sulfide, and the solid electrolyte has RbG1 of 10 to 30-E/
l/%, CuI 10 to 60 mo/I/%. The solid electrochemical device according to claim 3, characterized in that it is composed of a chemical compound in which Cu (J is 30 to 70 mol%).
JP13270482A 1982-07-28 1982-07-28 Solid-state electrochemical element Pending JPS5923260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13270482A JPS5923260A (en) 1982-07-28 1982-07-28 Solid-state electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13270482A JPS5923260A (en) 1982-07-28 1982-07-28 Solid-state electrochemical element

Publications (1)

Publication Number Publication Date
JPS5923260A true JPS5923260A (en) 1984-02-06

Family

ID=15087603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13270482A Pending JPS5923260A (en) 1982-07-28 1982-07-28 Solid-state electrochemical element

Country Status (1)

Country Link
JP (1) JPS5923260A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098199A (en) * 2002-09-06 2004-04-02 Chemiprokasei Kaisha Ltd Solid electrolyte, flexible laminate containing it, and all-solid actuator formed from solid electrolyte
US8456058B2 (en) * 2009-08-27 2013-06-04 Canon Kabushiki Kaisha Actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098199A (en) * 2002-09-06 2004-04-02 Chemiprokasei Kaisha Ltd Solid electrolyte, flexible laminate containing it, and all-solid actuator formed from solid electrolyte
JP4637446B2 (en) * 2002-09-06 2011-02-23 ケミプロ化成株式会社 All solid actuator
US8456058B2 (en) * 2009-08-27 2013-06-04 Canon Kabushiki Kaisha Actuator

Similar Documents

Publication Publication Date Title
JP6803076B2 (en) A thermoelectric power generation element, a thermoelectric power generation module including the thermoelectric power generation element, and a thermoelectric power generation method using the thermoelectric power generation element.
US20020069906A1 (en) Thermoelectric device and method of manufacture
CN101136498B (en) Method for manufacturing a secondary battery
US9627600B2 (en) Mg—Si system thermoelectric conversion material, method for producing same, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module
JP2010114090A (en) Electrochemical power generation device and method for manufacturing the same
US8999123B2 (en) Alkali-metal generator and absorber
JP2016029652A5 (en)
US20180323358A1 (en) Method for pre-processing semiconducting thermoelectric materials for metallization, interconnection and bonding
WO2008059413A1 (en) Electrochemical energy source with a cathodic electrode comprising at least one non-oxidic active species and electric device comprising such an electrochemical energy source
JPS5923260A (en) Solid-state electrochemical element
JP2006513046A5 (en)
JPS5919863A (en) Solid electrochemical element
JP2762704B2 (en) Circuit breaker
JPS5919864A (en) Solid electrochemical element
WO2016208561A1 (en) Thermoelectric conversion element and method for manufacturing same, thermoelectric power generation module, and peltier cooling module
US20170194546A1 (en) Skutterudite thermoelectric materials and methods for making
US3392439A (en) Method and materials for obtaining low-resistance bonds to telluride thermoelectric bodies
JPH03119661A (en) Thermal battery
US3393056A (en) Tungsten powder bodies
JP4340750B2 (en) Good thermal conductor with controlled heat flow rate and method for producing the same
KR20210062987A (en) Thermo electric element
Muthiah et al. High-Performance Functionalized Mg2Si0. 9Sn0. 1 Thermoelectric Leg Synthesis by a Single-Step Reactive SPS Process
US3594237A (en) Thermoelectric device including tungsten granules for obtaining low resistance bonds
CA2251612A1 (en) Device and method for generating electrical energy
JP2020510987A (en) Thermoelectric module